特許第5773637号(P5773637)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ニューフレアテクノロジーの特許一覧

特許5773637荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
<>
  • 特許5773637-荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法 図000012
  • 特許5773637-荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法 図000013
  • 特許5773637-荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法 図000014
  • 特許5773637-荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法 図000015
  • 特許5773637-荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法 図000016
  • 特許5773637-荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法 図000017
  • 特許5773637-荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法 図000018
  • 特許5773637-荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法 図000019
  • 特許5773637-荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法 図000020
  • 特許5773637-荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法 図000021
  • 特許5773637-荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法 図000022
  • 特許5773637-荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法 図000023
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5773637
(24)【登録日】2015年7月10日
(45)【発行日】2015年9月2日
(54)【発明の名称】荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
(51)【国際特許分類】
   H01L 21/027 20060101AFI20150813BHJP
   G03F 7/20 20060101ALI20150813BHJP
【FI】
   H01L21/30 541M
   H01L21/30 541Q
   G03F7/20 504
【請求項の数】4
【全頁数】25
(21)【出願番号】特願2010-282889(P2010-282889)
(22)【出願日】2010年12月20日
(65)【公開番号】特開2012-134213(P2012-134213A)
(43)【公開日】2012年7月12日
【審査請求日】2013年11月7日
【前置審査】
(73)【特許権者】
【識別番号】504162958
【氏名又は名称】株式会社ニューフレアテクノロジー
(74)【代理人】
【識別番号】100119035
【弁理士】
【氏名又は名称】池上 徹真
(74)【代理人】
【識別番号】100141036
【弁理士】
【氏名又は名称】須藤 章
(74)【代理人】
【識別番号】100088487
【弁理士】
【氏名又は名称】松山 允之
(72)【発明者】
【氏名】松本 裕史
【審査官】 松岡 智也
(56)【参考文献】
【文献】 特開平09−237745(JP,A)
【文献】 特開2011−022617(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/027
G03F 7/20−7/24、9/00−9/02
(57)【特許請求の範囲】
【請求項1】
近接効果によるパターンの寸法変動を補正する近接効果補正係数と基準照射量との第1の組と、パターン寸法と荷電粒子ビームの照射量との関係を示す係数となる近接効果密度毎の裕度と、描画後の放置時間に起因するパターンの寸法変動量とを用いて、近接効果密度毎の荷電粒子ビームの第1の照射量を演算する第1の照射量演算部と、
演算された近接効果密度毎の第1の照射量を、裕度と放置時間に起因するパターンの寸法変動量とをパラメータとして用いずに近接効果補正係数と基準照射量とをパラメータとする照射量演算式を用いてフィッティングして、描画位置に依存した、近接効果による寸法変動を補正する近接効果補正係数と基準照射量との描画位置毎の第2の組を取得する取得部と、
描画位置毎に、取得された近接効果補正係数と基準照射量との描画位置毎の第2の組を用いて荷電粒子ビームの第2の照射量を演算する第2の照射量演算部と、
描画位置毎に、演算された第2の照射量の荷電粒子ビームを用いて、試料にパターンを描画する描画部と、
を備えたことを特徴とする荷電粒子ビーム描画装置。
【請求項2】
近接効果によるパターンの寸法変動を補正する近接効果補正係数と基準照射量との第1の組を用いて、複数の近接効果密度における荷電粒子ビームの近接効果密度毎の第1の照射量を演算する第1の照射量演算部と、
前記複数の近接効果密度毎のパターン寸法と荷電粒子ビームの照射量との相関関係を用いて、演算された近接効果密度毎の第1の照射量にそれぞれ相当する近接効果密度毎のパターン寸法を演算するパターン寸法演算部と、
描画後の放置時間に起因するパターンの寸法変動量を用いて、演算された近接効果密度毎のパターン寸法に、それぞれ、前記パターンの寸法変動量を加算する加算部と、
前記相関関係を用いて、加算後の近接効果密度毎のパターン寸法にそれぞれ相当する荷電粒子ビームの近接効果密度毎の第2の照射量を演算する第2の照射量演算部と、
演算された近接効果密度毎の第2の照射量を、近接効果補正係数と基準照射量とをパラメータとする照射量演算式を用いてフィッティングして、描画位置に依存した、近接効果による寸法変動を補正する近接効果補正係数と基準照射量との描画位置毎の第2の組を取得する取得部と、
描画位置毎に、取得された近接効果補正係数と基準照射量との描画位置毎の第2の組を用いて荷電粒子ビームの第3の照射量を演算する第3の照射量演算部と、
描画位置毎に、演算された第3の照射量の荷電粒子ビームを用いて、試料にパターンを描画する描画部と、
を備えたことを特徴とする荷電粒子ビーム描画装置。
【請求項3】
近接効果によるパターンの寸法変動を補正する近接効果補正係数と基準照射量との第1の組と、パターン寸法と荷電粒子ビームの照射量との関係を示す係数となる近接効果密度毎の裕度と、描画後の放置時間に起因するパターンの寸法変動量とを用いて、近接効果密度毎の荷電粒子ビームの第1の照射量を演算する工程と、
演算された近接効果密度毎の第1の照射量を、裕度と放置時間に起因するパターンの寸法変動量とをパラメータとして用いずに近接効果補正係数と基準照射量とをパラメータとする照射量演算式を用いてフィッティングして、描画位置に依存した、近接効果による寸法変動を補正する近接効果補正係数と基準照射量との描画位置毎の第2の組を取得する工程と、
描画位置毎に、取得された近接効果補正係数と基準照射量との描画位置毎の第2の組を用いて荷電粒子ビームの第2の照射量を演算する工程と、
描画位置毎に、演算された第2の照射量の荷電粒子ビームを用いて、試料にパターンを描画する工程と、
を備えたことを特徴とする荷電粒子ビーム描画方法。
【請求項4】
近接効果によるパターンの寸法変動を補正する近接効果補正係数と基準照射量との近接効果密度毎の第1の組を用いて、複数の近接効果密度における荷電粒子ビームの近接効果密度毎の第1の照射量を演算する工程と、
前記複数の近接効果密度毎のパターン寸法と荷電粒子ビームの照射量との相関関係を用いて、演算された近接効果密度毎の第1の照射量にそれぞれ相当する近接効果密度毎のパターン寸法を演算する工程と、
描画後の放置時間に起因するパターンの寸法変動量を用いて、演算された近接効果密度毎のパターン寸法に、それぞれ、前記パターンの寸法変動量を加算する工程と、
前記相関関係を用いて、加算後の近接効果密度毎のパターン寸法にそれぞれ相当する荷電粒子ビームの近接効果密度毎の第2の照射量を演算する工程と、
演算された近接効果密度毎の第2の照射量を、近接効果補正係数と基準照射量とをパラメータとする照射量演算式を用いてフィッティングして、描画位置に依存した、近接効果による寸法変動を補正する近接効果補正係数と基準照射量との描画位置毎の第2の組を取得する工程と、
描画位置毎に、取得された近接効果補正係数と基準照射量との描画位置毎の第2の組を用いて荷電粒子ビームの第3の照射量を演算する工程と、
描画位置毎に、演算された第3の照射量の荷電粒子ビームを用いて、試料にパターンを描画する工程と、
を備えたことを特徴とする荷電粒子ビーム描画方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法に係り、例えば、電子線描画において、レジストの放置によるパターンの寸法変動を補正する手法に関する。
【背景技術】
【0002】
半導体デバイスの微細化の進展を担うリソグラフィ技術は半導体製造プロセスのなかでも唯一パターンを生成する極めて重要なプロセスである。近年、LSIの高集積化に伴い、半導体デバイスに要求される回路線幅は年々微細化されてきている。これらの半導体デバイスへ所望の回路パターンを形成するためには、高精度の原画パターン(レチクル或いはマスクともいう。)が必要となる。ここで、電子線(電子ビーム)描画技術は本質的に優れた解像性を有しており、高精度の原画パターンの生産に用いられる。
【0003】
図12は、従来の可変成形型電子線描画装置の動作を説明するための概念図である。
可変成形型電子線(EB:Electron beam)描画装置は、以下のように動作する。第1のアパーチャ410には、電子線330を成形するための矩形例えば長方形の開口411が形成されている。また、第2のアパーチャ420には、第1のアパーチャ410の開口411を通過した電子線330を所望の矩形形状に成形するための可変成形開口421が形成されている。荷電粒子ソース430から照射され、第1のアパーチャ410の開口411を通過した電子線330は、偏向器により偏向され、第2のアパーチャ420の可変成形開口421の一部を通過して、所定の一方向(例えば、X方向とする)に連続的に移動するステージ上に搭載された試料340に照射される。すなわち、第1のアパーチャ410の開口411と第2のアパーチャ420の可変成形開口421との両方を通過できる矩形形状が、X方向に連続的に移動するステージ上に搭載された試料340の描画領域に描画される。第1のアパーチャ410の開口411と第2のアパーチャ420の可変成形開口421との両方を通過させ、任意形状を作成する方式を可変成形方式(VSB方式)という。
【0004】
上述した電子ビーム描画では、より高精度な試料面内、例えばマスク面内の線幅均一性が求められている。ここで、かかる電子ビーム描画では、電子ビームをレジストが塗布されたマスクに照射して回路パターンを描画する場合、電子ビームがレジスト層を透過してその下の層に達し、再度レジスト層に再入射する後方散乱による近接効果と呼ばれる現象が生じてしまう。これにより、描画の際、所望する寸法からずれた寸法に描画されてしまう寸法変動が生じてしまう。一方、描画後の現像やエッチングを行なう場合においても、回路パターンの粗密に起因したローディング効果と呼ばれる寸法変動が生じてしまう。
【0005】
ここで、基準照射量Dbase毎に近接効果補正がよく合う近接効果補正係数ηが存在する。そのため、基準照射量Dbaseと近接効果補正係数ηとの組を変えて近接効果補正を維持しながらローディング効果による寸法変動量もあわせて補正した照射量を算出する手法が開示されている(例えば、特許文献1参照)。
【0006】
しかしながら、さらに、寸法変動を引き起こす要因が問題となっている。電子ビーム露光に多く用いられているレジストの1つとして化学増幅型レジストがある。化学増幅型レジストは、露光後の放置によって最適露光量が変化するという問題を抱えている。すなわち、露光後の放置によって描画されたパターンの寸法が変動する現象が起こってしまう。これを解決する手法として、予め、描画されたレジストの経過時間による寸法変動量を求めておき、経過時間に応じた寸法変動量を補正する基準照射量Dbaseと近接効果補正係数ηとの組を相関データから算出するといった手法である(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2007−150243号公報
【特許文献2】特開2008−034781号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
上述した2つの技術を用いると、上述した近接効果補正を維持しながらローディング効果による寸法変動量もあわせて補正する基準照射量Dbaseと近接効果補正係数ηとの組と、経過時間に応じた寸法変動量を補正する基準照射量Dbaseと近接効果補正係数ηとの組との2種類の組が存在してしまうが、両者を単純に合成することは困難である。また一方で、描画されたレジストの経過時間に応じた寸法変動量は、グローバルな寸法変動であり、近接効果密度に依存していない。そこで、例えば、近接効果補正を維持しながらローディング効果による寸法変動量もあわせて補正する基準照射量Dbaseと近接効果補正係数ηとの組をベースにおき、近接効果補正係数ηを固定して、基準照射量Dbaseを変えることで経過時間に応じた寸法変動量を補正することも想定される。しかし、これでは、補正量が大きくなるにつれ近接効果補正のずれが大きくなってしまう。このように、従来、近接効果補正を維持しながらローディング効果等のグローバルな現象による寸法変動量と描画されたレジストの経過時間による寸法変動量とを合わせて補正する十分な手法が確立されていなかった。
【0009】
そこで、本発明は、上述した問題点を克服し、近接効果補正を維持しながらローディング効果等のグローバルな現象による寸法変動量と描画されたレジストの経過時間による寸法変動量とを合わせて補正することが可能な装置および方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の一態様の荷電粒子ビーム描画装置は、
近接効果によるパターンの寸法変動を補正する近接効果補正係数と基準照射量との第1の組と、パターン寸法と荷電粒子ビームの照射量との関係を示す係数となる近接効果密度毎の裕度と、描画後の放置時間に起因するパターンの寸法変動量とを用いて、近接効果密度毎の荷電粒子ビームの第1の照射量を演算する第1の照射量演算部と、
演算された近接効果密度毎の第1の照射量を、裕度と放置時間に起因するパターンの寸法変動量とをパラメータとして用いずに近接効果補正係数と基準照射量とをパラメータとする照射量演算式を用いてフィッティングして、描画位置に依存した、近接効果による寸法変動を補正する近接効果補正係数と基準照射量との描画位置毎の第2の組を取得する取得部と、
描画位置毎に、取得された近接効果補正係数と基準照射量との描画位置毎の第2の組を用いて荷電粒子ビームの第2の照射量を演算する第2の照射量演算部と、
描画位置毎に、演算された第2の照射量の荷電粒子ビームを用いて、試料にパターンを描画する描画部と、
を備えたことを特徴とする。
【0011】
かかる構成によれば、裕度を用いて、近接効果補正を維持しながらローディング効果等のグローバルな現象による寸法変動量と描画されたレジストの経過時間による寸法変動量とを合わせて補正する近接効果補正係数と基準照射量との組を得ることができる。
【0012】
また、本発明の他の態様の荷電粒子ビーム描画装置は、
近接効果によるパターンの寸法変動を補正する近接効果補正係数と基準照射量との第1の組を用いて、複数の近接効果密度における荷電粒子ビームの近接効果密度毎の第1の照射量を演算する第1の照射量演算部と、
上述した複数の近接効果密度毎のパターン寸法と荷電粒子ビームの照射量との相関関係を用いて、演算された近接効果密度毎の第1の照射量にそれぞれ相当する近接効果密度毎のパターン寸法を演算するパターン寸法演算部と、
描画後の放置時間に起因するパターンの寸法変動量を用いて、演算された近接効果密度毎のパターン寸法に、それぞれ、パターンの寸法変動量を加算する加算部と、
上述した相関関係を用いて、加算後の近接効果密度毎のパターン寸法にそれぞれ相当する荷電粒子ビームの近接効果密度毎の第2の照射量を演算する第2の照射量演算部と、
演算された近接効果密度毎の第2の照射量を、近接効果補正係数と基準照射量とをパラメータとする照射量演算式を用いてフィッティングして、描画位置に依存した、近接効果による寸法変動を補正する近接効果補正係数と基準照射量との描画位置毎の第2の組を取得する取得部と、
描画位置毎に、取得された近接効果補正係数と基準照射量との描画位置毎の第2の組を用いて荷電粒子ビームの第3の照射量を演算する第3の照射量演算部と、
描画位置毎に、演算された第3の照射量の荷電粒子ビームを用いて、試料にパターンを描画する描画部と、
を備えたことを特徴とする。
【0013】
かかる構成によれば、近接効果密度毎のパターン寸法と荷電粒子ビームの照射量との相関関係を用いて、近接効果補正を維持しながらローディング効果等のグローバルな現象による寸法変動量と描画されたレジストの経過時間による寸法変動量とを合わせて補正する近接効果補正係数と基準照射量との組を得ることができる。
【0014】
また、本発明の他の態様の荷電粒子ビーム描画装置は、
パターン寸法と荷電粒子ビームの照射量との関係を示す係数となる、近接効果密度に依存した裕度と、描画後の放置時間に起因するパターンの寸法変動量とを用いて、寸法変動量を補正するための補正項を演算する補正項演算部と、
描画位置毎に、近接効果によるパターンの寸法変動を補正する近接効果補正係数と基準照射量との第1の組と補正項とを用いて荷電粒子ビームの照射量を演算する照射量演算部と、
描画位置毎に、演算された照射量の荷電粒子ビームを用いて、試料にパターンを描画する描画部と、
を備えたことを特徴とする。
【0015】
かかる構成によれば、先の近接効果補正係数と基準照射量との組を変換することなく、近接効果補正を維持しながらローディング効果等のグローバルな現象による寸法変動量と描画されたレジストの経過時間による寸法変動量とを合わせて補正できる。
【0016】
本発明の一態様の荷電粒子ビーム描画方法は、
近接効果によるパターンの寸法変動を補正する近接効果補正係数と基準照射量との第1の組と、パターン寸法と荷電粒子ビームの照射量との関係を示す係数となる近接効果密度毎の裕度と、描画後の放置時間に起因するパターンの寸法変動量とを用いて、近接効果密度毎の荷電粒子ビームの第1の照射量を演算する工程と、
演算された近接効果密度毎の第1の照射量を、裕度と放置時間に起因するパターンの寸法変動量とをパラメータとして用いずに近接効果補正係数と基準照射量とをパラメータとする照射量演算式を用いてフィッティングして、描画位置に依存した、近接効果による寸法変動を補正する近接効果補正係数と基準照射量との描画位置毎の第2の組を取得する工程と、
描画位置毎に、取得された近接効果補正係数と基準照射量との描画位置毎の第2の組を用いて荷電粒子ビームの第2の照射量を演算する工程と、
描画位置毎に、演算された第2の照射量の荷電粒子ビームを用いて、試料にパターンを描画する工程と、
を備えたことを特徴とする。
【0017】
本発明の他の態様の荷電粒子ビーム描画方法は、
近接効果によるパターンの寸法変動を補正する近接効果補正係数と基準照射量との第1の組を用いて、複数の近接効果密度における荷電粒子ビームの近接効果密度毎の第1の照射量を演算する工程と、
上述した複数の近接効果密度毎のパターン寸法と荷電粒子ビームの照射量との相関関係を用いて、演算された近接効果密度毎の第1の照射量にそれぞれ相当する近接効果密度毎のパターン寸法を演算する工程と、
描画後の放置時間に起因するパターンの寸法変動量を用いて、演算された近接効果密度毎のパターン寸法に、それぞれ、前記パターンの寸法変動量を加算する工程と、
上述した相関関係を用いて、加算後の近接効果密度毎のパターン寸法にそれぞれ相当する荷電粒子ビームの近接効果密度毎の第2の照射量を演算する工程と、
演算された近接効果密度毎の第2の照射量を、近接効果補正係数と基準照射量とをパラメータとする照射量演算式を用いてフィッティングして、描画位置に依存した、近接効果による寸法変動を補正する近接効果補正係数と基準照射量との描画位置毎の第2の組を取得する工程と、
描画位置毎に、取得された近接効果補正係数と基準照射量との描画位置毎の第2の組を用いて荷電粒子ビームの第3の照射量を演算する工程と、
描画位置毎に、演算された第3の照射量の荷電粒子ビームを用いて、試料にパターンを描画する工程と、
を備えたことを特徴とする。
【発明の効果】
【0018】
本発明の一態様によれば、近接効果補正を維持しながらローディング効果等のグローバルな現象による寸法変動量と描画されたレジストの経過時間による寸法変動量とを合わせて補正できる。その結果、高精度な描画ができる。
【図面の簡単な説明】
【0019】
図1】実施の形態1における描画装置の構成を示す概念図である。
図2】実施の形態1における描画方法の要部工程を示すフローチャート図である。
図3】実施の形態1におけるストライプ領域を説明するための概念図である。
図4】実施の形態1における描画されたレジストの経過時間に起因する寸法変動の一例を示すグラフである。
図5】実施の形態1における照射量と近接効果密度との関係を示すグラフである。
図6】実施の形態2における描画装置の構成を示す概念図である。
図7】実施の形態2における描画方法の要部工程を示すフローチャート図である。
図8】実施の形態2における近接効果補正係数ηと基準照射量Dbaseとの近接効果密度毎の組の変換手法を説明するための概念図である。
図9】実施の形態3における描画装置の構成を示す概念図である。
図10】実施の形態3における描画方法の要部工程を示すフローチャート図である。
図11】実施の形態3における描画方法で描画した際のパターン寸法のずれの一例を示す図である。
図12】従来の可変成形型電子線描画装置の動作を説明するための概念図である。
【発明を実施するための形態】
【0020】
以下、実施の形態では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは、電子ビームに限るものではなく、イオンビーム等の荷電粒子を用いたビームでも構わない。また、荷電粒子ビーム装置の一例として、可変成形型の描画装置について説明する。
【0021】
実施の形態1.
図1は、実施の形態1における描画装置の構成を示す概念図である。図1において、描画装置100は、描画部150と制御部160を備えている。描画装置100は、荷電粒子ビーム描画装置の一例である。特に、可変成形型(VSB型)の描画装置の一例である。描画部150は、電子鏡筒102と描画室103を備えている。電子鏡筒102内には、電子銃201、照明レンズ202、ブランキング偏向器212、ブランキングアパーチャ214、第1の成形アパーチャ203、投影レンズ204、偏向器205、第2の成形アパーチャ206、対物レンズ207、主偏向器208及び副偏向器209が配置されている。描画室103内には、少なくともXY方向に移動可能なXYステージ105が配置される。XYステージ105上には、描画対象となる試料101が配置される。試料101には、半導体装置を製造するための露光用のマスクやシリコンウェハ等が含まれる。マスクにはマスクブランクスが含まれる。そして、試料101上には、露光後の経過時間に依存してパターン寸法が変動する化学増幅型レジストが塗布されている。
【0022】
制御部160は、制御計算機110,120、メモリ112,122、偏向制御回路130、デジタルアナログ変換器(DAC)132、及び磁気ディスク装置等の記憶装置140,141,142,143,144,146を有している。制御計算機110,120、メモリ112,122、偏向制御回路130、及び記憶装置140,141,142,143,144,146は、図示しないバスを介して互いに接続されている。偏向制御回路130は、DAC132を介してブランキング偏向器212に接続される。
【0023】
制御計算機110内には、面積密度マップ作成部30、寸法変動量取得部32、近接効果密度及び基準照射量算出部34、近接効果密度マップ作成部36、基準照射量マップ作成部38、及び描画時間予測部39が配置されている。面積密度マップ作成部30、寸法変動量取得部32、近接効果密度及び基準照射量算出部34、近接効果密度マップ作成部36、基準照射量マップ作成部38、及び描画時間予測部39といった各機能は、プログラムといったソフトウェアで構成されても良い。或いは、電子回路等のハードウェアで構成されてもよい。或いは、これらの組み合わせであってもよい。制御計算機110に必要な入力データ或いは演算された結果はその都度メモリ112に記憶される。
【0024】
制御計算機120内には、経過時間測定部40、寸法変動量算出部42、照射量演算部44、近接効果補正係数及び基準照射量演算部50、近接効果密度演算部52、近接効果補正照射量演算部54、照射量演算部56、及びショットデータ生成部58が配置されている。経過時間測定部40、寸法変動量算出部42、照射量演算部44、近接効果補正係数及び基準照射量演算部50、近接効果密度演算部52、近接効果補正照射量演算部54、照射量演算部56、及びショットデータ生成部58といった各機能は、プログラムといったソフトウェアで構成されても良い。或いは、電子回路等のハードウェアで構成されてもよい。或いは、これらの組み合わせであってもよい。制御計算機110に必要な入力データ或いは演算された結果はその都度メモリ122に記憶される。
【0025】
記憶装置140には、パターンのレイアウト、図形コード、及び座標等の描画に必要な描画データが外部から入力され、格納されている。記憶装置143には、離散的な複数の裕度DL(Ui)22がパラメータとして外部から入力され、格納されている。裕度DL(Ui)は、パターン寸法CDと電子ビーム200の照射量との近接効果密度毎の関係を示す係数として定義される。
【0026】
ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。描画装置100にとって、通常、必要なその他の構成を備えていても構わない。例えば、ここでは主副2段の主偏向器208および副偏向器209を用いているが、1段或いは3段以上の偏向器を用いても構わない。また、偏向制御回路130からは、図示しない各DACを介して、偏向器205、主偏向器208、及び副偏向器209に接続される。
【0027】
図2は、実施の形態1における描画方法の要部工程を示すフローチャート図である。図2において、パターン入力工程(S102)と、ローディング補正計算工程(S104)と、基準照射量Dbase(x)(ベースドーズ)マップ作成工程(S106)と、近接効果補正係数η(x)マップ作成工程(S108)と、経過時間測定工程(S110)と、寸法変動量CD(t)算出工程(S112)と、基準照射量Dbase(x,t)及び近接効果補正係数η(x,t)算出工程(S120)と、近接効果補正照射量Dp(η(x,t),U)マップ作成工程(S126)と、描画工程(S128)といった一連の工程を実施する。
【0028】
まず、描画処理を開始する前に、前処理として、パターン入力工程(S102)と、ローディング補正計算工程(S104)と、基準照射量Dbase(x)(ベースドーズ)マップ作成工程(S106)と、近接効果補正係数η(x)マップ作成工程(S108)とを実施する。
【0029】
パターン入力工程(S102)として、制御計算機110は、記憶装置140に記憶された描画データを入力する。
【0030】
ローディング補正計算工程(S104)として、制御計算機110は、試料101の各位置についてローディング補正計算を行なう。まず、面積密度マップ作成部30は、試料101の描画領域10をメッシュ状の複数のメッシュ領域に仮想分割して、メッシュ領域毎に、内部に配置されるパターンの面積密度ρを演算する。そして、位置に依存した面積密度マップを作成する。
【0031】
次に、寸法変動量取得部32は、ローディング効果に起因したパターンの寸法変動量ΔCD(x)を取得する。ここでは、ローディング効果に起因したパターンの寸法変動量だけを示しているが、その他のグローバルな寸法変動量を合わせて求めてもよい。寸法変動量ΔCD(x)は、ローディング効果補正係数γ、面積密度ρ(x)、分布関数g(x)、及び位置に依存したローディング効果に起因したパターンの寸法変動量CDpos(x)を用いて、次の式(1)で定義できる。ここで、位置xは、グローバルな位置またはローディング効果分布半径の1/10程度で描画対象となる試料の描画領域をメッシュ化したときの各メッシュ位置(座標)を指している。
【0032】
【数1】
【0033】
位置依存の寸法変動量CDpos(x)は、予め実験等で求めておけばよい。そして、記憶装置141に格納しておけばよい。或いは、寸法変動量ΔCD(x)自体をユーザ等から取得し、記憶装置141に格納しておいてもよい。かかる場合、寸法変動量取得部32は、式(2)を演算するまでもなく、記憶装置141から寸法変動量ΔCD(x)自体を読み出せばよい。ここでは、内容を理解しやすくするため、x方向の位置について示したが、y方向の位置についても同様に計算される。x方向の位置を示すxとy方向の位置を示すyは共にベクトルを示す。以下、同様である。
【0034】
次に、近接効果密度及び基準照射量算出部34は、ローディング効果に起因したパターンの寸法変動量ΔCD(x)を、近接効果補正を維持しながら補正可能な近接効果補正係数η(x)及び基準照射量Dbase(x)の組を算出する。その際、ΔCD(x)より所望のCDからΔCD(x)分を補正した寸法に対応する照射量Dを、位置x毎に、例えば、近接効果密度毎のCD−D相関データから求める。これにより、離散的な近接効果密度毎の照射量Dが得られる。そして、位置x毎に、かかる離散的な近接効果密度毎の照射量Dが次の式(2)を満たす近接効果補正係数η(x)及び基準照射量Dbase(x)の組を算出すればよい。近接効果密度毎のパターン寸法CDと照射量Dとの相関データは、例えば記憶装置141に格納しておけばよい。また、xが示すメッシュの中にどのような近接効果密度Uの領域があるか無関係に処理ができるように、どのような近接効果密度Uに対しても補正が良く合うような基準照射量Dbase(x)と近接効果補正係数h(x)の組を求める。よって、これらの組を求める際に、U(x)を予め計算しなくとも求めることができる。
【0035】
【数2】
【0036】
ここで、式(2)中の近接効果補正照射量Dp(η(x),U)は、次の式(3)で定義される。
【0037】
【数3】
【0038】
そして、基準照射量Dbase(x)マップ作成工程(S106)として、基準照射量マップ作成部38は、位置毎に基準照射量Dbase(x)が格納された基準照射量Dbase(x)マップを作成する。
【0039】
同様に、近接効果補正係数η(x)マップ作成工程(S108)として、基準照射量マップ作成部38は、位置毎に近接効果補正係数η(x)が格納されたη(x)マップを作成する。作成された基準照射量Dbase(x)マップと近接効果補正係数η(x)マップは、記憶装置142に格納される。或いは、基準照射量Dbase(x)マップと近接効果補正係数η(x)マップをユーザ等から取得し、記憶装置142に格納しておいてもよい。かかる場合、ローディング補正計算工程(S104)におけるローディング効果に起因したパターンの寸法変動量ΔCD(x)を取得する工程から近接効果補正係数η(x)マップ作成工程(S108)までの各工程は不要となる。
【0040】
以上のようにして、ベースとなるローディング効果に起因したパターンの寸法変動量ΔCD(x)を、近接効果補正を維持しながら補正可能な近接効果補正係数η(x)及び基準照射量Dbase(x)の組を取得しておく。しかし、上述したようにこのままでは描画されたレジストの経過時間に起因する寸法変動量CD(t)を補正できない。そこで、実施の形態1では、ベースとなるかかる近接効果補正係数η(x)及び基準照射量Dbase(x)の組を変換して、ローディング効果に起因したパターンの寸法変動量ΔCD(x)とレジストの経過時間に起因する寸法変動量CD(t)との両方を、近接効果補正を維持しながら補正可能な近接効果補正係数η(x,t)及び基準照射量Dbase(x,t)の組を取得する。
【0041】
まず、描画処理を開始する前に、描画時間予測工程として、描画時間予測部39は、記憶装置140に格納された描画データに定義されたバターンの描画を開始してから終了するまでの描画時間twを予測する。描画時間twの予測は、例えばXYステージ105の速度プロファイルを用いて算出が可能である。
【0042】
図3は、実施の形態1におけるストライプ領域を説明するための概念図である。試料101の描画領域10は、x方向或いはy方向に主偏向器208で偏向可能な幅で短冊状に複数のストライプ領域20に仮想分割される。そして、ストライプ領域20ごとに描画処理が進められていく。1つのストライプ領域の描画が終了すると、隣接する次のストライプ領域の描画が行われる。まず、ストライプ領域20毎にXYステージ105の移動速度を算出する。移動速度は、当該ストライプ領域20に描画されるパターンの粗密等に応じて算出されればよい。密な領域は遅く、粗な領域は速くなる。そして、かかる移動速度からXYステージ105の速度プロファイルが算出される。ストライプ領域20の長さをXYステージ105の速度プロファイルが示す速度で割れば、当該ストライプ領域の描画時間を予測できる。各ストライプ領域の描画時間を加算すれば、描画データに定義されたバターンの描画を開始してから終了するまでの描画時間twを予測できる。
【0043】
以上のように、ベースとなる近接効果補正係数η(x)及び基準照射量Dbase(x)の組と描画時間twとが算出された後、描画処理を開始する。描画処理は、上述したように、ストライプ領域20単位で進めていく。1つのストライプ領域20の描画が終了すると、隣接する次のストライプ領域の描画が行われる。その際、描画処理を行うためには、実際に電子ビームを照射する前にデータ演算処理が終了している必要がある。また、データ演算処理は計算量が多いため、まだ描画が行われていない少なくとも1つ先のストライプ領域20についてデータ演算処理を先行して進めていく。これにより、リアルタイムにデータ演算を行なうことができる。図3の例では、例えば、n番目のストライプ領域20aを描画している際に、並行して、n+1番目のストライプ領域20bについてデータ演算処理を行っている場合を示している。このように、順次、先行するストライプ領域20についてデータ演算処理を行っていく。そして、データ演算処理が終了したストライプ領域20について描画が行われる。
【0044】
まず、経過時間測定工程(S110)として、経過時間測定部40は、描画処理を開始した開始時刻から、例えば、現在、描画処理を行っているストライプ領域の描画開始位置Aの描画開始時刻までの経過時間t(A)を測定する。描画されたレジストの経過時間に起因する寸法変動量CD(t)は、隣接するストライプ間では同程度となる。隣接していなくてもストライプ領域同士が数列離れた程度では、ほとんど変わらない。そこで、実施の形態1では、データ処理を行うストライプ領域に対する寸法変動量CD(t)を演算する際、経過時間tとして、既に描画を開始したストライプ領域について測定された経過時刻t(A)を用いる。
【0045】
寸法変動量CD(t)算出工程(S112)として、寸法変動量算出部42は、描画されたレジストの経過時間に起因する寸法変動前の所望のパターン数法CD0と、係数α(U)、描画時間tw、描画開始からの経過時間tを用いて、次の式(4)で求めることができる。
【0046】
【数4】
【0047】
係数α(U)は、定数でもよいし、或いは、近接効果密度Uに依存した値でもよい。係数α(U)は、予め実験等で求めておけばよい。
【0048】
図4は、実施の形態1における描画されたレジストの経過時間に起因する寸法変動の一例を示すグラフである。レジストの経過時間に起因する寸法変動を補正しない場合、図4に示すように、パターン寸法CDとなる照射量で描画しても、実際に形成されるパターンの寸法は当該パターン描画後から描画終了してブランクを取り出しPEB処理を行うまでの時間が長いほど太くなる。結果描画開始直後のパターンは最も太くなりCDiniになる。パターン寸法を均一にするためには経過時間による寸法変化量を予測して、経過時間がないときに前記寸法変化量と逆符号の寸法バイアスが得られるような照射量でパターンを描画することにより経過時間による寸法変化を打ち消す必要がある。よって、補正Aで示すように描画経過時刻を逐次考慮して照射量を制御しパターン寸法がCDiniになるように補正することになる。或いは、補正Bで示すようにパターン寸法がCDになるように補正することも考えられる。この場合、TfinとCDiniを描画処理開始前に予測することが必要である。また、図4の例では、寸法変動量CD(t)は、近接効果密度Uに依存していない。よって、かかる場合には、係数α(U)は、定数でよい。但し、これに限るものではなく、寸法変動量CD(t)が近接効果密度Uに依存してもよい。かかる場合には、係数α(U)は、近接効果密度Uに依存した値にすればよい。
【0049】
基準照射量Dbase(x,t)及び近接効果補正係数η(x,t)算出工程(S120)として、まず、照射量演算部44は、記憶装置143より、複数の近接効果密度U毎の裕度DL(Ui)を読み出し、また、記憶装置142から、位置x毎に、ベースとなる近接効果補正係数η(x)及び基準照射量Dbase(x)の組(第1の組)を読み出す。そして、ベースとなる近接効果補正係数η(x)及び基準照射量Dbase(x)の組(第1の組)と、パターン寸法と電子ビームの照射量との関係を示す係数となる近接効果密度毎の裕度DL(Ui)と、描画後の放置時間に起因するパターンの寸法変動量CD(t)とを用いて、位置x毎に、近接効果密度毎の電子ビーム200の照射量D(x,Ui,t)(第1の照射量)を演算する。照射量演算部44は、第1の照射量演算部の一例である。照射量D(x,Ui,t)は、次の式(5)で定義できる。
【0050】
【数5】
【0051】
ここで、式(5)における近接効果補正照射量Dpは、式(3)を用いればよい。また、例えば、近接効果密度Ui=0(0%),0.5(50%),1(100%)の各場合について、裕度DL(Ui)を記憶装置143に格納しておけばよい。近接効果密度Ui=0は実際にはパターンが無いことになってしまうので、周囲に何もない状態で測定用のラインパターンを例えば1つ描画することで近似して求めることができる。逆に、近接効果密度Ui=1は周囲を含めてメッシュ内全体がパターンになってしまい寸法が測れないので、周囲がパターンで埋め尽くされた状態で測定用のラインパターンを例えば1つ描画することで近似して求めることができる。ここで、設定する近接効果密度Uiは、0%,50%,100%の各場合に限るものではない。例えば、10%以下のいずれかと、50%と、90%以上のいずれかとの3つを用いても好適である。また、3種類に限らず、その他の数の種類で測定してもよい。例えば4種類以上測定しても構わない。
【0052】
そして、パターン寸法CDと照射量D(U)との関係を裕度DL(U)が示している。裕度DL(U)は、近接効果密度U(x)に依存する。パターン寸法CDを縦軸、照射量D(U)を横軸にしたグラフにおいて、例えば、近接効果密度U(x)毎のグラフの傾き(比例係数)で定義される。照射量Dの対数を横軸に示すことで、直線に近いグラフが得られるので比例係数となるが、これに限るものではない。裕度DL(U)は、パターン寸法CDと照射量D(U)との関係を示すパラメータ(係数)として定義できればよい。
【0053】
以上のようにして、位置x毎に、Ui=0(0%),0.5(50%),1(100%)の各場合の照射量D(x,Ui,t)が得られる。
【0054】
図5は、実施の形態1における照射量と近接効果密度との関係を示すグラフである。図5のグラフは、照射量Dを縦軸、近接効果密度Uを横軸に示している。図5では、得られたUi=0(0%),0.5(50%),1(100%)の各場合の照射量D(x,Ui,t)がプロットされている。そして、近接効果補正係数及び基準照射量演算部50は、位置x毎に、プロットされたUi=0(0%),0.5(50%),1(100%)の各場合の照射量D(x,Ui,t)を次の式(6)でフィッティングする。
【0055】
【数6】
【0056】
また、式(6)における近接効果補正照射量Dpは、次の式(7)で定義される。
【0057】
【数7】
【0058】
そして、近接効果補正係数及び基準照射量演算部50は、位置x毎に、フィッティングした際に演算された、描画位置に依存した、近接効果による寸法変動を補正する近接効果補正係数η(x,t)と基準照射量Dbase(x,t)との描画位置毎の組(第2の組)を取得する。近接効果補正係数及び基準照射量演算部50は、取得部の一例となる。以上のように、近接効果補正係数及び基準照射量演算部50は、位置x毎に、演算された近接効果密度毎の照射量D(x,Ui,t)を、裕度DLと放置時間に起因するパターンの寸法変動量CD(t)とをパラメータとして用いずに近接効果補正係数ηと基準照射量Dbaseとをパラメータとする照射量演算式を用いてフィッティングして、描画位置に依存した、近接効果による寸法変動を補正する近接効果補正係数η(x,t)及び基準照射量Dbase(x,t)の描画位置毎の組を取得する。そして、現在、データ処理を行っているストライプ領域20毎の近接効果補正係数η(x,t)マップ及び基準照射量Dbase(x,t)マップとして、記憶装置144に格納される。また、xが示すメッシュの中にどのような近接効果密度Uの領域があるか無関係に処理ができるように、どのような近接効果密度Uに対しても補正が良く合うような基準照射量Dbase(x,t)と近接効果補正係数h(x,t)の組を求める。よって、これらの組を求める際に、U(x)を予め計算しなくとも求めることができる。
【0059】
以上のようにして、ベースとなるかかる近接効果補正係数η(x)及び基準照射量Dbase(x)の組を変換して、ローディング効果に起因したパターンの寸法変動量ΔCD(x)とレジストの経過時間に起因する寸法変動量CD(t)との両方を、近接効果補正を維持しながら補正可能な近接効果補正係数η(x,t)及び基準照射量Dbase(x,t)の組を取得する。
【0060】
近接効果補正照射量Dp(η(x,t),U)マップ作成工程(S126)として、まず、近接効果密度演算部52は、データ処理を行っているストライプ領域20の各位置における近接効果密度U(x)を演算する。
【0061】
近接効果密度U(x)は、近接効果メッシュ内のパターン面積密度ρ(x)に分布関数g(x)を近接効果の影響範囲以上の範囲で畳み込み積分した値で定義され、次の式(8)で求めることができる。
【0062】
【数8】
【0063】
近接効果メッシュは、近接効果の影響範囲の例えば1/10程度のサイズが好適であり、例えば、1μm程度のサイズが好適である。分布関数g(x)は、例えばガウシアン関数を用いるとよい。このように、実施の形態1におけるここからの位置xは、ローカルな位置または近接効果分布半径の1/10程度で描画対象となる試料の描画領域をメッシュ化したときの各メッシュ位置(座標)を指している。
【0064】
そして、近接効果補正照射量演算部54は、かかる各位置における近接効果補正照射量Dpを演算する。近接効果補正照射量Dpは記憶装置144から近接効果補正係数η(x,t)を読み出し、上述した式(7)で求めればよい。記憶装置144に格納された近接効果補正係数η(x,t)マップにおけるxは、グローバルなサイズのメッシュ座標を示すが、ここでは、上述したローカルな小さいサイズのメッシュ座標を含むグローバルサイズのメッシュ座標の値を参照すればよい。但し、式(7)におけるUは、式(8)で求めたU(x)を用いる。
【0065】
そして、データ処理を行っているストライプ領域20毎の近接効果補正照射量Dp(η(x,t),U)マップとして、記憶装置144に格納される。
【0066】
上述した例では、近接効果補正照射量Dpをη(x,t)の1次の関数で示しているが、これに限るものではなく、図示しないイタレーション手法を用いて、高次の計算を行なっても好適である。例えば、3次の計算を行なうと好適である。
【0067】
以上のようにして、現在データ処理を行っているストライプ領域20毎の近接効果補正照射量Dp(η(x,t),U)マップまでの演算が終了したら、次のストライプ領域20についてのデータ演算に戻る。すなわち、経過時間測定工程(S110)まで戻る。そして、当該ストライプ領域20毎の近接効果補正照射量Dp(η(x,t),U)マップまでの演算を行なう。このようにして、ストライプ領域20毎の近接効果補正係数η(x,t)マップ、基準照射量Dbase(x,t)マップ、及び近接効果補正照射量Dp(η(x,t),U)マップを順次作成していく。
【0068】
描画工程(S128)として、照射量演算部56は、描画位置毎に、取得された近接効果補正係数η(x,t)と基準照射量Dbase(x,t)との描画位置毎の組を用いて電子ビーム200の照射量D(第2の照射量)を演算する。照射量演算部56は、第2の照射量演算部となる。具体的には、取得された近接効果補正係数η(x,t)から得られた近接効果補正照射量Dp(η(x,t),U)と基準照射量Dbase(x,t)とを用いて、照射量D(x,U,t)を演算する。照射量D(x,U,t)は、上述した式(6)で求まる。記憶装置144に格納された基準照射量Dbase(x,t)マップにおけるxは、グローバルなサイズのメッシュ座標を示すが、ここでは、上述したローカルな小さいサイズのメッシュ座標を含むグローバルサイズのメッシュ座標の値を参照すればよい。
【0069】
そして、ショットデータ生成部58は、記憶装置140から描画データを入力し、複数段のデータ変換処理を行って、装置固有のショットデータを生成する。ショットデータ生成部58は、描画データに定義された複数の図形パターンを1度の電子ビーム200で照射可能なサイズ(成形可能なサイズ)のショット図形に変換し、各ショット図形の照射量、照射位置、ショット図形の種類、及びショット図形サイズ等が定義されたショットデータを生成する。かかる照射量として、上述した照射量D(x,U,t)が用いられる。
【0070】
そして、生成されたショットデータは記憶装置146に格納される。そして、偏向制御回路130は、ショットデータに沿って、定義された描画位置に電子ビーム200を偏向するための偏向量を演算する。同様に、各ショット図形に定義された照射量(照射時間)だけ電子ビーム200を照射し、照射時間が経過したら電子ビーム200を遮へいするように偏向するための偏向量を演算する。同様に、各ショット図形に定義された図形種及びサイズの図形に成形するための偏向量を演算する。そして、各偏向量の偏向電圧を対応する偏向器に印加する。かかる各偏向によって、描画部150は、描画位置毎に、演算された照射量D(x,U,t)の電子ビーム200を用いて、試料101にパターンを描画する。具体的には、以下の動作を行なう。
【0071】
電子銃201(放出部)から放出された電子ビーム200は、ブランキング偏向器212内を通過する際にブランキング偏向器212によって、ビームONの状態では、ブランキングアパーチャ214を通過するように制御され、ビームOFFの状態では、ビーム全体がブランキングアパーチャ214で遮へいされるように偏向される。ビームOFFの状態からビームONとなり、その後ビームOFFになるまでにブランキングアパーチャ214を通過した電子ビーム200が1回の電子ビームのショットとなる。ブランキング偏向器212は、通過する電子ビーム200の向きを制御して、ビームONの状態とビームOFFの状態とを交互に生成する。例えば、ビームONの状態では電圧を印加せず、ビームOFFの際にブランキング偏向器212に電圧を印加すればよい。かかる各ショットの照射時間で試料101に照射される電子ビーム200のショットあたりの照射量が調整されることになる。
【0072】
以上のようにブランキング偏向器212とブランキングアパーチャ214を通過することによって生成された各ショットの電子ビーム200は、照明レンズ202により矩形例えば長方形の穴を持つ第1の成形アパーチャ203全体を照明する。ここで、電子ビーム200をまず矩形例えば長方形に成形する。そして、第1の成形アパーチャ203を通過した第1のアパーチャ像の電子ビーム200は、投影レンズ204により第2の成形アパーチャ206上に投影される。偏向器205によって、かかる第2の成形アパーチャ206上での第1のアパーチャ像は偏向制御され、ビーム形状と寸法を変化させる(可変成形を行なう)ことができる。かかる可変成形はショット毎に行なわれ、通常ショット毎に異なるビーム形状と寸法に成形される。そして、第2の成形アパーチャ206を通過した第2のアパーチャ像の電子ビーム200は、対物レンズ207により焦点を合わせ、主偏向器208及び副偏向器209によって偏向され、連続的に移動するXYステージ105に配置された試料101の所望する位置に照射される。ストライプ領域は副偏向器209で偏向可能なサブフィールド(SF)に仮想分割されるが、まず、主偏向器208がショットされるSFの基準位置に電子ビーム200を偏向する。XYステージ105は移動しているため、主偏向器208はXYステージ105の移動に追従するように電子ビーム200を偏向する。そして、副偏向器209により、SF内の各位置に照射される。
【0073】
以上のように実施の形態1によれば、裕度を用いて、近接効果補正を維持しながらローディング効果等のグローバルな現象による寸法変動量と描画されたレジストの経過時間に起因する寸法変動量とを合わせて補正する近接効果補正係数と基準照射量との組を得ることができる。よって、近接効果補正を維持しながらローディング効果等のグローバルな現象による寸法変動量と描画されたレジストの経過時間による寸法変動量とを合わせて補正できる。その結果、高精度な描画ができる。
【0074】
実施の形態2.
実施の形態1では、離散的な複数の裕度DL(Ui)を用いて、ベースとなる近接効果補正係数η(x,t)と基準照射量Dbase(x,t)の組を変換しているが、これに限るものではない。
【0075】
図6は、実施の形態2における描画装置の構成を示す概念図である。図6において、制御計算機120内に、照射量演算部44の代わりに、照射量D(Ui)演算部43、パターン寸法CD(Ui)算出部45、加算部46、及び照射量D(Ui)演算部47が追加された点、及び近接効果密度毎の裕度DL(Ui)22の代わりに近接効果密度毎のCD−D相関データ26が記憶装置143に格納された点以外は図1と同様である。また、経過時間測定部40、寸法変動量算出部42、照射量D(Ui)演算部43、パターン寸法CD(Ui)算出部45、加算部46、照射量D(Ui)演算部47、近接効果補正係数及び基準照射量演算部50、近接効果密度演算部52、近接効果補正照射量演算部54、照射量演算部56、及びショットデータ生成部58といった各機能は、プログラムといったソフトウェアで構成されても良い。或いは、電子回路等のハードウェアで構成されてもよい。或いは、これらの組み合わせであってもよい。制御計算機110に必要な入力データ或いは演算された結果はその都度メモリ122に記憶される。
【0076】
図7は、実施の形態2における描画方法の要部工程を示すフローチャート図である。図7において、基準照射量Dbase(x,t)及び近接効果補正係数η(x,t)算出工程(S120)の代わりに基準照射量Dbase(x,t)及び近接効果補正係数η(x,t)算出工程(S121)を追加し、基準照射量Dbase(x,t)及び近接効果補正係数η(x,t)算出工程(S121)では、近接効果密度毎の裕度DL(Ui)22の代わりに近接効果密度毎のCD−D相関データ26が用いられることを示した点以外は、図2と同様である。
【0077】
また、実施の形態2において、特に説明しない内容は、実施の形態1と同様である。パターン入力工程(S102)から寸法変動量CD(t)算出工程(S112)までの各工程の内容は、実施の形態1と同様である。
【0078】
基準照射量Dbase(x,t)及び近接効果補正係数η(x,t)算出工程(S121)として、照射量D(Ui)演算部43は、位置x毎に、複数の近接効果密度Uiにおける電子ビーム200の近接効果密度毎の照射量D(x,U)(第1の照射量)を演算する。照射量D(Ui)演算部43は、近接効果密度Ui毎の照射量D(x,U)を演算する際、近接効果によるパターンの寸法変動を補正する近接効果補正係数η(x)と基準照射量Dbase(x)との組(第1の組)を用いる。照射量D(Ui)演算部43は、第1の照射量演算部の一例となる。ここでは、位置x毎に、式(2)を用いて近接効果密度Ui毎の照射量D(x,U)を演算すればよい。
【0079】
図8は、実施の形態2における近接効果補正係数η(x)と基準照射量Dbase(x)との近接効果密度毎の組の変換手法を説明するための概念図である。図8(a)に示すように、例えば、近接効果密度Ui=0(0%),0.5(50%),1(100%)の各場合について、位置x毎に、照射量D(x,U)を演算する。その際、ベースとなる近接効果補正係数η(x)マップと基準照射量Dbase(x)マップからそれぞれ該当する位置xの基準照射量Dbase(x)との組(第1の組)を用いればよい。このようにして、位置x毎に、離散的な複数の近接効果密度における各照射量D(x,U)を演算する。
【0080】
次に、パターン寸法CD(Ui)算出部45は、近接効果密度毎のパターン寸法CDと電子ビーム200の照射量Dとの相関関係を用いて、位置x毎に、演算された近接効果密度毎の照射量D(x,U)(第1の照射量)にそれぞれ相当する近接効果密度毎のパターン寸法CD(Ui)を演算する。具体的には、パターン寸法CD(Ui)算出部45は、記憶装置143から近接効果密度毎のパターン寸法CDと照射量Dとの関係を示すCD−D相関データ26を読み出し、算出された近接効果密度Ui毎の各照射量D(x,U)に対応するパターン寸法CD(x,Ui)を算出する。言い換えれば、かかる演算により、位置x毎に、近接効果密度Ui=0(0%),0.5(50%),1(100%)の各場合について、パターン寸法CD(x,Ui)が得られたことになる。
【0081】
次に、加算部46は、描画後の放置時間に起因するパターンの寸法変動量CD(t)を用いて、位置x毎に、演算された近接効果密度毎のパターン寸法CD(x,Ui)に、それぞれ、パターンの寸法変動量CD(t)を加算する。言い換えれば、加算部46は、図8(b)に示すように、近接効果密度Ui毎のパターン寸法CD(x,Ui)に、寸法変動量CD(t)算出工程(S112)で算出された寸法変動量CD(t)をそれぞれ加算する。
【0082】
そして、照射量D(Ui)演算部47は、記憶装置143からCD−D相関データ26を読み出し、かかる相関関係を用いて、位置x毎に、加算後の近接効果密度毎のパターン寸法CD(x,Ui,t)にそれぞれ相当する電子ビーム200の近接効果密度毎の照射量D(x,U,t)(第2の照射量)を演算する。照射量D(Ui)演算部47は、第2の照射量演算部の一例となる。かかる演算により、位置x毎に、近接効果密度Ui=0(0%),0.5(50%),1(100%)の各場合について、寸法変動量CD(t)が加算されたパターン寸法CD(x,Ui,t)に対応する照射量D(x,Ui,t)が得られたことになる。
【0083】
そして、基準照射量Dbase(x,t)及び近接効果補正係数η(x,t)算出工程(S121)として、近接効果補正係数及び基準照射量演算部50は、図8(c)で示すように、位置x毎に、Ui=0(0%),0.5(50%),1(100%)の各場合の照射量D(x,Ui,t)を上述した式(6)でフィッティングする。そして、近接効果補正係数及び基準照射量演算部50は、位置x毎に、フィッティングした際に演算された、描画位置に依存した、近接効果による寸法変動を補正する近接効果補正係数η(x,t)と基準照射量Dbase(x,t)との描画位置毎の組(第2の組)を取得する。また、上述したように、xが示すメッシュの中にどのような近接効果密度Uの領域があるか無関係に処理ができるように、どのような近接効果密度Uに対しても補正が良く合うような基準照射量Dbase(x,t)と近接効果補正係数h(x,t)の組を求める。近接効果補正係数及び基準照射量演算部50は、取得部の一例となる。そして、現在、データ処理を行っているストライプ領域20毎の近接効果補正係数η(x,t)マップ及び基準照射量Dbase(x,t)マップとして、記憶装置144に格納される。このように、近接効果補正係数及び基準照射量演算部50は、位置x毎に、近接効果補正係数と基準照射量とをパラメータとする照射量演算式を用いてフィッティングして、描画位置に依存した、近接効果による寸法変動を補正する近接効果補正係数と基準照射量との描画位置毎の組を取得する。そして、現在、データ処理を行っているストライプ領域20毎の近接効果補正係数η(x,t)マップ及び基準照射量Dbase(x,t)マップとして、記憶装置144に格納される。
【0084】
以上のようにして、ベースとなるかかる近接効果補正係数η(x)及び基準照射量Dbase(x)の組を変換して、ローディング効果に起因したパターンの寸法変動量ΔCD(x)とレジストの経過時間に起因する寸法変動量CD(t)との両方を、近接効果補正を維持しながら補正可能な近接効果補正係数η(x,t)及び基準照射量Dbase(x,t)の組を取得する。以降の各工程は実施の形態1と同様である。言い換えれば、照射量演算部56は、描画位置毎に、取得された近接効果補正係数η(x,t)と基準照射量Dbase(x,t)との描画位置毎の組を用いて電子ビーム200の照射量D(第3の照射量)を演算する。照射量演算部56は、第3の照射量演算部の一例となる。そして、描画部150は、描画位置毎に、演算された照射量D(第3の照射量)の電子ビームを用いて、試料101にパターンを描画する。
【0085】
以上のように実施の形態2によれば、近接効果密度毎のパターン寸法CDと照射量Dとの関係を示すCD−D相関データ26を用いて、近接効果補正を維持しながらローディング効果等のグローバルな現象による寸法変動量と描画されたレジストの経過時間に起因する寸法変動量とを合わせて補正する近接効果補正係数と基準照射量との組を得ることができる。よって、近接効果補正を維持しながらローディング効果等のグローバルな現象による寸法変動量と描画されたレジストの経過時間による寸法変動量とを合わせて補正できる。その結果、高精度な描画ができる。
【0086】
実施の形態3.
実施の形態1,2では、ベースとなるかかる近接効果補正係数η(x)及び基準照射量Dbase(x)の組を変換していたが、これに限るものではない。実施の形態3では、ベースとなるかかる近接効果補正係数η(x)及び基準照射量Dbase(x)の組を変換せずに、補正項を用いることで描画されたレジストの経過時間による寸法変動量を補正する。
【0087】
図9は、実施の形態3における描画装置の構成を示す概念図である。図9において、制御計算機120内に、照射量演算部44、及び近接効果補正係数及び基準照射量演算部50の代わりに、裕度演算部60、及び補正項算出部62が追加された点、制御計算機120内の各構成の演算順序が変更された点、及び、記憶装置144にストライプ毎の近接効果補正係数η(x,t)マップ及び基準照射量Dbase(x,t)マップが格納される必要がない点以外は図1と同様である。また、経過時間測定部40、寸法変動量算出部42、近接効果密度演算部52、近接効果補正照射量演算部54、照射量演算部56、ショットデータ生成部58、裕度演算部60、及び補正項算出部62といった各機能は、プログラムといったソフトウェアで構成されても良い。或いは、電子回路等のハードウェアで構成されてもよい。或いは、これらの組み合わせであってもよい。制御計算機110に必要な入力データ或いは演算された結果はその都度メモリ122に記憶される。
【0088】
図10は、実施の形態3における描画方法の要部工程を示すフローチャート図である。図10において、基準照射量Dbase(x,t)及び近接効果補正係数η(x,t)算出工程(S120)と近接効果補正照射量Dp(η(x,t),U)マップ作成工程(S126)との代わりに、補正項M(U,t)算出工程(S113)及び近接効果補正照射量Dp(η(x,t),U)マップ作成工程(S127)とが追加された点、及び基準照射量Dbase(x,t)及び近接効果補正係数η(x,t)算出工程(S120)後の近接効果補正係数η(x,t)マップ及び基準照射量Dbase(x,t)マップが不要となった点以外は、図2と同様である。
【0089】
また、実施の形態3において、特に説明しない内容は、実施の形態1と同様である。パターン入力工程(S102)から寸法変動量CD(t)算出工程(S112)までの各工程の内容は、実施の形態1と同様である。
【0090】
実施の形態3では、まず、近接効果補正照射量Dp(η(x,t),U)マップ作成工程(S127)が行われる。近接効果補正照射量Dp(η(x,t),U)マップ作成工程(S127)として、近接効果密度演算部52は、データ処理を行っているストライプ領域20の各位置における近接効果密度U(x)を演算する。そして、近接効果補正照射量演算部54は、かかる各位置における近接効果補正照射量Dpを演算する。近接効果密度U(x)は式(8)で求めればよい。近接効果補正照射量Dpは記憶装置142に格納されたベースとなる近接効果補正係数η(x)マップから該当する近接効果補正係数η(x)を読み出し、式(3)で求めればよい。実施の形態3におけるここからの位置xは、ローカルな位置または近接効果分布半径の1/10程度で描画対象となる試料の描画領域をメッシュ化したときの各メッシュ位置(座標)を指している。記憶装置142に格納された近接効果補正係数η(x)マップにおけるxは、グローバルなサイズのメッシュ座標を示すが、ここでは、上述したローカルな小さいサイズのメッシュ座標を含むグローバルサイズのメッシュ座標の値を参照すればよい。
【0091】
そして、データ処理を行っているストライプ領域20毎の近接効果補正照射量Dp(η(x),U)マップとして、記憶装置144に格納される。
【0092】
近接効果補正照射量Dp(η(x,t),U)マップ作成工程(S127)の次に、或いは近接効果補正照射量Dp(η(x,t),U)マップ作成工程(S127)と並列して、経過時間測定工程(S110)及び寸法変動量CD(t)算出工程(S112)が実施される。経過時間測定工程(S110)及び寸法変動量CD(t)算出工程(S112)の内容は実施の形態1と同様である。
【0093】
そして、補正項M(U,t)算出工程(S113)として、まず、裕度演算部60は、記憶装置143から離散的な複数の近接効果密度におけるそれぞれの裕度DL(Ui)を入力し、裕度DLを縦軸に、近接効果密度Uを横軸にして、入力された近接効果密度毎の裕度DL(Ui)をプロットする。そして、プロットされた近接効果密度毎の裕度DL(Ui)をフィッティングして、連続する近接効果密度Uに対する裕度DL(U)を演算する。
【0094】
補正項算出部62は、近接効果密度に依存した裕度DL(U)と、描画後の放置時間に起因するパターンの寸法変動量CD(t)とを用いて、寸法変動量CD(t)を補正するための補正項M(U,t)を演算する。補正項算出部62は、補正項演算部の一例となる。補正項M(U,t)は、次の式(9)で定義される。
【0095】
【数9】
【0096】
そして、描画工程(S128)として、照射量演算部56は、描画位置毎に、近接効果によるパターンの寸法変動を補正する、ベースとなる近接効果補正係数η(x)と基準照射量Dbase(x)との組(第1の組)と補正項M(U,t)とを用いて電子ビーム200の照射量D(x,U,t)を演算する。具体的には、ベースとなる近接効果補正係数η(x)から得られた近接効果補正照射量Dp(η(x),U)とベースとなる基準照射量Dbase(x)と補正項M(U,t)とを用いて、照射量D(x,U,t)を演算する。照射量D(x,U,t)は、次の式(10)で定義される。記憶装置142に格納された基準照射量Dbase(x)マップにおけるxは、グローバルなサイズのメッシュ座標を示すが、ここでは、上述したローカルな小さいサイズのメッシュ座標を含むグローバルサイズのメッシュ座標の値を参照すればよい。
【0097】
【数10】
【0098】
以降の工程は、実施の形態1と同様である。ここで、実施の形態3では、ベースとなるかかる近接効果補正係数η(x)及び基準照射量Dbase(x)の組を変換せずに照射量を変更しているので、近接効果補正がずれてしまうことが懸念されるが、以下に説明するように問題ないことがわかっている。
【0099】
図11は、実施の形態3における描画方法で描画した際のパターン寸法のずれの一例を示す図である。図10(a)では、描画されたレジストの経過時間に起因する寸法変動量CD(t)=0の場合を示している。かかる場合には、補正項M(U,t)が1となるので近接効果補正のずれは生じない。次に、図10(b)では、描画されたレジストの経過時間に起因する寸法変動量CD(t)=5nmの場合を示している。かかる場合には、寸法変動量CD(t)=5nmに対して、近接効果補正のずれが±0.2nm程度に納まっていることがわかる。次に、図10(c)では、描画されたレジストの経過時間に起因する寸法変動量CD(t)=10nmの場合を示している。かかる場合には、寸法変動量CD(t)=10nmに対して、近接効果補正のずれが±0.5nm程度に納まっていることがわかる。かかる検証結果では、いずれも寸法変動量CD(t)に対して、近接効果補正のずれが5%以下に納まっており補正項M(U,t)を用いても問題にならない程度の誤差しか生じないことがわかる。また、補正項M(U,t)の演算は、演算量が少ないので、他の実施の形態よりも高速演算が可能となる。
【0100】
以上のように、実施の形態3によれば、先の近接効果補正係数と基準照射量との組を変換することなく、近接効果補正を維持しながらローディング効果等のグローバルな現象による寸法変動量と描画されたレジストの経過時間による寸法変動量とを合わせて補正できる。その結果、高精度な描画ができる。
【0101】
以上のように、各実施の形態によれば、データ処理を複雑化せずに近接効果補正を維持しながらローディング効果等のグローバルな現象による寸法変動量と描画されたレジストの経過時間による寸法変動量とを合わせて補正できる。
【0102】
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。上述した実施の形態1,2では、描画処理を開始した後に、ベースとなる近接効果補正係数と基準照射量との組を変換しているが、これに限るものではない。描画処理を開始する前に、ベースとなる近接効果補正係数と基準照射量との組を変換する演算を行なっておいても好適である。言い換えれば、実施の形態1,2におけるパターン入力工程(S102)から基準照射量Dbase(x,t)及び近接効果補正係数η(x,t)算出工程(S120)までの各工程の内容を描画処理を開始する前に実施してもよい。
【0103】
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。例えば、描画装置100を制御する制御部構成については、記載を省略したが、必要とされる制御部構成を適宜選択して用いることは言うまでもない。
【0104】
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての荷電粒子ビーム描画装置及び方法は、本発明の範囲に包含される。
【符号の説明】
【0105】
10 描画領域
20 ストライプ領域
22 裕度
26 Cd−D相関データ
30 面積密度マップ作成部
32 寸法変動量取得部
34 近接効果密度及び基準照射量算出部
36 近接効果密度マップ作成部
38 基準照射量マップ作成部
39 描画時間予測部
40 経過時間測定部
42 寸法変動量CD算出部
43,44,47 照射量演算部
45 パターン寸法算出部
46 加算部
50 近接効果補正係数及び基準照射量演算部
52 近接効果密度演算部
54 近接効果補正照射量演算部
56 照射量演算部
58 ショットデータ生成部
60 裕度演算部
62 補正項算出部
100 描画装置
101 試料
102 電子鏡筒
103 描画室
105 XYステージ
110,120 制御計算機
112,122 メモリ
130 偏向制御回路
132 DAC
140,141,142,143,144,146 記憶装置
150 描画部
160 制御部
200 電子ビーム
201 電子銃
202 照明レンズ
203 第1の成形アパーチャ
204 投影レンズ
205 偏向器
206 第2の成形アパーチャ
207 対物レンズ
208 主偏向器
209 副偏向器
212 ブランキング偏向器
214 ブランキングアパーチャ
330 電子線
340 試料
410 第1のアパーチャ
411 開口
420 第2のアパーチャ
421 可変成形開口
430 荷電粒子ソース
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12