(58)【調査した分野】(Int.Cl.,DB名)
さらに、前記陰極と該発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、請求項8に記載する有機電界発光素子。
前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項9に記載の有機電界発光素子。
【発明を実施するための形態】
【0022】
1.一般式(1)で表されるベンゾフルオレン化合物
本発明のベンゾフルオレン化合物について詳細に説明する。本発明に係るベンゾフルオレン化合物は、上記一般式(1)で表されるベンゾフルオレン化合物である。
【0023】
一般式(1)のR
Fはフッ素またはフッ素で置換された炭素数1〜4のアルキルである。本発明では、ベンゾフルオレン化合物に結合するアリールアミノ基のアリール部位に少なくとも1つのフッ素系置換基を置換させることで、色純度の高い青色発光を実現したものである。炭素数1〜4のアルキルとしては、直鎖(炭素数1〜4の直鎖アルキル)および分枝鎖(炭素数3〜4の分枝鎖アルキル)のいずれでもよく、炭素数1〜3のアルキル(炭素数3の分枝鎖アルキル)がさらに好ましく、炭素数1〜2のアルキルが特に好ましい。これらのアルキルは1つまたは複数のフッ素で置換されていて、例えば、フッ化メチル、フッ化エチル、フッ化n−プロピル、フッ化イソプロピル、フッ化n−ブチル、フッ化イソブチル、フッ化s−ブチル、フッ化t−ブチルなどがあげられ、より詳細にはトリフルオロメチルやトリフルオロエチルなどがあげられる。
【0024】
一般式(1)のR
1またはR
2における「炭素数1〜6のアルキル」としては、直鎖および分枝鎖のいずれでもよい。なかでも、炭素数1〜6のアルキル(炭素数3〜6の分枝鎖アルキル)が好ましく、炭素数1〜4のアルキル(炭素数3〜4の分枝鎖アルキル)がより好ましく、炭素数1〜3のアルキル(炭素数3の分枝鎖アルキル)がさらに好ましく、炭素数1〜2のアルキルが特に好ましい。
【0025】
具体的な「アルキル」としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチル、n−ペンチル、イソペンチル、ネオペンチル、t−ペンチル、n−ヘキシル、1−メチルペンチル、4−メチル−2−ペンチル、3,3−ジメチルブチル、2−エチルブチルなどがあげられる。
【0026】
一般式(1)のR
1における「炭素数3〜6のシクロアルキル」としては、炭素数5〜6のシクロアルキルが好ましい。具体例としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチルなどがあげられる。
【0027】
一般式(1)のR
1またはR
2における「炭素数6〜12のアリール」としては、炭素数6〜10のアリールが好ましい。R
2のアリールについては炭素数1〜4のアルキルで置換されていてもよく、このアルキルについては上記説明で記載したものと同様のものがあげられ、同様のものが好ましい。
【0028】
R
1またはR
2のアリールの具体例として、アルキル置換された形態も含めて例示すると、単環系アリールであるフェニル、(o−,m−,p−)トリル、(2,3−,2,4−,2,5−,2,6−,3,4−,3,5−)キシリル、メシチル、(o−,m−,p−)クメニル、二環系アリールである(2−,3−,4−)ビフェニリル、縮合二環系アリールである(1−,2−)ナフチルなどがあげられる。
【0029】
一般式(1)のR
1における「炭素数2〜10のヘテロアリール」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環基などがあげられる。
【0030】
「複素環基」としては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H−インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H−ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、インドリジニルなどがあげられる。
【0031】
さらに、R
1については、1つのフェニル基において2つ以上のR
1が隣接して置換する場合または1つのAr基において2つ以上のR
1が隣接して置換する場合、これらは結合して環を形成していてもよい。このようにして形成された環としては、例えば、炭素数6〜12の芳香族環または炭素数3〜12の脂肪族環があげられ、炭素数6〜10の芳香族環または炭素数3〜6の脂肪族環が好ましい。具体的には、ベンゼン環、インダン環などの芳香族環、シクロブタン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサンなどの脂肪族環があげられる。
【0032】
さらに、R
2については、2つのR
2同士が結合して環を形成していてもよい。このようにして形成された環としては、例えば、炭素数6〜18の芳香族環または炭素数3〜12の脂肪族環があげられ、炭素数6〜12の芳香族環または炭素数3〜6の脂肪族環が好ましい。この結果、ベンゾフルオレン骨格の5員環には、例えばベンゼン環、フルオレン環などの芳香族環や、シクロブタン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサンなどの脂肪族環がスピロ結合していてもよい。
【0033】
また、2つのR
2は、同じであっても異なっていてもよいが、同じであることが好ましい。
【0034】
n1およびn2は、式(1)におけるAr基やフェニル基に置換するフッ素系置換基の数を規定する変数であり、それぞれ独立して、0〜5の整数である。n1およびn2のすべてが0になることはない。好ましくは、n1は共に0〜5の整数であり(すなわち、2つのAr基に置換するフッ素系置換基の数が等しい)、n2は共に0〜5の整数であり(同様に、2つのフェニル基に置換するフッ素系置換基の数が等しい)、置換基数としては、0〜3がより好ましく、0〜2がさらに好ましい。
【0035】
m1およびm2は、式(1)におけるAr基やフェニル基に置換するフッ素系置換基以外の置換基の数を規定する変数であり、それぞれ独立して、0〜5の整数である。好ましくは、m1は共に0〜3の整数であり(すなわち、2つのAr基に置換するフッ素系置換基以外の置換基の数が等しい)、m2は共に0〜3の整数であり(同様に、2つのフェニル基に置換するフッ素系置換基以外の置換基の数が等しい)、置換基数としては、0〜2がより好ましい。
【0036】
Ar基のアミノ基への結合形態(Arがピリジル基のとき1−ピリジル、2−ピリジルまたは3−ピリジル)は、ベンゾフルオレン骨格の左右で同じであっても異なっていてもよいが、同じであることが好ましい。また、Ar基に置換するR
1やR
Fやそれらの置換基数(m1、n1)はベンゾフルオレン骨格の左右で同じであっても異なっていてもよいが、同じであることが好ましい。さらに、フェニル基に置換するR
1やR
Fやそれらの置換基数(m2、n2)はベンゾフルオレン骨格の左右で同じであっても異なっていてもよいが、同じであることが好ましい。最も好ましくは、ベンゾフルオレン骨格に結合する左右のジアリールアミノ基の構造が同じ場合である。
【0037】
また、一般式(1)で表される化合物を構成する、ベンゾフルオレン環における水素原子、Ar(フェニルまたはピリジル)基やフェニル基における水素、R
1、R
2またはR
Fにおける水素原子の全てまたは一部が重水素であってもよい。一部が重水素で置換されている場合には、Ar基やフェニル基の少なくとも1つの水素が重水素で置換されていることが好ましく、R
1やR
Fで置換されていないAr基やフェニル基の少なくとも1つの水素が重水素で置換されていることがより好ましい。また、重水素で全く置換されていない化合物であってもよい。
【0038】
上記一般式(1)で表される化合物の具体例としては、例えば、下記式(1−1)〜式(1−134)で表される化合物があげられる。下記化合物の中でも、式(1−1)、式(1−2)、式(1−4)〜式(1−6)、式(1−10)〜式(1−12)、式(1−15)〜式(1−34)、式(1−36)〜式(1−43)、式(1−46)〜式(1−53)、式(1−57)〜式(1−60)、式(1−65)〜式(1−67)、式(1−71)〜式(1−73)、式(1−77)〜式(1−80)、式(1−83)、式(1−86)、式(1−88)、式(1−91)、式(1−93)〜式(1−96)、式(1−98)、式(1−100)、式(1−102)〜式(1−110)、式(1−112)〜式(1−120)、式(1−122)、式(1−123)、式(1−125)〜式(1−128)または式(1−131)〜式(1−134)で表される化合物が好ましい。
【0050】
2.ベンゾフルオレン化合物の製造方法
一般式(1)で表されるように、ベンゾフロオレン骨格に2つのジアリールアミノ基が結合した化合物は、Buchwald−Hartwig反応またはUllmann反応などの既存の反応を利用して製造することができる。
【0051】
Buchwald−Hartwig反応は、塩基の存在下、パラジウム触媒または銅触媒を用いて、芳香族ハライドと、一級芳香族アミンもしくは二級芳香族アミンとをカップリングする方法である。この方法により一般式(1)で表される化合物を得る反応経路の具体例は下記の通りである(スキーム1〜3)。
【0052】
スキーム1の第一段目に示した反応は鈴木カップリングであり、反応させる2つの化合物におけるX基とY基とを相互に入れ替えても反応させることができる。さらに、この第一段目の反応において、鈴木カップリングではなく根岸カップリングを用いることもでき、この場合には、Y基を有する化合物としてボロン酸やボロン酸エステルの代わりに塩化亜鉛錯体を用いる。また、この根岸カップリングの場合も上記と同様に、X基とY基とを相互に入れ替えても(すなわち、ナフタレンの塩化亜鉛錯体を用いる)反応させることができる。さらには、スキーム1ではカップリング反応の後に五員環を形成するために、ベンゼン環のカップリングさせる炭素の隣に予め−COORを置換させた原料を用いているが、ナフタレン環の2位(カップリングさせる炭素の隣)に−COORを置換させた原料を用いることもできる。なお、スキーム1で説明する芳香族ジハライドの合成方法に関しては、例えば国際公開第2005/056633号パンフレットが参考になる。
【0053】
スキーム2は、芳香族ジハライドに対して2つのAr部位と2つのフェニル部位を順に結合させる方法であり、これとは逆に、フェニル部位のアミンとハロゲン化Arとを用意して、2つのフェニル部位を結合させた後に2つのAr部位を結合させることもできる。また、スキーム3は、予めジアリールアミンを合成しておき、これを芳香族ジハライドに結合させる方法である。スキーム3ではAr部位のアミンとフェニル部位のハロゲン化物とからジアリールアミンを合成したが、これとは逆に、フェニル部位のアミンとハロゲン化Arとからジアリールアミンを合成することもできる。
【0054】
各スキーム中のR
1、R
2、R
F、m1、m2、n1、n2およびArは、それぞれ一般式(1)中で用いられるものに対応する。
【0058】
以上の反応で用いられるパラジウム触媒の具体例は、テトラキス(トリフェニルホスフィン)パラジウム(0):Pd(PPh
3)
4、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド:PdCl
2(PPh
3)
2、酢酸パラジウム(II):Pd(OAc)
2、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd
2(dba)
3、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd
2(dba)
3・CHCl
3、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)
2、PdCl
2{P(t−Bu)
2−(p−NMe
2−Ph)}
2、パラジウム ビス(ジベンジリデン)などである。
【0059】
反応を促進させるため、場合によりこれらのパラジウム化合物にホスフィン化合物を加えてもよい。そのホスフィン化合物の具体例は、トリ(t−ブチル)ホスフィン、トリシクロヘキシルホスフィン、1−(N,N−ジメチルアミノメチル)−2−(ジt−ブチルホスフィノ)フェロセン、1−(N,N−ジブチルアミノメチル)−2−(ジt−ブチルホスフィノ)フェロセン、1−(メトキシメチル)−2−(ジt−ブチルホスフィノ)フェロセン、1,1’−ビス(ジt−ブチルホスフィノ)フェロセン、2,2’−ビス(ジt−ブチルホスフィノ)−1,1’−ビナフチル、2−メトキシ−2’−(ジt−ブチルホスフィノ)−1,1’−ビナフチル、1,1’−ビス(ジフェニルホスフィノ)フェロセン、ビス(ジフェニルホスフィノ)ビナフチル、4−ジメチルアミノフェニルジt−ブチルホスフィン、フェニルジt−ブチルホスフィンなどである。
【0060】
この反応で用いられる塩基の具体例は、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウムt−ブトキシド、酢酸ナトリウム、リン酸三カリウム、フッ化カリウムなどである。
【0061】
さらに、この反応で用いられる溶媒の具体例は、ベンゼン、1,2,4−トリメチルベンゼン、トルエン、キシレン、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、t−ブチルメチルエーテル、1,4−ジオキサン、メタノール、エタノール、イソプロピルアルコールなどである。これらの溶媒は、反応させる芳香族ハライド、トリフラート、芳香族ボロン酸エステルおよび芳香族ボロン酸の構造に応じて適宜選択できる。溶媒は単独で用いてもよく、混合溶媒として用いてもよい。
【0062】
またUllmann反応は、塩基の存在下、銅触媒を用いて、芳香族ハライドと一級芳香族アミンもしくは二級芳香族アミンとをカップリングする方法である。Ullmann反応で用いられる銅触媒の具体例は、銅粉、塩化銅、臭化銅またはヨウ化銅などである。また、この反応で用いられる塩基の具体例は、Buchwald−Hartwig反応と同じものから選択することができる。さらに、Ullmann反応で用いられる溶媒の具体例は、ニトロベンゼン、ジクロロベンゼン、N,N−ジメチルホルムアミドなどである。
【0063】
上述したスキーム1〜3は、ベンゾフルオレン骨格に結合する2つのジアリールアミノ基が同じ構造のタイプを製造する際に特に有用である。一方、一般式(1)において置換基R
1、R
Fおよびそれらの数やAr(ピリジルの場合)のアミノ基への結合形態などが異なる場合には、異なる構造のジアリールアミノ基を有するベンゾフルオレン化合物となる。このタイプのベンゾフルオレン化合物を製造する場合には、反応性置換基の活性の違いを利用して選択的な反応を用いたり、精製分離技術などを利用することが好ましい。この反応経路の具体例は下記の通りである(スキーム4〜7)。
【0064】
スキーム4の第一段目に示した反応は鈴木カップリングであり、反応させる2つの化合物におけるY基とX
1基とが選択的に反応するように、X
1基とX
2基とを異なる反応活性の基にする。原料の入手のしやすさを考慮すると、例えば、X
1基がトリフラート、X
2基が塩素である化合物が好ましい。
【0065】
また、反応させる2つの化合物におけるX
1基とY基とを相互に入れ替えても反応させることができる。この場合にはベンゾアートに置換するY基およびX
2基の反応活性がY基>X
2基となるようにする。さらに、この第一段目の反応において、鈴木カップリングではなく根岸カップリングを用いることもでき、この場合には、Y基を有する化合物としてボロン酸やボロン酸エステルの代わりに塩化亜鉛錯体を用いる。また、この根岸カップリングの場合も上記と同様に、X
1基とY基とを相互に入れ替えても(すなわち、ベンゾアートの塩化亜鉛錯体を用いる)反応させることができる。
【0066】
また、スキーム4では芳香族ジハライドのX
2およびX
3として反応活性の異なるハロゲンを利用した例を説明したが、トリフラートも利用してX
2およびX
3の反応活性を異なるようにしてもよい。この場合には、原料として、例えばY基を有するナフタレンの代わりに1,4−ハロゲン化ナフタレンを用い、ベンゾアートに置換するX
1およびX
2をそれぞれハロゲン基(またはトリフラート基)およびメトキシ基に代えたものを用いて、スキーム4にしたがってベンゾフルオレン環を形成し、さらにメトキシ基を脱メチル化およびトリフラート化することで、芳香族モノハライドモノトリフラートを合成することができる。さらには、スキーム4ではカップリング反応の後に五員環を形成するために、ベンゼン環のカップリングさせる炭素の隣に予め−COORを置換させた原料を用いているが、ナフタレン環の2位(カップリングさせる炭素の隣)に−COORを置換させた原料を用いることもできる。なお、スキーム4で説明する芳香族ハライドの合成方法に関しては、例えば国際公開第2005/056633号パンフレットが参考になる。
【0067】
スキーム4の第四段目のハロゲン化反応まで行うことでベンゾフルオレンのジハロゲン体(またはハロゲントリフラート体)が得られ、後述するスキーム5に用いることができる。また、上述するようにX
2基(例えば塩素)の反応活性が低いため、X
3基にはこれよりも高い反応活性の基を導入する理由から、第四段目で用いるハロゲン化剤としては例えば臭素化剤またはヨウ素化剤が好ましくヨウ素化剤がより好ましい。スキーム5は、予めジアリールアミノ基を合成しておき、これをベンゾフルオレンのジハロゲン体(またはハロゲントリフラート体)に結合させる方法である。
【0068】
また、一般式(1)で表される化合物は、スキーム4の第三段目までの反応により得られるベンゾフルオレンのモノハロゲン体を用いて合成することも可能である。スキーム6および7は、この場合の反応経路であり、ベンゾフルオレンのモノハロゲン体を原料として、それぞれ、合計4つのアリール基(2つのArと2つのナフチル)相当の部位を1つずつ結合させる方法、および予め合成したジアリールアミノ基を1つずつ結合させる方法である。なお、スキーム6および7では、ベンゾフルオレンのベンゼン側に反応性置換基X
2が結合したモノハロゲン体を用いて、ベンゼン側からジアリールアミノ基を結合させるようにしたが、これとは逆に、スキーム4の原料を適当なものに変えることでナフタレン側に反応性置換基が結合したモノハロゲン体を合成した後、これを用いてナフタレン側からジアリールアミノ基を結合させるようにしてもよい。
【0069】
各スキーム中のR
1、R
2、R
F、m1、m2、n1、n2およびArは、それぞれ一般式(1)中で用いられるものに対応する。
【0074】
また、一般式(1)で表される化合物は、4位に反応活性基を有するN,N−置換−1−ナフチルアミンおよび4位に反応活性基を有する3−アルコキシカルボニル−N,N−置換アニリンを、上記の製法に準じて予め製造し、これらをカップリング反応させた後に、環化反応を行う工程(スキーム8)を利用しても製造することができる。環化反応のための−COORをナフチルアミンの3位に結合させた原料を用いる反応(スキーム9)も同様に好ましく用いられる。これらのスキームでは、ベンゾフルオレン骨格に結合する2つのジアリールアミノ基が同じ構造のタイプであっても異なる構造のタイプであっても製造することができる。なお、スキーム8およびスキーム9の第一段目に示した反応は鈴木カップリングであり、反応させる2つの化合物におけるX基とY基とを相互に入れ替えても反応させることができる。さらに、この第一段目の反応において、鈴木カップリングではなく根岸カップリングを用いることもでき、この場合には、Y基を有する化合物としてボロン酸やボロン酸エステルの代わりに塩化亜鉛錯体を用いる。また、この根岸カップリングの場合も上記と同様に、X基とY基とを相互に入れ替えても(すなわち、ジアリールアミノ置換ナフタレンの塩化亜鉛錯体を用いる)反応させることができる。なお、各スキーム中のR
1、R
2、R
F、m1、m2、n1、n2およびArは、それぞれ一般式(1)中で用いられるものに対応する。
【0077】
また、本発明の化合物には、少なくとも一部の水素原子が重水素で置換されているものも含まれるが、このような化合物は所望の箇所が重水素化された原料を用いることで、上記と同様に合成することができる。
【0078】
3.有機電界発光素子
本発明に係るベンゾフルオレン化合物は、例えば、有機電界発光素子の材料として用いることができる。
この実施形態に係る有機電界発光素子について図面に基づいて詳細に説明する。
図1は、本実施形態に係る有機電界発光素子を示す概略断面図である。
【0079】
<有機電界発光素子の構造>
図1に示された有機電界発光素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
【0080】
なお、有機電界発光素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。
【0081】
上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と陰極108とからなる構成として、正孔注入層103、正孔輸送層104、電子輸送層106および電子注入層107は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。
【0082】
有機電界発光素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/陰極」、「基板/陽極/正孔注入層/発光層/陰極」、「基板/陽極/正孔輸送層/発光層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」、「基板/陽極/発光層/陰極」の構成態様であってもよい。
【0083】
<有機電界発光素子における基板>
基板101は、有機電界発光素子100の支持体となるものであり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルムまたはプラスチックシートなどが用いられる。なかでも、ガラス板、およびポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiO
2などのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
【0084】
<有機電界発光素子における陽極>
陽極102は、発光層105へ正孔を注入する役割を果たすものである。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
【0085】
陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム−スズ酸化物(ITO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3−メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機電界発光素子の陽極として用いられている物質の中から適宜選択して用いることができる。
【0086】
透明電極の抵抗は、発光素子の発光に十分な電流が供給できさえすれば特に限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100〜5Ω/□、好ましくは50〜5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100〜300nmの間で用いられることが多い。
【0087】
<有機電界発光素子における正孔注入層、正孔輸送層>
正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たすものである。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たすものである。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
【0088】
正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。
【0089】
正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機電界発光素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾール誘導体(N−フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N−アリールカルバゾール)またはビス(N−アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノを主鎖あるいは側鎖に持つポリマー、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジアミノビフェニル、N,N’−ジフェニル−N,N’−ジナフチル−4,4’−ジアミノビフェニル(以下、NPDと略記する。)、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミン、4,4’,4”−トリス(3−メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では上記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。
【0090】
また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6−テトラフルオロテトラシアノ−1,4−ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pheiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、あるいは、特定の金属フタロシアニン(特に、亜鉛フタロシアニンZnPcなど)が知られている(特開2005−167175号公報)。
【0091】
<有機電界発光素子における発光層>
発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光するものである。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光および/または燐光)効率を示す化合物であるのが好ましい。
【0092】
発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、発光層の各層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーパントの使用量はドーパントによって異なり、そのドーパントの特性に合わせて決めれば良い。ドーパントの使用量の目安は、好ましくは発光材料全体の0.001〜50重量%であり、より好ましくは0.1〜10重量%であり、さらに好ましくは1〜5重量%である。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
【0093】
ホスト材料としては、特に限定されるものではないが、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8−キノリノラト)アルミニウムをはじめとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ピロロピロール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体が好適に用いられる。
【0094】
その他、ホスト材料としては、化学工業2004年6月号13頁、および、それにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。
【0095】
ホスト材料の使用量は、好ましくは発光材料全体の50〜99.999重量%であり、より好ましくは80〜99.95重量%であり、さらに好ましくは90〜99.9重量%である。
【0096】
また、ドーパント材料としては、上記一般式(1)のベンゾフルオレン化合物を用いることができ、特に、上記式(1−1)〜式(1−134)で表される化合物を用いることが好ましい。上記一般式(1)で表されるベンゾフルオレン化合物のドーパント材料としての使用量は、好ましくは発光材料全体の0.001〜50重量%であり、より好ましくは0.05〜20重量%であり、さらに好ましくは0.1〜10重量%である。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
【0097】
また、その他のドーパント材料も同時に使用できる。その他のドーパント材料としては、特に限定されるものではなく、既知の化合物を用いることができ、所望の発光色に応じて様々な材料の中から選択することができる。具体的には、例えば、フェナンスレン、アントラセン、ピレン、テトラセン、ペンタセン、ペリレン、ナフトピレン、ジベンゾピレンおよびルブレンなどの縮合環誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、イミダゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラゾリン誘導体、スチルベン誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体(特開平1−245087号公報)、ビススチリルアリーレン誘導体(特開平2−247278号公報)、ジアザインダセン誘導体、フラン誘導体、ベンゾフラン誘導体、フェニルイソベンゾフラン、ジメシチルイソベンゾフラン、ジ(2−メチルフェニル)イソベンゾフラン、ジ(2−トリフルオロメチルフェニル)イソベンゾフラン、フェニルイソベンゾフランなどのイソベンゾフラン誘導体、ジベンゾフラン誘導体、7−ジアルキルアミノクマリン誘導体、7−ピペリジノクマリン誘導体、7−ヒドロキシクマリン誘導体、7−メトキシクマリン誘導体、7−アセトキシクマリン誘導体、3−ベンゾチアゾリルクマリン誘導体、3−ベンゾイミダゾリルクマリン誘導体、3−ベンゾオキサゾリルクマリン誘導体などのクマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、ポリメチン誘導体、シアニン誘導体、オキソベンゾアンスラセン誘導体、キサンテン誘導体、ローダミン誘導体、フルオレセイン誘導体、ピリリウム誘導体、カルボスチリル誘導体、アクリジン誘導体、オキサジン誘導体、フェニレンオキサイド誘導体、キナクリドン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、フロピリジン誘導体、1,2,5−チアジアゾロピレン誘導体、ピロメテン誘導体、ペリノン誘導体、ピロロピロール誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、アクリドン誘導体およびデアザフラビン誘導体などがあげられる。
【0098】
発色光ごとに例示すると、青〜青緑色ドーパント材料としては、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデンなどの芳香族炭化水素化合物やその誘導体、フラン、ピロール、チオフェン、シロール、9−シラフルオレン、9,9’−スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどの芳香族複素環化合物やその誘導体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミンに代表される芳香族アミン誘導体などがあげられる。
【0099】
また、緑〜黄色ドーパント材料としては、クマリン誘導体、フタルイミド誘導体、ナフタルイミド誘導体、ペリノン誘導体、ピロロピロール誘導体、シクロペンタジエン誘導体、アクリドン誘導体、キナクリドン誘導体およびルブレンなどのナフタセン誘導体などがあげられ、さらに上記青〜青緑色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。
【0100】
さらに、橙〜赤色ドーパント材料としては、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、4−(ジシアノメチレン)−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピランやその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、キナクリドン誘導体、フェノキサジン誘導体、オキサジン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、フェノキサゾン誘導体およびチアジアゾロピレン誘導体などあげられ、さらに上記青〜青緑色および緑〜黄色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。さらに、トリス(2−フェニルピリジン)イリジウム(III)に代表されるイリジウムや白金を中心金属とした燐光性金属錯体も好適な例としてあげられる。
【0101】
本発明の発光層用材料に適したドーパント材料としては、上述するドーパント材料の中でも、上記一般式(1)で表されるベンゾフルオレン化合物が最適であり、同時に使用できるドーパント材料としては、ペリレン誘導体、ボラン誘導体、アミン含有スチリル誘導体、芳香族アミン誘導体、クマリン誘導体、ピラン誘導体、イリジウム錯体または白金錯体が好ましい。
【0102】
ペリレン誘導体としては、例えば、3,10−ビス(2,6−ジメチルフェニル)ペリレン、3,10−ビス(2,4,6−トリメチルフェニル)ペリレン、3,10−ジフェニルペリレン、3,4−ジフェニルペリレン、2,5,8,11−テトラ−t−ブチルペリレン、3,4,9,10−テトラフェニルペリレン、3−(1’−ピレニル)−8,11−ジ(t−ブチル)ペリレン、3−(9’−アントリル)−8,11−ジ(t−ブチル)ペリレン、3,3’−ビス(8,11−ジ(t−ブチル)ペリレニル)などがあげられる。
また、特開平11-97178号公報、特開2000-133457号公報、特開2000-26324号公報、特開2001-267079号公報、特開2001-267078号公報、特開2001-267076号公報、特開2000-34234号公報、特開2001-267075号公報、および特開2001-217077号公報などに記載されたペリレン誘導体を用いてもよい。
【0103】
ボラン誘導体としては、例えば、1,8−ジフェニル−10−(ジメシチルボリル)アントラセン、9−フェニル−10−(ジメシチルボリル)アントラセン、4−(9’−アントリル)ジメシチルボリルナフタレン、4−(10’−フェニル−9’−アントリル)ジメシチルボリルナフタレン、9−(ジメシチルボリル)アントラセン、9−(4’−ビフェニリル)−10−(ジメシチルボリル)アントラセン、9−(4’−(N−カルバゾリル)フェニル)−10−(ジメシチルボリル)アントラセンなどがあげられる。
また、国際公開第2000/40586号パンフレットなどに記載されたボラン誘導体を用いてもよい。
【0104】
アミン含有スチリル誘導体としては、例えば、N,N,N’,N’−テトラ(4−ビフェニリル)−4、4’−ジアミノスチルベン、N,N,N’,N’−テトラ(1−ナフチル)−4、4’−ジアミノスチルベン、N,N,N’,N’−テトラ(2−ナフチル)−4、4’−ジアミノスチルベン、N,N’−ジ(2−ナフチル)−N,N’−ジフェニル−4、4’−ジアミノスチルベン、N,N’−ジ(9−フェナントリル)−N,N’−ジフェニル−4、4’−ジアミノスチルベン、4,4’−ビス[4”−ビス(ジフェニルアミノ)スチリル]−ビフェニル、1,4−ビス[4’−ビス(ジフェニルアミノ)スチリル]−ベンゼン、2,7−ビス[4’−ビス(ジフェニルアミノ)スチリル]−9,9−ジメチルフルオレン、4,4’−ビス(9−エチル−3−カルバゾビニレン)−ビフェニル、4,4’−ビス(9−フェニル−3−カルバゾビニレン)−ビフェニルなどがあげられる。 また、特開2003-347056号公報、および特開2001-307884号公報などに記載されたアミン含有スチリル誘導体を用いてもよい。
【0105】
芳香族アミン誘導体としては、例えば、N,N,N,N−テトラフェニルアントラセン−9,10−ジアミン、9,10−ビス(4−ジフェニルアミノ−フェニル)アントラセン、9,10−ビス(4−ジ(1−ナフチルアミノ)フェニル)アントラセン、9,10−ビス(4−ジ(2−ナフチルアミノ)フェニル)アントラセン、10−ジ−p−トリルアミノ−9−(4−ジ−p−トリルアミノ−1−ナフチル)アントラセン、10−ジフェニルアミノ−9−(4−ジフェニルアミノ−1−ナフチル)アントラセン、10−ジフェニルアミノ−9−(6−ジフェニルアミノ−2−ナフチル)アントラセン、[4−(4−ジフェニルアミノ−フェニル)ナフタレン−1−イル]−ジフェニルアミン、[4−(4−ジフェニルアミノ−フェニル)ナフタレン−1−イル]−ジフェニルアミン、[6−(4−ジフェニルアミノ−フェニル)ナフタレン−2−イル]−ジフェニルアミン、4,4’−ビス[4−ジフェニルアミノナフタレン−1−イル]ビフェニル、4,4’−ビス[6−ジフェニルアミノナフタレン−2−イル]ビフェニル、4,4”−ビス[4−ジフェニルアミノナフタレン−1−イル]−p−テルフェニル、4,4”−ビス[6−ジフェニルアミノナフタレン−2−イル]−p−テルフェニルなどがあげられる。
また、特開2006-156888号公報などに記載された芳香族アミン誘導体を用いてもよい。
【0106】
クマリン誘導体としては、クマリン−6、クマリン−334などがあげられる。
また、特開2004-43646号公報、特開2001-76876号公報、および特開平6-298758号公報などに記載されたクマリン誘導体を用いてもよい。
【0107】
ピラン誘導体としては、下記のDCM、DCJTBなどがあげられる。
【化27】
また、特開2005-126399号公報、特開2005-097283号公報、特開2002-234892号公報、特開2001-220577号公報、特開2001-081090号公報、および特開2001-052869号公報などに記載されたピラン誘導体を用いてもよい。
【0108】
イリジウム錯体としては、下記のIr(ppy)
3などがあげられる。
【化28】
また、特開2006-089398号公報、特開2006-080419号公報、特開2005-298483号公報、特開2005-097263号公報、および特開2004-111379号公報などに記載されたイリジウム錯体を用いてもよい。
【0109】
白金錯体としては、下記のPtOEPなどがあげられる。
【化29】
また、特開2006-190718号公報、特開2006-128634号公報、特開2006-093542号公報、特開2004-335122号公報、および特開2004-331508号公報などに記載された白金錯体を用いてもよい。
【0110】
その他、ドーパントとしては、化学工業2004年6月号13頁、および、それにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。
【0111】
<有機電界発光素子における電子注入層、電子輸送層>
電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たすものである。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たすものである。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
【0112】
電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することを司る層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。
【0113】
電子輸送層および電子注入層に用いられる材料としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機電界発光素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。
【0114】
具体的には、ピリジン誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、チオフェン誘導体、チアジアゾール誘導体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、イミダゾピリジン誘導体、ボラン誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、アルダジン誘導体、カルバゾール誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体などがあげられる。また、オキサジアゾール誘導体(1,3−ビス[(4−t−ブチルフェニル)1,3,4−オキサジアゾリル]フェニレンなど)、トリアゾール誘導体(N−ナフチル−2,5−ジフェニル−1,3,4−トリアゾールなど)、ベンゾキノリン誘導体(2,2’−ビス(ベンゾ[h]キノリン−2−イル)−9,9’−スピロビフルオレンなど)、ベンゾイミダゾール誘導体(トリス(N−フェニルベンゾイミダゾール−2−イル)ベンゼンなど)、ビピリジン誘導体、テルピリジン誘導体(1,3−ビス(4’−(2,2’:6’2”−テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1−ナフチル)−4−(1,8−ナフチリジン−2−イル)フェニルホスフィンオキサイドなど)などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
【0115】
また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
【0116】
上述した材料の中でも、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体またはベンゾイミダゾール誘導体が好ましい。
【0117】
キノリノール系金属錯体は、下記一般式(E−1)で表される化合物である。
【化30】
式中、R
1〜R
6は水素または置換基であり、MはLi、Al、Ga、BeまたはZnであり、nは1〜3の整数である。
【0118】
キノリノール系金属錯体の具体例としては、8−キノリノールリチウム、トリス(8−キノリノラート)アルミニウム、トリス(4−メチル−8−キノリノラート)アルミニウム、トリス(5−メチル−8−キノリノラート)アルミニウム、トリス(3,4−ジメチル−8−キノリノラート)アルミニウム、トリス(4,5−ジメチル−8−キノリノラート)アルミニウム、トリス(4,6−ジメチル−8−キノリノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(フェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(4−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(4−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,3−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,6−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,4−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,5−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,5−ジ−t−ブチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,6−ジフェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,6−トリフェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,6−トリメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,5,6−テトラメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(1−ナフトラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−ナフトラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(2−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(4−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3,5−ジメチルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3,5−ジ−t−ブチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−8−キノリノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2,4−ジメチル−8−キノリノラート)アルミニウム、ビス(2−メチル−4−エチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−4−エチル−8−キノリノラート)アルミニウム、ビス(2−メチル−4−メトキシ−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−4−メトキシ−8−キノリノラート)アルミニウム、ビス(2−メチル−5−シアノ−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−5−シアノ−8−キノリノラート)アルミニウム、ビス(2−メチル−5−トリフルオロメチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−5−トリフルオロメチル−8−キノリノラート)アルミニウム、ビス(10−ヒドロキシベンゾ[h]キノリン)ベリリウムなどがあげられる。
【0119】
ピリジン誘導体は、下記一般式(E−2)で表される化合物である。
【化31】
式中、Gは単なる結合手またはn価の連結基を表し、nは2〜8の整数である。また、ピリジン−ピリジンまたはピリジン−Gの結合に用いられない炭素原子は置換されていてもよい。
【0120】
一般式(E−2)のGとしては、例えば、以下の構造式のものがあげられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1−ナフチル、2−ナフチル、ビフェニリルまたはテルフェニリルである。
【化32】
【0121】
ピリジン誘導体の具体例としては、2,5−ビス(2,2’−ビピリジン−6−イル)−1,1−ジメチル−3,4−ジフェニルシロール、2,5−ビス(2,2’−ビピリジン−6−イル)−1,1−ジメチル−3,4−ジメシチルシロール、2,5−ビス(2,2’−ビピリジン−5−イル)−1,1−ジメチル−3,4−ジフェニルシロール、2,5−ビス(2,2’−ビピリジン−5−イル)−1,1−ジメチル−3,4−ジメシチルシロール9,10−ジ(2,2’−ビピリジン−6−イル)アントラセン、9,10−ジ(2,2’−ビピリジン−5−イル)アントラセン、9,10−ジ(2,3’−ビピリジン−6−イル)アントラセン、9,10−ジ(2,3’−ビピリジン−5−イル)アントラセン、9,10−ジ(2,3’−ビピリジン−6−イル)−2−フェニルアントラセン、9,10−ジ(2,3’−ビピリジン−5−イル)−2−フェニルアントラセン、9,10−ジ(2,2’−ビピリジン−6−イル)−2−フェニルアントラセン、9,10−ジ(2,2’−ビピリジン−5−イル)−2−フェニルアントラセン、9,10−ジ(2,4’−ビピリジン−6−イル)−2−フェニルアントラセン、9,10−ジ(2,4’−ビピリジン−5−イル)−2−フェニルアントラセン、9,10−ジ(3,4’−ビピリジン−6−イル)−2−フェニルアントラセン、9,10−ジ(3,4’−ビピリジン−5−イル)−2−フェニルアントラセン、3,4−ジフェニル−2,5−ジ(2,2’−ビピリジン−6−イル)チオフェン、3,4−ジフェニル−2,5−ジ(2,3’−ビピリジン−5−イル)チオフェン、6’6”−ジ(2−ピリジル)2,2’:4’,4”:2”,2”’−クアテルピリジンなどがあげられる。
【0122】
フェナントロリン誘導体は、下記一般式(E−3−1)または(E−3−2)で表される化合物である。
【化33】
式中、R
1〜R
8は水素または置換基であり、隣接する基は互いに結合して縮合環を形成してもよく、Gは単なる結合手またはn価の連結基を表し、nは2〜8の整数である。また、一般式(E−3−2)のGとしては、例えば、ビピリジン誘導体の欄で説明したものと同じものがあげられる。
【0123】
フェナントロリン誘導体の具体例としては、4,7−ジフェニル−1,10−フェナントロリン、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン、9,10−ジ(1,10−フェナントロリン−2−イル)アントラセン、2,6−ジ(1,10−フェナントロリン−5−イル)ピリジン、1,3,5−トリ(1,10−フェナントロリン−5−イル)ベンゼン、9,9’−ジフルオル−ビス(1,10−フェナントロリン−5−イル)、バソクプロインや1,3−ビス(2−フェニル−1,10−フェナントロリン−9−イル)ベンゼンなどがあげられる。
【0124】
特に、フェナントロリン誘導体を電子輸送層、電子注入層に用いた場合について説明する。長時間にわたって安定な発光を得るには、熱的安定性や薄膜形成性に優れた材料が望まれ、フェナントロリン誘導体の中でも、置換基自身が三次元的立体構造を有するか、フェナントロリン骨格とのあるいは隣接置換基との立体反発により三次元的立体構造を有するもの、あるいは複数のフェナントロリン骨格を連結したものが好ましい。さらに、複数のフェナントロリン骨格を連結する場合、連結ユニット中に共役結合、置換もしくは無置換の芳香族炭化水素、置換もしくは無置換の芳香複素環を含んでいる化合物がより好ましい。
【0125】
ボラン誘導体は、下記一般式(E−4)で表される化合物であり、詳細には特開2007-27587号公報に開示されている。
【化34】
式中、R
11およびR
12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R
13〜R
16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換ボリル、または置換されていてもよいカルバゾールであり、そして、nはそれぞれ独立して0〜3の整数である。
【0126】
上記一般式(E−4)で表される化合物の中でも、下記一般式(E−4−1)で表される化合物、さらに下記一般式(E−4−1−1)〜(E−4−1−4)で表される化合物が好ましい。具体例としては、9−[4−(4−ジメシチルボリルナフタレン−1−イル)フェニル]カルバゾール、9−[4−(4−ジメシチルボリルナフタレン−1−イル)ナフタレン−1−イル]カルバゾールなどがあげられる。
【化35】
式中、R
11およびR
12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R
13〜R
16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、R
21およびR
22は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、X
1は、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0〜3の整数であり、そして、mはそれぞれ独立して0〜4の整数である。
【0127】
【化36】
各式中、R
31〜R
34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R
35およびR
36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
【0128】
上記一般式(E−4)で表される化合物の中でも、下記一般式(E−4−2)で表される化合物、さらに下記一般式(E−4−2−1)で表される化合物が好ましい。
【化37】
式中、R
11およびR
12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R
13〜R
16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、X
1は、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0〜3の整数である。
【0129】
【化38】
式中、R
31〜R
34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R
35およびR
36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
【0130】
上記一般式(E−4)で表される化合物の中でも、下記一般式(E−4−3)で表される化合物、さらに下記一般式(E−4−3−1)または(E−4−3−2)で表される化合物が好ましい。
【化39】
式中、R
11およびR
12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R
13〜R
16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、X
1は、置換されていてもよい炭素数10以下のアリーレンであり、Y
1は、置換されていてもよい炭素数14以下のアリールであり、そして、nはそれぞれ独立して0〜3の整数である。
【0131】
【化40】
各式中、R
31〜R
34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R
35およびR
36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
【0132】
ベンゾイミダゾール誘導体は、下記一般式(E−5)で表される化合物である。
【化41】
式中、Ar
1〜Ar
3はそれぞれ独立に水素または置換されてもよい炭素数6〜30のアリールである。特に、Ar
1が置換されてもよいアントリルであるベンゾイミダゾール誘導体が好ましい。
【0133】
炭素数6〜30のアリールの具体例は、フェニル、1−ナフチル、2−ナフチル、アセナフチレン−1−イル、アセナフチレン−3−イル、アセナフチレン−4−イル、アセナフチレン−5−イル、フルオレン−1−イル、フルオレン−2−イル、フルオレン−3−イル、フルオレン−4−イル、フルオレン−9−イル、フェナレン−1−イル、フェナレン−2−イル、1−フェナントリル、2−フェナントリル、3−フェナントリル、4−フェナントリル,9−フェナントリル、1−アントリル、2−アントリル、9−アントリル、フルオランテン−1−イル、フルオランテン−2−イル、フルオランテン−3−イル、フルオランテン−7−イル、フルオランテン−8−イル、トリフェニレン−1−イル、トリフェニレン−2−イル、ピレン−1−イル、ピレン−2−イル、ピレン−4−イル、クリセン−1−イル、クリセン−2−イル、クリセン−3−イル、クリセン−4−イル、クリセン−5−イル、クリセン−6−イル、ナフタセン−1−イル、ナフタセン−2−イル、ナフタセン−5−イル、ペリレン−1−イル、ペリレン−2−イル、ペリレン−3−イル、ペンタセン−1−イル、ペンタセン−2−イル、ペンタセン−5−イル、ペンタセン−6−イルである。
【0134】
ベンゾイミダゾール誘導体の具体例は、1−フェニル−2−(4−(10−フェニルアントラセン−9−イル)フェニル)−1H−ベンゾ[d]イミダゾール、2−(4−(10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)−1−フェニル−1H−ベンゾ[d]イミダゾール、2−(3−(10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)−1−フェニル−1H−ベンゾ[d]イミダゾール、5−(10−(ナフタレン−2−イル)アントラセン−9−イル)−1,2−ジフェニル−1H−ベンゾ[d]イミダゾール、1−(4−(10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)−2−フェニル−1H−ベンゾ[d]イミダゾール、2−(4−(9,10−ジ(ナフタレン−2−イル)アントラセン−2−イル)フェニル)−1−フェニル−1H−ベンゾ[d]イミダゾール、1−(4−(9,10−ジ(ナフタレン−2−イル)アントラセン−2−イル)フェニル)−2−フェニル−1H−ベンゾ[d]イミダゾール、5−(9,10−ジ(ナフタレン−2−イル)アントラセン−2−イル)−1,2−ジフェニル−1H−ベンゾ[d]イミダゾールである。
【0135】
電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。
【0136】
好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0〜2.5eV)またはBa(同2.52eV)などのアルカリ土類金属があげられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
【0137】
<有機電界発光素子における陰極>
陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たすものである。
【0138】
陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様のものを用いることができる。なかでも、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム−銀合金、マグネシウム−インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム−リチウム合金など)などが好ましい。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されるものではない。
【0139】
さらに、電極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例としてあげられる。これらの電極の作製法も、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。
【0140】
<各層で用いてもよい結着剤>
以上の正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N−ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
【0141】
<有機電界発光素子の作製方法>
有機電界発光素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm〜5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度+50〜+400℃、真空度10
−6〜10
−3Pa、蒸着速度0.01〜50nm/秒、基板温度−150〜+300℃、膜厚2nm〜5μmの範囲で適宜設定することが好ましい。
【0142】
次に、有機電界発光素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機電界発光素子の作製法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機電界発光素子が得られる。なお、上述の有機電界発光素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
【0143】
このようにして得られた有機電界発光素子に直流電圧を印加する場合には、陽極を+、陰極を−の極性として印加すればよく、電圧2〜40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機電界発光素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
【0144】
<有機電界発光素子の応用例>
また、本発明は、有機電界発光素子を備えた表示装置または有機電界発光素子を備えた照明装置などにも応用することができる。
有機電界発光素子を備えた表示装置または照明装置は、本実施形態にかかる有機電界発光素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
【0145】
表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどがあげられる(例えば、特開平10−335066号公報、特開2003−321546号公報、特開2004−281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などがあげられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
【0146】
マトリクスとは、表示のための画素が格子状やモザイク状など二次元的に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
【0147】
セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などがあげられる。
【0148】
照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどがあげられる(例えば、特開2003−257621号公報、特開2003−277741号公報、特開2004−119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式のものが蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。
【実施例】
【0149】
<ベンゾフルオレン化合物の合成例>
以下、式(1−6)および式(1−26)で表される化合物の合成例について説明する。
【0150】
<化合物(1−6)の合成例>
【化42】
【0151】
窒素雰囲気下、1−ブロモ−2−フルオロベンゼン10.5gと3,4−ジメチルアニリン7.3gを脱水トルエン150mlに溶解させ、パラジウム ビス(ジベンジリデン)0.35g、ナトリウム t−ブトキシド17.3gおよび(4−(ジメチルアミノ)フェニル)ジt−ブチルホスフィン0.48gを加えて100℃で5時間加熱した。反応後、水を添加し、分液ロートにて有機層と水層を分離した。有機層を集めて、アルミナでカラム精製(溶媒:ヘプタン)を行った後、溶媒を減圧除去し、下記構造の化合物を9.0g(収率70%)得た。
【0152】
【化43】
【0153】
窒素雰囲気下、以上のようにして得られた化合物8.2gと5,9−ジブロモ−7,7−ジメチル−7H−ベンゾ[C]フルオレン6.4gを脱水キシレン200mlに溶解させ、パラジウム ビス(ジベンジリデン)0.17g、ナトリウム t−ブトキシド7.2gおよび(4−(ジメチルアミノ)フェニル)ジt−ブチルホスフィン0.24gを加えて90℃で4時間加熱した。室温冷却後、水を添加し、分液ロートにて有機層と水層を分離した。その後、粗製品をシリカゲルでカラム精製(溶媒:へプタン/トルエン=4/1(容量比))を行った後、これを昇華精製して、式(1−6)で表される化合物を7.4g(収率74%)得た。
【0154】
MSスペクトルおよびNMR測定により式(1−6)で表される化合物の構造を確認した。
1H−NMR(Toluene−d8) σ:8.64(d,1H,J=8Hz)、8.40(d,1H,J=8Hz)、7.95(d,1H,J=8Hz)、7.36−6.66(m,H)、2.01(s,3H)、1.96(s,3H)、1.94(s,3H)、1.85(s,3H)1.17(s,6H).
【0155】
<化合物(1−26)の合成例>
【化44】
【0156】
窒素雰囲気下、1−ブロモ−2−フルオロ−4−フェニルベンゼン16.4gとアニリン6.1gを脱水キシレン200mlに溶解させ、パラジウム ビス(ベンジリデン)0.35g、ナトリウム t−ブトキシド17gおよび(4−(ジメチルアミノ)フェニル)ジt−ブチルホスフィン0.40gを加えて110℃で3時間加熱した。反応後、水を添加し、分液ロートにて有機層と水層を分離し、有機層を濃縮した。その粗製品をトルエンを用いてアルミナショートカラムで精製を行った。さらにヘプタンを用いた再結晶により下記構造の化合物を11.3g(収率67%)得た。
【0157】
【化45】
窒素雰囲気下、以上のようにして得られた化合物8.0gと5,9−ジヨード−7,7−ジメチル−7H−ベンゾ[C]フルオレン7.4gを脱水キシレン200mlに溶解させ、パラジウム ビス(ジベンジリデン)0.086g、ナトリウム t−ブトキシド8.7gおよび(4−(ジメチルアミノ)フェニル)ジt−ブチルホスフィン0.104gを加えて80℃で4時間加熱した。反応後、シリカゲルショートカラム精製で触媒を除去した。その後、粗製品をシリカゲルでカラム精製(溶媒:へプタン/トルエン=4/1(容量比))を行った後、これを昇華精製して、式(1−26)で表される化合物を4.9g(収率43%)得た。
【0158】
MSスペクトルおよびNMR測定により式(1−26)で表される化合物の構造を確認した。
1H−NMR(CDCl
3) σ:8.69(d,1H,J=8Hz)、8.16(d,1H,J=8Hz)、8.10(d,1H,J=8Hz)、7.62−6.84(m,31H)、1.42(s,6H).
【0159】
<電界発光素子に用いた場合の特性>
まず、実施例1、2および比較例1に係る電界発光素子を作製し、それぞれ1000cd/m
2発光時の特性である電圧(V)、電流密度(mA/cm
2)、発光効率(lm/W)、電流効率(cd/A)の測定、EL発光波長(nm)、外部量子効率(%)の測定をした。
【0160】
なお、発光素子の量子効率には、内部量子効率と外部量子効率とがあるが、発光素子の発光層に電子(または正孔)として注入される外部エネルギーが純粋に光子に変換される割合を示したものが内部量子効率である。一方、この光子が発光素子の外部にまで放出された量に基づいて算出されるものが外部量子効率であり、発光層において発生した光子は、その一部が発光素子の内部で吸収されたりあるいは反射され続けたりして、発光素子の外部に放出されないため、外部量子効率は内部量子効率よりも低くなる。
【0161】
外部量子効率の測定方法は次の通りである。アドバンテスト社製電圧/電流発生器R6144を用いて、素子の輝度が1000cd/m
2になる電圧を印加して素子を発光させた。TOPCON社製分光放射輝度計SR−2Aを用いて、発光面に対して垂直方向から可視光領域の分光放射輝度を測定した。発光面が完全拡散面であると仮定して、測定した各波長成分の分光放射輝度の値を波長エネルギーで割ってπを掛けた数値が各波長におけるフォトン数である。次いで、観測した全波長領域でフォトン数を積算し、素子から放出された全フォトン数とした。印加電流値を素電荷で割った数値を素子へ注入したキャリア数として、素子から放出された全フォトン数を素子へ注入したキャリア数で割った数値が外部量子効率である。
【0162】
作製した実施例1、2および比較例1に係る電界発光素子における、各層の材料構成を下記表1に示す。
【表1】
【0163】
表2において、「HI」はN
4,N
4’−ジフェニル−N
4,N
4’−ビス(9−フェニル−9H−カルバゾール−3−イル)−[1,1’−ビフェニル]−4,4’−ジアミン、「NPD」はN
4,N
4’−ジ(ナフタレン−1−イル)−N
4,N
4’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン、化合物(A)は9−フェニル−10−(6−[1,1';3',1'']テルフェニル−5'−イル−ナフタレン−2−イル)−アントラセン、化合物(B)はN
5,N
5,N
9,N
9,7,7−ヘキサフェニル−7H−ベンゾ[c]フルオレン−5,9−ジアミン、化合物(C)は5,5’−(2−フェニルアントラセン−9,10−ジイル)ジ−2,2’−ビピリジン、そして「Liq」は8−キノリノールリチウムである。以下に化学構造を示す。
【0164】
【化46】
【0165】
<実施例1>
<化合物(1−6)を発光層のドーパント材料に用いた素子>
ITOを150nmの厚さに蒸着した26mm×28mm×0.7mmのガラス基板を透明支持基板とした。この透明支持基板を市販の蒸着装置の基板ホルダ−に固定し、HIを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(A)を入れたモリブデン製蒸着用ボート、化合物(1−6)を入れたモリブデン製蒸着用ボート、化合物(C)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデン製蒸着用ボートおよび銀を入れたタングステン製蒸着用ボートを装着した。
【0166】
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10
−4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、次いで、NPDが入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して正孔輸送層を形成した。次に、化合物(A)が入った蒸着用ボートと化合物(1−6)の入った蒸着用ボートを同時に加熱して膜厚25nmになるように蒸着して発光層を形成した。化合物(A)と化合物(1−6)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(C)の入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して電子輸送層を形成した。以上の蒸着速度は0.01〜1nm/秒であった。
【0167】
その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して膜厚100nmになるように蒸着して陰極を形成した。このとき、マグネシウムと銀の原子数比が10対1となるように蒸着速度を調節し、蒸着速度が0.1nmから10nmになるように陰極を形成し有機電界発光素子を得た。
【0168】
ITO電極を陽極、Liq/マグネシウムと銀の共蒸着物からなる電極を陰極として、1000cd/m
2発光時の特性を測定すると、電圧4.04V、電流密度24.97mA/cm
2、発光効率3.12(lm/W)、電流効率4.00cd/A、外部量子効率4.15%(発光波長455nm、色度(x=0.145,y=0.135))であった。
【0169】
<実施例2>
<化合物(1−26)を発光層のドーパント材料に用いた素子>
実施例1で発光層のドーパントに用いた化合物(1−6)を化合物(1−26)に替えた以外は、実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウムと銀の共蒸着物からなる電極を陰極として、1000cd/m
2発光時の特性を測定すると、電圧4.01V、電流密度24.53mA/cm
2、発光効率3.21(lm/W)、電流効率4.09cd/A、外部量子効率4.59%(発光波長455nm、色度(x=0.141,y=0.114))であった。
【0170】
<比較例1>
<化合物(B)を発光層のドーパント材料に用いた素子>
実施例1で発光層のドーパントに用いた化合物(1−6)を化合物(B)に替えた以外は、実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウムと銀の共蒸着物からなる電極を陰極として、1000cd/m
2発光時の特性を測定すると、電圧3.98V、電流密度19.37mA/cm
2、発光効率4.09(lm/W)、電流効率5.17cd/A、外部量子効率5.11%(発光波長457nm、色度(x=0.144,y=0.139))であった。
【0171】
以上の結果を表2にまとめた。
【表2】
【0172】
上述した実施例および比較例に係る電界発光素子の性能評価から分かるように、実施例に係る電界発光素子は、色純度の高い青色発光が得られていることが分かる。