(58)【調査した分野】(Int.Cl.,DB名)
前記銀が被覆されている銅粒子の断面平均厚さを、当該樹枝状銀コート銅粉の平均粒子径(D50)で除した比が0.01〜0.1の範囲であり、且つ、当該樹枝状銀コート銅粉の嵩密度が0.5g/cm3〜5.0g/cm3の範囲であることを特徴とする請求項1に記載の樹枝状銀コート銅粉。
X線回折による(111)面のミラー指数における結晶子径が、800Å〜2000Åの範囲に属することを特徴とする請求項1乃至4の何れかに記載の樹枝状銀コート銅粉。
【背景技術】
【0002】
電子機器における配線層や電極等の形成には、樹脂型ペーストや焼成型ペースト、電磁波シールド塗料のような、銀粉や銀コート銅粉等の金属フィラーを使用したペーストや塗料が多用されている。すなわち、銀や銀コート銅の金属フィラーペーストを、各種基材上に塗布又は印刷した後に、加熱硬化あるいは加熱焼成することによって、配線層や電極等となる導電膜を形成することができる。
【0003】
例えば、樹脂型導電性ペーストは、金属フィラーと、樹脂、硬化剤、溶剤等からなり、導電体回路パターン又は端子の上に印刷し、100℃〜200℃で加熱硬化させて導電膜とし、配線や電極を形成する。樹脂型導電性ペーストは、熱によって熱硬化型樹脂が硬化収縮するために金属フィラーが圧着されて接触することで金属フィラー同士が重なり、電気的に接続した電流パスが形成される。この樹脂型導電性ペーストは、硬化温度が200℃以下で処理することから、プリント配線板等の熱に弱い材料を用いている基板に使用されている。
【0004】
また、焼成型導電性ペーストは、金属フィラーと、ガラス、溶剤等からなり、導電体回路パターン又は端子の上に印刷し、600℃〜800℃に加熱焼成して導電膜とし、配線や電極を形成する。焼成型導電性ペーストは、高い温度によって処理することで、金属フィラー同士が焼結して導通性が確保されるものである。この焼成型導電性ペーストは、このように高い焼成温度で処理されるため、樹脂材料を使用するようなプリント配線基板には使用できない点があるが、高温処理で金属フィラーが焼結することから低抵抗を実現することが可能となる。そのため、焼成型導電性ペーストは、積層セラミックコンデンサの外部電極等に使用されている。
【0005】
一方、電磁波シールドは、電子機器からの電磁気的なノイズの発生を防止するために使用されるもので、特に近年では、パソコンや携帯の筐体が樹脂製になったことから、筐体に導電性を確保するため、蒸着法やスパッタ法で薄い金属皮膜を形成する方法や、導電性の塗料を塗布する方法、導電性のシートを必要な箇所に貼り付けて電磁波をシールドする方法等が提案されている。その中でも、樹脂中に金属フィラーを分散させて塗布する方法や樹脂中に金属フィラーを分散させてシート状に加工してそれを筐体に貼り付ける方法は、加工工程において特殊な設備を必要とせず、自由度に優れた方法として多用されている。
【0006】
しかしながら、このような金属フィラーを樹脂中に分散させて塗布する場合や、シート状に加工する場合においては、金属フィラーの樹脂中における分散状態が一様にならないため、電磁波シールドの効率を得るため金属フィラーの充填率を高めて解消する等の方法が必要となる。ところが、その場合には、多量の金属フィラーの添加によってシート質量が重くなるとともに、樹脂シートの可撓性を損なう等の問題が発生していた。そのため、例えば特許文献1においては、それらの問題を解決するために平板状の金属フィラーを使用することによって、電磁波シールド効果が優れ、可撓性も良好な薄いシートを形成することができるとしている。
【0007】
ここで、平板状の銅粉を作製するために、例えば特許文献2では、導電性ペーストのフィラーに適したフレーク状銅粉を得る方法が開示されている。具体的には、平均粒径0.5〜10μmの球状銅粉を原料として、ボールミルや振動ミルを用いて、ミル内に装填したメディアの機械的エネルギーにより機械的に平板状に加工するものである。
【0008】
また、例えば特許文献3では、導電性ペースト用銅粉末、詳しくはスルーホール用及び外部電極用銅ペーストとして高性能が得られる円盤状銅粉末及びその製造方法に関する技術が開示されている。具体的には、粒状アトマイズ銅粉末を媒体撹拌ミルに投入し、粉砕媒体として1/8〜1/4インチ径のスチールボールを使用して、銅粉末に対して脂肪酸を質量で0.5〜1%添加し、空気中あるいは不活性雰囲気中で粉砕することによって平板状に加工するものである。
【0009】
一方、これら導電性ペーストや電磁波シールド用に使用されている金属フィラーとしては、銀粉が多く用いられているが、低コスト化傾向より、銀粉より安価な銅粉の表面に銀をコートすることで銀の使用量を低減させた銀コート銅粉を使用する傾向にある。
【0010】
銅粉の表面に銀を被覆する方法としては、置換反応によって銅表面に銀を被覆する方法と、還元剤が含まれる無電解めっき溶液中で銀を被覆する方法がある。
【0011】
置換反応によって銀を被覆する方法では、溶液中で銅が溶出するときに発生した電子によって銀イオンを還元することで銅表面に銀の被膜が形成される。例えば特許文献4には、銀イオンが存在する溶液中に銅粉を投入することで、銅と銀イオンの置換反応によって銅表面に銀の被膜が形成される製造方法が開示されている。しかしながら、この置換反応による方法では、銅表面に銀の被膜が形成されると、それ以上の銅の溶解が進行しないため、銀の被覆量を制御できないという問題がある。
【0012】
その問題を解決するために、還元剤が含まれた無電解めっきで銀を被覆する方法がある。例えば特許文献5には、還元剤が溶存した溶液中で銅粉と硝酸銀との反応によって銀を被覆した銅粉を製造する方法が提案されている。
【0013】
さて、銅粉としては、デンドライト状と呼ばれる樹枝状に析出した電解銅粉が知られており、形状が樹枝状になっていることから表面積が大きいことが特徴となっている。このようにデンドライト状の形状であることにより、これを導電膜等に用いた場合には、そのデンドライトの枝が重なり合い、導通が通りやすく、また球状粒子に比べて粒子同士の接点数が多くなることから、導電性ペースト等の導電性フィラーの量を少なくすることができるという利点がある。例えば、特許文献6及び7には、デンドライト状を呈した銅粉表面に銀を被覆した銀被覆銅粉が提案されている。
【0014】
具体的に、特許文献6及び7には、デンドライト状により一層成長したものとして主軸から分岐した長い枝が特徴であるデンドライトが開示されており、その銀被覆銅粉は、従来のデンドライトよりも粒子同士の接点が多くなることで導通性が向上し、導電性ペースト等に用いると導電性粉末の量を少なくしても導電性を高めることができるとしている。
【0015】
一方、電解銅粉の樹枝を発達させると、導電性ペースト等に用いた場合に電解銅粉同士が必要以上に絡み合ってしまうため、凝集が生じ易くなり、また流動性が低下して非常に扱い難くなり、生産性を低下させることの指摘が特許文献8に示されている。これを解決する方法として、特許文献8では、電解銅粉自体の強度を高めるため、電解銅粉を析出させるための電解液の硫酸銅水溶液中にタングステン酸塩を添加することで、電解銅粉自体の強度を向上させ、樹枝を折れ難くし、高い強度に成形することができるとしている。
【0016】
しかしながら、上述のような樹枝状の銅粉を導電性ペーストや電磁波シールド用樹脂等の金属フィラーとして利用する場合、樹脂中の金属フィラーが樹枝状に発達した形状であると、樹枝状の銅粉同士が絡み合って凝集が発生してしまい、樹脂中に均一に分散しないという問題や、凝集によりペーストの粘度が上昇して印刷による配線形成に問題が生じる。このような問題は、例えば特許文献9でも指摘されている。
【0017】
このように、樹枝状の銅粉を導電性ペースト等の金属フィラーとして用いるのは容易でなく、ペーストの導電性の改善がなかなか進まない原因ともなっていた。
【発明を実施するための形態】
【0035】
以下、本発明に係る銀コート銅粉の具体的な実施形態(以下、「本実施の形態」という)について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
【0036】
≪1.樹枝状銀コート銅粉≫
図1は、本実施の形態に係る銀コート銅粉の具体的な形状を示した模式図である。この
図1の模式図に示すように、銀コート銅粉1は、直線的に成長した主幹2とその主幹2から分かれた複数の枝3とを有する、2次元又は3次元の形態である樹枝状の形状を有している(以下、本実施の形態に係る銀コート銅粉を「樹枝状銀コート銅粉」ともいう)。この樹枝状銀コート銅粉1は、断面平均厚さが0.2μm〜1.0μmの平板状で、表面に銀が被覆されている銅粒子により構成されており、レーザー回折散乱式粒度分布測定法により測定した平均粒子径(D50)が5.0μm〜30μmである。
【0037】
なお、後述するように、この樹枝状銀コート銅粉1の銀被覆量は、銀被覆した当該銀コート銅粉全体の質量100%に対して1質量%〜50質量%であるが、銀の厚さ(被覆厚さ)は0.1μm以下の極薄い被膜である。そのため、樹枝状銀コート銅粉1は、銀被覆する前の樹枝状銅粉の形状をそのまま保持した形状になる。したがって、銀を被覆する前の樹枝状銅粉の形状と、銅粉に銀を被覆した後の樹枝状銀コート銅粉の形状とは、両者共に、
図1の模式図に示すように2次元又は3次元の形態である樹枝状の形状を有している。
【0038】
より具体的に、本実施の形態に係る樹枝状銀コート銅粉1は、直線的に成長した主幹2と、その主幹2から直線的に分かれた複数の枝3とを有する樹枝状の銀コート銅粉であり、その主幹2及び主幹2から分岐した枝3を構成する銅粒子が、断面平均厚さが0.2μm〜1.0μmの平板の形状を有している。また、このような平板状の銅粒子から構成される樹枝状銀コート銅粉1の平均粒子径(D50)が5.0μm〜30μmである。なお、樹枝状銀コート銅粉1における枝3は、主幹2から分岐した枝3aと、その枝3aからさらに分岐した枝3bの両方を意味する。
【0039】
樹枝状銀コート銅粉1は、詳しくは後述するが、例えば、銅イオンを含む硫酸酸性の電解液に陽極と陰極を浸漬し、直流電流を流して電気分解することにより陰極上に析出させて得た樹枝状銅粉の表面に、還元型無電解めっき法や置換型無電解めっき法で銀を被覆することで得ることができる。
【0040】
図2は、本実施の形態に係る銀を被覆する前の樹枝状銅粉について走査電子顕微鏡(SEM)により観察したときの観察像の一例を示す写真図である。なお、
図2は樹枝状銅粉を倍率5,000倍で観察したものである。また、
図3は、
図2の樹枝状銅粉に銀を被覆した樹枝状銀コート銅粉についてSEMにより観察したときの観察像の一例を示す写真図である。なお、
図3は樹枝状銀コート銅粉1を倍率10,000倍で観察したものである。また、
図4は、同様にして、樹枝状銅粉に銀を被覆した樹枝状銀コート銅粉についてSEMにより観察したときの観察像の一例を示す写真図である。なお、
図4は樹枝状銀コート銅粉1を倍率1,000倍で観察したものである。
【0041】
樹枝状銀コート銅粉1は、
図2〜
図4の観察像に示されるように、主幹2とその主幹2から分岐した枝3(3a,3b)とを有する、2次元又は3次元の樹枝状の形状を形成している。
【0042】
ここで、主幹2及び枝3を構成する平板状の銅粒子は、上述したように、その断面平均厚さが0.2μm〜1.0μmである。平板状の銅粒子の断面平均厚さは、より薄い方が平板としての効果が発揮されることになる。すなわち、断面平均厚さが1.0μm以下の平板状の銅粒子により主幹2及び枝3が構成されることで、その銀被覆された銅粒子同士、また樹枝状銀コート銅粉1同士が接触する面積を大きく確保することができ、その接触面積が大きくなることで、低抵抗、すなわち高導電率を実現することができる。このことにより、より導電性に優れ、またその導電性を良好に維持することができ、導電塗料や導電性ペーストの用途に好適に用いることができる。また、樹枝状銀コート銅粉1が平板状の銀コートされた微細銅粒子により構成されていることで、配線材等の薄型化に貢献することができる。
【0043】
なお、銀被覆された平板状の微細銅粒子の断面平均厚さが1.0μm以下の薄いものであっても、平板状の微細銅粒子の大きさが小さ過ぎると、凹凸が減少することになるため、樹枝状銀コート銅粉1同士が接触する際に、接点の数が少なくなってしまう。したがって、上述したように銅粒子の断面平均厚さの下限値としては0.2μm以上であることが好ましく、これにより接点の数を増やすことができる。
【0044】
また、樹枝状銀コート銅粉1においては、その平均粒子径(D50)が5.0μm〜30μmである。なお、平均粒子径(D50)は、例えば、レーザー回折散乱式粒度分布測定法により測定することができる。
【0045】
ここで、例えば特許文献1でも指摘されているように、樹枝状銅粉の問題点としては、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に、樹脂中の金属フィラーが樹枝状に発達した形状であると、樹枝状の銅粉同士が絡み合って凝集が発生し、樹脂中に均一に分散しないことがある。また、その凝集により、ペーストの粘度が上昇して印刷による配線形成に問題が生じる。このことは、樹枝状銅粉の形状が大きいために発生するものであり、樹枝状の形状を有効に活かしながらこの問題を解決するためには、樹枝状銅粉の形状を小さくすることが必要となる。しかしながら、小さくし過ぎると、樹枝状の形状を確保することができなくなる。そのため、樹枝状形状であることの効果、すなわち3次元的形状であることにより表面積が大きく成形性や焼結性に優れ、また枝状の箇所を介して強固に連結されて高い強度に成形できるという効果を確保するには、樹枝状銅粉が所定以上の大きさであることが必要となる。
【0046】
この点において、樹枝状銀コート銅粉1の平均粒子径(D50)が5.0μm〜30μmであることにより、表面積が大きくなり、良好な成形性や焼結性を確保することができる。そして、本実施の形態に係る樹枝状銀コート銅粉1は、このように樹枝状形状であることに加えて、その主幹2及び枝3が平板状の銅粒子から構成されているため、樹枝状であることの3次元的効果と、その樹枝形状を構成する銅粒子が平板状であることの効果により、樹枝状銀コート銅粉1同士の接点をより多く確保することができる。
【0047】
また、樹枝状銀コート銅粉1は、特に限定されないが、上述した平板状の銅粒子の断面平均厚さを、当該樹枝状銀コート銅粉1の平均粒子径(D50)で除した比(断面平均厚さ/平均粒子径)が0.01〜0.1の範囲であることが好ましい。ここで、「断面平均厚さ/平均粒子径」で表される比(アスペクト比)は、例えば導電性の銅ペースト(導電性ペースト)として加工するときの凝集度合いや分散性、また銅ペーストの塗布時における外観形状の保持性等の指標となる。このアスペクト比が0.01未満であると、球状の銅粒子からなる銅粉に近似するようになり、凝集が生じやすくなってペースト化に際して樹脂中に均一に分散させることが困難となる。一方で、アスペクト比が0.1を超えると、ペースト化に際して粘性が高まって、その銅ペーストの塗布時の外観形状の保持性や表面平滑性が悪化することがある。
【0048】
また、樹枝状銀コート銅粉1の嵩密度としては、特に限定されないが、0.5g/cm
3〜5.0g/cm
3の範囲であることが好ましい。嵩密度が0.5g/cm
3未満であると、樹枝状銀コート銅粉1同士の接点を十分に確保することができない可能性がある。一方で、嵩密度が5.0g/cm
3を超えると、樹枝状銀コート銅粉1の平均粒子径も大きくなり、表面積が小さくなって成形性や焼結性が悪化することがある。
【0049】
また、樹枝状銀コート銅粉1は、特に限定されないが、その結晶子径が、800Å(オングストローム)〜2000Åの範囲に属することが好ましい。結晶子径が800Å未満であると、主幹2や枝3を構成する銅粒子が平板状ではなく球状に近い形状となる傾向があり、接触面積を十分に大きく確保することが困難となり、導電性が低下する可能性がある。一方で、結晶子径が2000Åを超えると、樹枝状銀コート銅粉1の平均粒子径も大きくなり、表面積が小さくなって成形性や焼結性が悪化することがある。
【0050】
ここでの結晶子径とは、X線回折測定装置により得られる回折パターンから下記式(1)で示されるScherrerの計算式に基づいて求められるものであり、X線回折による(111)面のミラー指数における結晶子径である。
D=0.9λ/βcosθ ・・・式(1)
(なお、D:結晶子径(Å)、β:結晶子の大きさによる回折ピークの拡がり(rad)、λ:X線の波長[CuKα](Å)、θ:回折角(°)である。)
【0051】
なお、電子顕微鏡で観察したときに、得られた銅粉のうちに、上述したような形状の樹枝状銀コート銅粉が所定の割合で占められていれば、それ以外の形状の銀コート銅粉が混じっていても、その樹枝状銀コート銅粉のみからなる銅粉と同様の効果を得ることができる。具体的には、電子顕微鏡(例えば500倍〜20,000倍)で観察したときに、上述した形状の樹枝状銀コート銅粉が全銅粉のうちの50個数%以上、好ましくは80個数%以上、より好ましくは90個数%以上の割合を占めていれば、その他の形状の銀コート銅粉が含まれていてもよい。
【0052】
≪2.銀被覆量≫
本実施の形態に係る樹枝状銀コート銅粉1は、上述したように、断面平均厚さが0.2μm〜1.0μmの平板状である、表面に銀が被覆されている銅粒子によって樹枝状に構成されたものである。以下に、樹枝状銀コート銅粉1の表面に対する銀被覆について説明する。
【0053】
この樹枝状銀コート銅粉1においては、銀被覆する前の樹枝状銅粉に、好ましくは銀被覆した当該銀コート銅粉全体の質量100%に対して1質量%〜50質量%の割合で銀が被覆されたものであり、銀の厚さ(被覆厚さ)としては0.1μm以下の極薄い被膜である。このことから、樹枝状銀コート銅粉1は、銀被覆する前の樹枝状銅粉の形状をそのまま保持した形状になる。
【0054】
樹枝状銀コート銅粉1における銀の被覆量は、上述したように、銀被覆した当該銀コート銅粉全体の質量100%に対して1質量%〜50質量%の範囲であることが好ましい。銀の被覆量は、コストの観点からはできるだけ少ない方が好ましいが、少なすぎると銅表面に均一な銀の被膜が確保できず、導電性の低下の原因になる。そのため、銀の被覆量としては、銀被覆した当該銀コート銅粉全体の質量100%に対して1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。
【0055】
一方で、銀の被覆量が多くなるとコストの観点から好ましくなく、また必要以上に銀が銅表面に被覆されると、樹枝状銀コート銅粉1における特徴となる細かな突起がなくなる。このことから、銀の被覆量としては、銀被覆した当該銀コート銅粉全体の質量100%に対して50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
【0056】
また、本実施の形態に係る樹枝状銀コート銅粉1において、樹枝状銅粉の表面に被覆する銀の平均厚みとしては、0.001μm〜0.1μm程度であり、0.02μm〜0.03μmであることがより好ましい。銀の被覆厚みが平均で0.001μm未満であると、均一な銀の被覆を確保することができず、また導電性の低下の原因となる。一方で、銀の被覆厚みが平均で0.1μmを超えると、コストの観点から好ましくない。
【0057】
このように樹枝状銅粉の表面に被覆する銀の平均厚みは、0.001μm〜0.1μm程度であり、樹枝状銅粉を構成する平板状の銅粒子の断面平均厚さと比べて極めて小さい。そのため、樹枝状銅粉の表面を銀で被覆する前後で、平板状の銅粒子の断面平均厚さは実質的に変化することはない。
【0058】
また、本実施の形態に係る樹枝状銀コート銅粉1では、特に限定されないが、そのBET比表面積の値が0.2m
2/g〜3.0m
2/gであることが好ましい。BET比表面積値が0.2m
2/g未満であると、銀が被覆された微細銅粒子が、上述したような所望の形状とはならないことがあり、高い導電性が得られないことがある。一方で、BET比表面積値が3.0m
2/gを超えると、樹枝状銀コート銅粉1の表面の銀被覆が不均一となり高い導電性が得られない可能性がある。また、銀コート銅粉1を構成する微細銅粒子が細かくなりすぎてしまい、銀コート銅粉1が細かいひげ状の状態となって、導電性が低下することがある。なお、BET比表面積は、JIS Z8830:2013に準拠して測定することができる。
【0059】
≪3.銀コート銅粉の製造方法≫
次に、上述したような特徴を有する樹枝状銀コート銅粉1の製造方法について説明する。以下では、先ず、銀コート銅粉1を構成する樹枝状銅粉の製造方法について説明し、続いて、その樹枝状銅粉に対して銀を被覆して銀コート銅粉を得る方法について説明する。
【0060】
<3−1.樹枝状銅粉の製造方法>
銀を被覆する前の樹枝状銅粉は、例えば、銅イオンを含有する硫酸酸性溶液を電解液として用いて所定の電解法により製造することができる。
【0061】
電解に際しては、例えば、金属銅を陽極(アノード)とし、ステンレス板やチタン板等を陰極(カソード)として設置した電解槽中に、上述した銅イオンを含有する硫酸酸性の電解液を収容し、その電解液に所定の電流密度で直流電流を通電することによって電解処理を施す。これにより、通電に伴って陰極上に樹枝状銅粉を析出(電析)させることができる。特に、本実施の形態においては、電解により得られた粒状等の銅粉をボール等の媒体を用いて機械的に変形加工等することなく、その電解のみによって、平板状の微細銅粒子が集合して樹枝状を形成した樹枝状銅粉を陰極表面に析出させることができる。
【0062】
より具体的に、電解液としては、例えば、水溶性銅塩と、硫酸と、アミン化合物等の添加剤と、塩化物イオンとを含有するものを用いることができる。
【0063】
水溶性銅塩は、銅イオンを供給する銅イオン源であり、例えば硫酸銅五水和物等の硫酸銅、塩化銅、硝酸銅等が挙げられるが特に限定されない。また、電解液中での銅イオン濃度としては、1g/L〜20g/L程度、好ましくは5g/L〜10g/L程度とすることができる。
【0064】
硫酸は、硫酸酸性の電解液とするためのものである。電解液中の硫酸の濃度としては、遊離硫酸濃度として20g/L〜300g/L程度、好ましくは50g/L〜150g/L程度とすることができる。この硫酸濃度は、電解液の電導度に影響するため、カソード上に得られる銅粉の均一性に影響する。
【0065】
添加剤としては、例えばアミン化合物を用いることができる。このアミン化合物が、後述する塩化物イオンと共に、析出する銅粉の形状制御に寄与し、陰極表面に析出させる銅粉を、所定の断面厚さの平板状の銅粒子から構成される、主幹とその主幹から分岐した枝とを有する樹枝状銅粉とすることができる。
【0066】
アミン化合物としては、特に限定されないが、例えばサフラニン等を用いることができる。なお、アミン化合物としては、1種単独で添加してもよく、2種類以上を併用して添加してもよい。また、アミン化合物類の添加量としては、電解液中における濃度が0.1mg/L〜500mg/L程度の範囲となる量とすることが好ましい。
【0067】
塩化物イオンとしては、塩酸、塩化ナトリウム等の塩化物イオンを供給する化合物(塩化物イオン源)を電解液中に添加することによって含有させることができる。塩化物イオンは、上述したアミン化合物等の添加剤と共に、析出する銅粉の形状制御に寄与する。電解液中の塩化物イオン濃度としては、30mg/L〜1000mg/L程度、好ましくは50mg/L〜800mg/L程度、より好ましくは100mg/L〜300mg/L程度とすることができる。
【0068】
本実施の形態に係る樹枝状銅粉の製造方法においては、例えば、上述したような組成の電解液を用いて電解することによって陰極上に樹枝状銅粉を析出生成させて製造する。電解方法としては、公知の方法を用いることができる。例えば、電流密度としては、硫酸酸性の電解液を用いて電解するにあたっては5A/dm
2〜30A/dm
2の範囲とすることが好ましく、電解液を攪拌しながら通電させる。また、電解液の液温(浴温)としては、例えば20℃〜60℃程度とすることができる。
【0069】
<3−2.銀の被覆方法(銀コート銅粉の製造)>
本実施の形態に係る樹枝状銀コート銅粉1は、上述した電解法により作製した樹枝状銅粉の表面に、例えば、還元型無電解めっき法や置換型無電解めっき法を用いて銀を被覆することにより製造することができる。
【0070】
樹枝状銅粉の表面に均一な厚みで銀を被覆するためには、銀めっきの前に洗浄を行うのが好ましく、樹枝状銅粉を洗浄液中に分散させ、攪拌しながら洗浄を行うことができる。この洗浄処理としては、酸性溶液中で行うのが好ましく、より好ましくは後述する還元剤にも用いられる多価カルボン酸を用いる。洗浄後には、樹枝状銅粉のろ過、分離と、水洗とを適宜繰り返して、水中に樹枝状銅粉が分散した水スラリーとする。なお、ろ過、分離と、水洗については、公知の方法を用いればよい。
【0071】
具体的に、還元型無電解めっき法で銀コートする場合には、樹枝状銅粉を洗浄した後に得られた水スラリーに還元剤と銀イオン溶液を添加することによって、樹枝状銅粉の表面に銀を被覆させることができる。ここで、還元剤を水スラリーに予め添加して分散させた後に、その還元剤と樹枝状銅粉を含む水スラリーに銀イオン溶液を連続的に添加することによって、樹枝状銅粉の表面に銀をより均一に被覆させることができる。
【0072】
還元剤としては、種々の還元剤を用いることができるが、銅の錯イオンを還元させることができない、還元力の弱い還元剤であることが好ましい。その弱い還元剤としては、還元性有機化合物を用いることができ、例えば、炭水化物類、多価カルボン酸及びその塩、アルデヒド類等を用いることができる。より具体的には、ぶどう糖(グルコース)、乳酸、シュウ酸、酒石酸、リンゴ酸、マロン酸、グリコール酸、酒石酸ナトリウムカリウム、ホルマリン等が挙げられる。
【0073】
樹枝状銅粉を含む水スラリーに還元剤を添加した後、十分に還元剤を分散させるために攪拌等を行うことが好ましい。また、水スラリーを所望のpHに調整するために、酸又はアルカリを適宜添加することができる。さらに、アルコール等の水溶性有機溶媒を添加することによって、還元剤である還元性有機化合物の分散を促進させてもよい。
【0074】
連続的に添加する銀イオン溶液としては、銀めっき液として公知のものを用いることができるが、その中でも硝酸銀溶液を用いることが好ましい。また、硝酸銀溶液は、錯形成が容易であることから、アンモニア性硝酸銀溶液として添加するのがより好ましい。アンモニア性硝酸銀溶液をするために用いるアンモニアは、硝酸銀溶液に添加したり、予め還元剤と共に水スラリーに添加して分散させておいたり、硝酸銀溶液とは別のアンモニア溶液として同時に水スラリーに添加したり、これらの組み合わせを含めていずれかの方法を用いればよい。
【0075】
銀イオン溶液は、例えば樹枝状銅粉と還元剤とを含む水スラリーに添加するにあたり、比較的ゆっくりとした速度で徐々に添加することが好ましく、これにより均一な厚みの銀の被膜を樹枝状銅粉の表面に形成することができる。また、被膜の厚みの均一性を高めるためには、添加の速度を一定とすることがより好ましい。さらに、予め水スラリーに添加した還元剤等を別の溶液で調整して、銀イオン溶液と共に徐々に追加で添加するようにしてもよい。
【0076】
このようにして、銀イオン溶液等を添加した水スラリーをろ過、分離して水洗を行い、その後乾燥させることで、樹枝状の銀コート銅粉を得ることができる。これらのろ過以降の処理手段としては、特に限定されるものではなく、公知の方法を用いればよい。
【0077】
一方、置換型無電解めっき法で銀コートする方法は、銅と銀のイオン化傾向の違いを利用するものであり、溶液中で銅が溶解したときに発生する電子によって、溶液中の銀イオンを還元させて銅表面に析出させるものである。したがって、置換型の無電解銀めっき液は、銀イオン源として銀塩と、錯化剤と、伝導塩とが主要成分として構成されていれば銀コートが可能であるが、より均一に銀コートするためには必要に応じて界面活性剤、光沢剤、結晶調整剤、pH調整剤、沈殿防止剤、安定剤等を添加することができる。本実施の形態に係る銀コート銅粉の製造においても、そのめっき液としては特に限定されない。
【0078】
より具体的に、銀塩としては、硝酸銀、ヨウ化銀、硫酸銀、ギ酸銀、酢酸銀、乳酸銀等を用いることができ、水スラリー中に分散した樹枝状銅粉と反応させることができる。めっき液中の銀イオン濃度としては、1g/L〜10g/L程度とすることができる。
【0079】
また、錯化剤は、銀イオンと錯体を形成させるものであり、代表的なものとしてクエン酸、酒石酸、エチレンジアミン4酢酸、ニトリロ3酢酸等や、エチレンジアミン、グリシン、ヒダントイン、ピロリドン、コハク酸イミド等のN含有化合物、ヒドロキシエチリデン2ホスホン酸、アミノトリメチレンホスホン酸、メルカプトプロピオン酸、チオグリコール、チオセミカルバジド等を用いることができる。めっき液中の錯化剤の濃度としては、10g/L〜100g/L程度とすることができる。
【0080】
また、伝導塩としては、硝酸、ホウ酸、リン酸等の無機酸、クエン酸、マレイン酸、酒石酸、フタル酸等の有機酸、またはそれらのナトリウム、カリウム、アンモニウム塩等を用いることができる。めっき液中の伝導塩の濃度としては、5g/L〜50g/L程度とすることができる。
【0081】
樹枝状銅粉の表面に銀を被覆する際の被覆量のコントロールは、例えば、置換型無電解めっき液の銀の投入量を変えることで制御することができる。また、被膜の厚みの均一性を高めるためには、添加の速度を一定とするのが好ましい。
【0082】
このようにして、反応終了後のスラリーをろ過、分離して水洗を行い、その後乾燥させることで、樹枝状の銀コート銅粉を得ることができる。これらのろ過以降の処理手段としては、特に限定されるものではなく、公知の方法を用いればよい。
【0083】
≪4.導電性ペースト、電磁波シールド用導電性塗料、導電性シートの用途≫
本実施の形態に係る樹枝状銀コート銅粉1は、上述したように、直線的に成長した主幹と、その主幹から分岐した複数の枝を有する樹枝状の形状をなし、断面平均厚さが0.2μm〜1.0μmの銀被覆された平板状の微細銅粒子が集合して構成され、平均粒子径(D50)が5.0μm〜30μmである。このような樹枝状銀コート銅粉1では、樹枝状の形状であることにより表面積が大きくなり、成形性や焼結性が優れたものとなり、またその主幹及び枝が所定の平板状の銅粒子から構成されていることにより、接点の数を多く確保することができ、優れた導電性を発揮する。
【0084】
また、このような所定の構造を有する樹枝状銀コート銅粉1によれば、銅ペースト等とした場合であっても、凝集を抑制することができ、樹脂中に均一に分散させることが可能となり、またペーストの粘度上昇等による印刷性不良等の発生を抑制することができる。したがって、樹枝状銀コート銅粉1は、導電性ペーストや導電塗料等の用途に好適に用いることができる。
【0085】
例えば導電性ペースト(銅ペースト)としては、特に限定された条件での使用に限定されるものではなく、本実施の形態に係る樹枝状銀コート銅粉1を金属フィラーとし、バインダ樹脂、溶剤、さらに必要に応じて硬化剤や酸化防止剤、カップリング剤、腐食防止剤等の添加剤と混練することによって作製することができる。
【0086】
具体的に、バインダ樹脂としては特に限定されるものではなく、従来用いられているものを使用することができる。例えば、エポキシ樹脂やフェノール樹脂、不飽和ポリエステル樹脂等を使用することができる。
【0087】
また、溶剤についても、従来使用されている、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、ターピネオール、エチルカルビトール、カルビトールアセテート、ブチルセロソルブ等の有機溶剤を用いることができる。また、その有機溶剤の添加量としては、特に限定されないが、スクリーン印刷やディスペンサー等の導電膜形成方法に適した粘度となるように、樹枝状銀コート銅粉1の粒度を考慮して調整することができる。
【0088】
さらに、粘度調整のために他の樹脂成分を添加することもできる。例えば、エチルセルロースに代表されるセルロース系樹脂等が挙げられ、ターピネオール等の有機溶剤に溶解した有機ビヒクルとして添加することができる。なお、その樹脂成分の添加量としては、焼結性を阻害しない程度に抑える必要があり、好ましくは全体の5質量%以下とする。
【0089】
また、添加剤としては、例えば、焼成後の導電性を改善するために酸化防止剤等を添加することができる。酸化防止剤としては、特に限定されないが、例えばヒドロキシカルボン酸等を挙げることができる。より具体的には、クエン酸、リンゴ酸、酒石酸、乳酸等のヒドロキシカルボン酸が好ましく、銅への吸着力が高いクエン酸又はリンゴ酸が特に好ましい。酸化防止剤の添加量としては、酸化防止効果やペーストの粘度等を考慮して、例えば1質量%〜15質量%程度とすることができる。
【0090】
また、硬化剤についても、従来使用されている2エチル4メチルイミダゾール等を使用することができる。さらに、腐食抑制剤についても、従来使用されているベンゾチアゾール、ベンゾイミダゾール等を使用することができる。
【0091】
また、本実施の形態に係る樹枝状銀コート銅粉1を導電性ペースト用の金属フィラーとして利用する場合、他の形状の銅粉と混合させて用いることができる。このとき、銅粉全量のうち樹枝状銀コート銅粉1の割合として、25質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。このように、金属フィラーとして用いる場合に、銅粉として樹枝状銀コート銅粉1と共に他の形状の銅粉を混合させることで、その樹枝状銀コート銅粉1の隙間に他の形状の銅粉が充填されるようになり、このことにより、導電性を確保するための接点をより多く確保できる。またその結果として、樹枝状銀コート銅粉1と他の形状の銅粉のトータルの投入量を少なくすることも可能となる。
【0092】
金属フィラーとして用いられる銅粉全量のうち、樹枝状銀コート銅粉1が25質量%未満であると、その樹枝状銀コート銅粉1同士の接点が減少し、他の形状の銅粉と混合させることによる接点の増加を加味しても、金属フィラーとしては導電性が低下してしまう。
【0093】
他の形状の銅粉としては、樹枝状銀コート銅粉1の隙間により多く充填できるという観点から、球状銅粉であることが好ましい。さらに、混合させる球状銅粉の表面に銀を被覆させて球状銀コート銅粉として用いることで、一段と導電性を高めることができる。このときの球状銅粉に対する銀被覆量としては、特に限定されないが、上述した樹枝状銀コート銅粉1の銀被覆量と同じく、銀被覆した球状銀コート銅粉全体の質量100%に対して1質量%〜50質量%であることが好ましい。このことは、樹枝状銀コート銅粉1の銀被覆量と同じ理由であり、コストの観点からはできるだけ少ない方が好ましいが、少なすぎると球状銅粉の表面に均一に銀の被膜を確保することができ、導電性の低下の原因になることからである。したがって、銀被覆量の下限値としては、銀被覆した球状銀コート銅粉全体の質量100%に対して、1質量%以上とすることが好ましく、2質量%以上とすることがより好ましく、5質量%以上とすることがさらに好ましい。また、銀被覆量が多くなるとコストの観点から好ましくない。したがって、銀被覆量の上限値としては、銀被覆した球状銀コート銅粉全体の質量100%に対して、50質量%以下とすることが好ましく、20質量%以下とすることがより好ましく、10質量%以下とすることがさらに好ましい。
【0094】
また、他の形状の銅粉として球状銅粉の大きさは、特に限定されないが、平均粒子径(D50)が0.5μm〜10μmであることが好ましく、1.0μm〜5.0μmであることがより好ましい。球状銅粉の平均粒子径が0.5μm未満であると粒子サイズが小さすぎて、樹枝状銀コート銅粉の隙間に充填されることによる接点の確保の効果が十分に得られなくなる。一方で、球状銅粉の粒子サイズが大きすぎると、樹枝状銀コート銅粉の3次元的な効果よりも、球状銅粉による充填量の影響が大きくなり、必要以上に充填されてしまうことになる。これらのことから、球状銅粉の平均粒子径としては、好ましくは0.5μm〜10μm、より好ましくは1.0μm〜5.0μmであり、これにより、より少ない充填量で樹枝状銀コート銅粉の隙間に効果的に且つ適度に充填させることができ、接点を十分に確保することができる。
【0095】
なお、もちろん、金属フィラーとして、本実施の形態に係る樹枝状銀コート銅粉のみを利用することを妨げるものではない。
【0096】
上述した金属フィラーを利用して作製した導電性ペーストを用い、各種の電気回路を形成することができる。この場合においても、特に限定された条件で使用するものではなく、従来行われている回路パターン形成法等を利用することができる。例えば、その金属フィラーを利用して作製した導電性ペーストを、焼成基板あるいは未焼成基板に塗布又は印刷し、加熱した後に、必要に応じて加圧して硬化して焼き付けることでプリント配線板や各種電子部品の電気回路や外部電極等を形成することができる。
【0097】
また、電磁波シールド用材料として、上述した金属フィラーを利用する場合においても、特に限定された条件での使用に限られず、一般的な方法、例えばその金属フィラーを樹脂と混合して使用することができる。
【0098】
例えば、上述した金属フィラーを利用して電磁波シールド用導電性塗料とする場合においては、一般的な方法、例えばその金属フィラーを樹脂及び溶剤と混合し、さらに必要に応じて酸化防止剤、増粘剤、沈降防止剤等と混合して混練することで導電性塗料として利用することができる。このときに使用するバインダ樹脂及び溶剤としては、特に限定されるものではなく、従来用いられているものを使用することができる。例えば、塩化ビニル樹脂、酢酸ビニル樹脂、アクリル樹脂、ポリエステル樹脂、フッ素樹脂、シリコン樹脂やフェノール樹脂等を使用することができる。また、溶剤についても、従来使用されているイソプロパノール等のアルコール類、トルエン等の芳香族炭化水素類、酢酸メチル等のエステル類、メチルエチルケトン等のケトン類等を使用することができる。また、酸化防止剤についても、従来使用されている脂肪酸アミド、高級脂肪酸アミン、フェニレンジアミン誘導体、チタネート系カップリング剤等を使用することができる。
【0099】
また、上述した金属フィラーを利用して電磁波シールド用導電性シートとする場合においても、電磁波シールド用導電性シートの電磁波シールド層を形成するために使用される樹脂としては特に限定されるものではなく、従来使用されているものを使用することができる。例えば、塩化ビニル樹脂、酢酸ビニル樹脂、塩化ビニリデン樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、オレフィン樹脂、塩素化オレフィン樹脂、ポリビニルアルコール系樹脂、アルキッド樹脂、フェノール樹脂等の各種重合体及び共重合体からなる熱可塑性樹脂、熱硬化性樹脂、放射線硬化型樹脂等を適宜使用することができる。
【0100】
電磁波シールド材の製造方法として、特に限定されないが、例えば、金属フィラーと樹脂とを溶媒に分散又は溶解した塗料を、基材上に塗布又は印刷することによって電磁波シールド層を形成し、表面が固化する程度に乾燥することによって製造することができる。また、導電性シートの導電性接着剤層において、本実施の形態に係る樹枝状銀コート銅粉1を含有する金属フィラーを利用することもできる。
【実施例】
【0101】
以下、本発明の実施例を比較例と共に示してさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
【0102】
<評価方法>
下記実施例、比較例において、以下の方法により、形状の観察、平均粒子径の測定、結晶子径の測定、導電性ペーストの比抵抗測定、電磁波シールド特性評価を行った。
【0103】
(形状の観察)
走査型電子顕微鏡(SEM)(日本電子株式会社製,JSM−7100F型)により、倍率1,000倍の視野で任意に20視野を観察し、その視野内に含まれる銅粉の外観を観察した。
【0104】
(平均粒子径の測定)
平均粒子径(D50)は、レーザー回折・散乱法粒度分布測定器(日機装株式会社製,HRA9320 X−100)を用いて測定した。
【0105】
(結晶子径の測定)
X線回折測定装置(PAN analytical社製,X‘Pert PRO)により得られた回折パターンから、一般にScherrerの式として知られる公知の方法を用いて算出した。
【0106】
(アスペクト比の測定)
得られた銅粉をエポキシ樹脂に埋め込んで測定試料を作製し、その試料に対して切断・研磨を行い、SEMで観察することによって銅粉の断面を観察した。先ず、銅粉を20個観察して、その銅粉の平均厚さ(断面平均厚さ)を求めた。次に、その断面平均厚さの値とレーザー回折・散乱法粒度分布測定器で求めた平均粒子径(D50)との比から、アスペクト比(断面平均厚さ/D50)を求めた。
【0107】
(比抵抗値測定)
被膜の比抵抗値は、低抵抗率計(三菱化学株式会社製,Loresta−GP MCP−T600)を用いて四端子法によりシート抵抗値を測定し、表面粗さ形状測定器(東京精密株式会社製、SURFCO M130A)により被膜の膜厚を測定して、シート抵抗値を膜厚で除することによって求めた。
【0108】
(電磁波シールド特性)
電磁波シールド特性の評価は、各実施例及び比較例にて得られた試料について、周波数1GHzの電磁波を用いて、その減衰率を測定して評価した。具体的には、樹枝状銀コート銅粉を使用していない比較例3の場合のレベルを『△』として、その比較例3のレベルよりも悪い場合を『×』とし、その比較例3のレベルよりも良好な場合を『○』とし、さらに優れている場合を『◎』として評価した。
【0109】
また、電磁波シールドの可撓性についても評価するために、作製した電磁波シールドを折り曲げて電磁波シールド特性が変化するか否かを確認した。
【0110】
[実施例1]
<樹枝状銅粉の製造>
容量が100Lの電解槽に、電極面積が200mm×200mmのチタン製の電極板を陰極とし、電極面積が200mm×200mmの銅製の電極板を陽極として用い、その電解槽中に電解液を装入し、これに直流電流を通電して銅粉を陰極板上に析出させた。
【0111】
このとき、電解液としては、銅イオン濃度が10g/L、硫酸濃度が125g/Lの組成のものを用いた。また、この電解液に、添加剤としてベーシックレッド2(サフラニン,関東化学株式会社製)を電解液中の濃度として80mg/Lとなるように添加し、さらに塩酸溶液(和光純薬工業株式会社製)を電解液中の塩化物イオン(塩素イオン)濃度として30mg/Lとなるように添加した。
【0112】
そして、上述のように濃度調整した電解液を、定量ポンプを用いて15L/minの流量で循環しながら、温度を25℃に維持した条件で、陰極の電流密度が25A/dm
2になるように通電して陰極板上に銅粉を析出させた。
【0113】
陰極板上に析出した電解銅粉を、スクレーパーを用いて機械的に電解槽の槽底に掻き落として回収し、回収した銅粉を純水で洗浄した後、減圧乾燥器に入れて乾燥した。
【0114】
こうして得られた銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で観察した結果、析出した銅粉は、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する、2次元又は3次元の樹枝状形状を呈した銅粉であった。
【0115】
<還元法による樹枝状銀コート銅粉の製造>
次に、上述した方法で作製した樹枝状銅粉を用いて銀コート銅粉を作製した。
【0116】
すなわち、作製した樹枝状銅粉100gを3%酒石酸水溶液中で約1時間攪拌した後、ろ過、水洗して2リットルのイオン交換水中に分散させた。ここに、酒石酸2g、ぶどう糖2g、エタノール20mlを加え、さらに28%アンモニア水20mlを加えて攪拌し、その後、硝酸銀23gをイオン交換水1.5リットルに溶かした水溶液と、ぶどう糖10g、酒石酸10g、エタノール100mlをイオン交換水300mlに溶かした水溶液と、28%アンモニア水100mlをそれぞれ60分間にわたり徐々に添加した。なお、このときの浴温は25℃であった。
【0117】
各水溶液の添加が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面に銀が被覆された樹枝状銀コート銅粉が得られた。その樹枝状銀コート銅粉を回収して銀被覆量を測定したところ、銀被覆した銀コート銅粉全体の質量100%に対して10.3質量%であった。また、得られた樹枝状銀コート銅粉をSEMにより倍率5,000倍の視野で観察した結果、銀被覆する前の樹枝状銅粉の表面に均一に銀が被覆された、2次元又は3次元の樹枝状の形状の樹枝状銀コート銅粉であって、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状銀コート銅粉であった。
【0118】
また、その樹枝状銀コート銅粉の主幹及び枝を構成する銅粒子は、断面厚さが平均で0.42μmの平板状の形状であり、この銅粒子により樹枝状の形状に構成されていた。また、その樹枝状銀コート銅粉の平均粒子径(D50)は25.1μmであった。そして、樹枝状銀コート銅粉を構成する銅粒子の断面平均厚さと樹枝状銀コート銅粉の平均粒子径から算出されるアスペクト比は0.017であった。また、樹枝状銀コート銅粉の結晶子径は1752Åであった。また、得られた銅粉の嵩密度は0.53g/cm
3であった。また、BET比表面積を比表面積・細孔分布測定装置(カンタクローム社製,QUADRASORB SI)で測定した結果、0.8m
2/gであった。
【0119】
<導電性ペースト化>
次に、上述した方法で作製した樹枝状銀コート銅粉をペースト化して導電性ペーストを作製した。
【0120】
すなわち、作製した樹枝状銀コート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL−2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gを混と合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK−1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間かけて硬化させた。
【0121】
硬化により得られた被膜の比抵抗値を測定した結果、それぞれ、3.2×10
−5Ω・cm(硬化温度150℃)、4.1×10
−6Ω・cm(硬化温度200℃)であり、優れた導電性を示すことが分かった。
【0122】
[実施例2]
<樹枝状銅粉の製造>
電解液として、銅イオン濃度が10g/L、硫酸濃度が125g/Lの組成のものを用い、その電解液に、添加剤としてベーシックレッド2を電解液中の濃度として150mg/Lとなるように添加し、さらに塩酸溶液を電解液中の塩素イオン濃度として100mg/Lとなるように添加したこと以外は、実施例1と同じ条件で銅粉(樹枝状銅粉)を陰極板上に析出させた。
【0123】
<置換法による樹枝状銀コート銅粉の作製>
得られた樹枝状銅粉100gを用いて、置換型無電解めっき液によりその銅粉表面に銀被覆を行った。
【0124】
置換型無電解めっき液としては、硝酸銀20g、クエン酸20g、エチレンジアミン10gをイオン交換水1リットルに溶かした組成の溶液とし、その溶液中に樹枝状銅粉100gを投入し、60分間攪拌して反応させた。このときの浴温は25℃であった。
【0125】
反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面に銀が被覆された樹枝状銀コート銅粉が得られた。その樹枝状銀コート銅粉を回収して銀被覆量を測定したところ、銀被覆した銀コート銅粉全体の質量100%に対して10.6質量%であった。また、得られた樹枝状銀コート銅粉をSEMにより倍率5,000倍の視野で観察した結果、銀被覆する前の樹枝状銅粉の表面に均一に銀が被覆された状態の樹枝状銀コート銅粉ができており、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する2次元又は3次元の樹枝状形状を呈した銀コート銅粉であった。
【0126】
また、その樹枝状銀コート銅粉の主幹及び枝を構成する銅粒子は、その断面厚さが平均0.32μmの平板状の形状であった。また、この樹枝状銀コート銅粉の平均粒子径(D50)は9.6μmであった。そして、その銅粒子の断面平均厚さと樹枝状銅粉の平均粒子径から算出されるアスペクト比は0.033であった。また、樹枝状銀コート銅粉の結晶子径は1001Åであった。また、得られた銅粉の嵩密度は1.82g/cm
3であった。また、この樹枝状銀コート銅粉のBET比表面積を比表面積・細孔分布測定装置(カンタクローム社製,QUADRASORB SI)で測定した結果、1.9m
2/gであった。
【0127】
<導電ペースト化>
次に、上述した方法で作製した樹枝状銀コート銅粉をペースト化して導電性ペーストを作製した。
【0128】
すなわち、作製した樹枝状銀コート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL−2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK−1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間かけて硬化させた。
【0129】
硬化により得られた被膜の比抵抗値を測定した結果、それぞれ、3.5×10
−5Ω・cm(硬化温度150℃)、4.6×10
−6Ω・cm(硬化温度200℃)であり、優れた導電性を示すことが分かった。
【0130】
[実施例3]
実施例1にて作製した樹枝状銀コート銅粉に球状銀コート銅粉を混合してペースト化した。なお、樹枝状銀コート銅粉を作製するための樹枝状銅粉の作製、及び、その樹枝状銅粉に銀を被覆して樹枝状銀コート銅粉を作製するまでの条件は、実施例1と同様とし、銀被覆量が銀被覆した銀コート銅粉全体の質量100%に対して10.3質量%の樹枝状銀コート銅粉を使用した。
【0131】
一方、平均粒子径(D50)が30.5μmの電解銅粉(ネクセルジャパン株式会社製,電解銅粉Cu−300)を、高圧ジェット気流旋回渦方式ジェットミル(株式会社徳寿工作所製,NJ式ナノグラインディングミル(NJ−30))を用いて、空気流量200リットル/分、粉砕圧力10kg/cm
2、約400g/時間で7パスの粉砕・微粉化を実施した。得られた銅粉は粒状(粒状銅粉)であり、平均粒子径(D50)は6.4μmであった。
【0132】
そして、得られた粒状銅粉に対して、アルカリ水溶液による脱脂処理と希硫酸による酸化被膜処理を行い、純水で十分洗浄した後、実施例1と同様の還元法による銀被覆処理を行った。こうして得られた球状銀コート銅粉の銀被覆量は、銀被覆した球状銀コート銅粉全体の質量100%に対して10.6質量%であった。
【0133】
上述した方法で作製した樹枝状銀コート銅粉10gと、球状銀コート銅粉30gとに対して、フェノール樹脂(群栄化学株式会社製,PL−2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK−1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間かけて硬化させた。
【0134】
硬化により得られた被膜の比抵抗値を測定した結果、それぞれ、2.7×10
−5Ω・cm(硬化温度150℃)、3.8×10
−6Ω・cm(硬化温度200℃)であり、優れた導電性を示すことが分かった。
【0135】
[実施例4]
実施例1にて作製した樹枝状銀コート銅粉を樹脂に分散して電磁波シールド材とした。なお、樹枝状銀コート銅粉を作製するための樹枝状銅粉の作製、及び、その樹枝状銅粉に銀を被覆して樹枝状銀コート銅粉を作製するまでの条件は、実施例1と同様とし、銀被覆量が銀被覆した銀コート銅粉全体の質量100%に対して10.3質量%の樹枝状銀コート銅粉を使用した。
【0136】
この樹枝状銀コート銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。
【0137】
電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表1に結果を示す。
【0138】
[実施例5]
実施例1にて作製した樹枝状銀コート銅粉に球状銀コート銅粉を混合して樹脂に分散させて電磁波シールド材とした。なお、樹枝状銀コート銅粉を作製するための樹枝状銅粉の作製、及び、その樹枝状銅粉に銀を被覆して樹枝状銀コート銅粉を作製するまでの条件は、実施例1と同様とし、銀被覆量が銀被覆した銀コート銅粉全体の質量100%に対して10.3質量%の樹枝状銀コート銅粉を使用した。
【0139】
球状銀コート銅粉については、実施例3で示したものと同様の方法で作製し、銀被覆量は銀被覆した球状銀コート銅粉全体の質量100%に対して10.6質量%の球状銀コート銅粉を使用した。
【0140】
この樹枝状銀コート銅粉15gと、球状銀コート銅粉25gとに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。
【0141】
電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表1に結果を示す。
【0142】
[比較例1]
電解液中に、添加剤としてのベーシックレッド2と、塩素イオンとを添加しない条件としたこと以外は、実施例1と同様にして銅粉を陰極板上に析出させた。得られた銅粉を実施例1と同様にしてその銅表面に銀を被覆し、銀コート銅粉を得た。その銀コート銅粉の銀被覆量は、銀被覆した銀コート銅粉全体の質量100%に対して10.8質量%であった。
【0143】
図5に、得られた銀コート銅粉の形状を、SEMにより倍率1,000倍の視野で観察した結果を示す。
図5の写真図に示すように、得られた銀コート銅粉の形状は、粒子状の銅が集合した樹枝状の形状であって、その銅粉の表面に銀が被覆された状態となっており、その銀コート銅粉の平均粒子径(D50)は22.3μmであった。
【0144】
上述した方法で作製した銀コート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL−2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK−1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、混練を繰り返す毎に粘度の上昇が発生した。このことは銅粉の一部が凝集していることが原因であると考えられ、均一分散が困難であった。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間かけて硬化させた。
【0145】
硬化により得られた被膜の比抵抗値を測定した結果、それぞれ、6.7×10
−4Ω・cm(硬化温度150℃)、3.1×10
−4Ω・cm(硬化温度200℃)であり、実施例にて得られた導電性ペーストと比較して極めて比抵抗値が高く導電性が劣るものであった。
【0146】
[比較例2]
電解液として、銅イオン濃度が10g/L、硫酸濃度が150g/Lの組成のものを用い、その電解液に、添加剤としてベーシックレッド2(関東化学工業株式会社製)を電解液中の濃度として50mg/Lとなるように添加し、さらに塩酸溶液(和光純薬工業株式会社製)を電解液中の塩化物イオン(塩素イオン)濃度として10mg/Lとなるように添加した。そして、上述したような濃度に調整した電解液を、定量ポンプを用いて15L/minの流量で循環しながら、温度を45℃に維持し、陰極の電流密度が20A/dm
2になるように通電して陰極板上に銅粉を析出させた。
【0147】
図6に、得られた銀コート銅粉の形状を、SEMにより倍率5,000倍の視野で観察した結果を示す。
図6の写真図に示すように、得られた電解銅粉の形状は、樹枝状形状を呈した銅粒子が集合してなる樹枝状銅粉であった。しかしながら、その樹枝状の主幹及び枝は丸みを帯びており、実施例にて得られた銅粉のように、1層又は複数の重なった積層構造で構成された平板状ではなかった。
【0148】
そして、得られた銅粉を実施例1と同様にしてその銅表面に銀を被覆し、銀コート銅粉を得た。その銀コート銅粉の銀被覆量は、銀被覆した銀コート銅粉全体の質量100%に対して10.5質量%であった。
【0149】
得られた電解銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で観察した結果、析出した銅粉は、得られた銀コート銅粉の形状は、粒子状の銅が集合した樹枝状の形状であって、その銅粉の表面に銀が被覆された状態となっていた。
【0150】
上述した方法で作製した樹枝状銀コート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL−2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK−1)を用いて、1500rpm、3分間の混錬を4回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電性ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間かけて硬化させた。
【0151】
硬化により得られた被膜の比抵抗値を測定した結果、それぞれ、5.3×10
−4Ω・cm(硬化温度150℃)、3.6×10
−4Ω・cm(硬化温度200℃)であった。
【0152】
[比較例3]
従来の平板状銅粉に銀を被覆させた銀コート銅粉による導電性ペーストの特性を評価し、実施例における樹枝状銀コート銅粉を用いて作製した導電性ペーストの特性と比較した。
【0153】
平板状銅粉は、粒状の電解銅粉を機械的に扁平化させて作製した。具体的には、平均粒子径7.9μmの粒状アトマイズ銅粉(メイキンメタルパウダーズ社製)500gにステアリン酸5gを添加し、ボールミルで扁平化処理を行った。ボールミルには3mmのジルコニアビーズを5kg投入し、500rpmの回転速度で90分間回転させることによって扁平化処理を行った。
【0154】
得られた平板状銅粉に対して、実施例1と同じ方法で銀を被覆した。作製した平板状銀コート銅粉の銀被覆量は、銀被覆した平板状銀コート銅粉全体の質量100%に対して10.6質量%であった。
【0155】
このようにして作製した平板状の銀コート銅粉について、レーザー回折・散乱法粒度分布測定器で測定した結果、平均粒子径(D50)が21.8μmであり、SEMで観察した結果、厚さは0.4μmであった。
【0156】
次に、得られた平板状の銀コート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL−2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK−1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間かけて硬化させた。
【0157】
硬化により得られた被膜の比抵抗値を測定した結果、それぞれ、8.3×10
−5Ω・cm(硬化温度150℃)、1.3×10
−5Ω・cm(硬化温度200℃)であり、実施例1、2にて得られた銅ペーストと比較して比抵抗値が高く導電性が劣るものであった。
【0158】
[比較例4]
比較例3にて用いたものと同様に粒状の電解銅粉を機械的に扁平化させて作製した平板状銅粉に銀を被覆させた銀コート銅粉を作製し、その銀コート銅粉による電磁波シールドの特性を評価し、実施例における樹枝状銀コート銅粉を用いて作製した電磁波シールドの特性と比較して、樹枝状形状効果を調べた。なお、使用した平板状の銀コート銅粉は、実施例1と同じ方法で銀を被覆した。作製した平板状銀コート銅粉の銀被覆量は、銀被覆した平板状銀コート銅粉全体の質量100%に対して11.2質量%であった。
【0159】
この平板状の銀コート銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。
【0160】
電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表1に結果を示す。
【0161】
【表1】
銀を被覆した樹枝状銅粉同士が接触する際における接点を多くして優れた導電性を確保しつつ、凝集を防止して、導電性ペーストや電磁波シールド等の用途として好適に利用することができる樹枝状銀コート銅粉を提供する。
本発明に係る樹枝状銀コート銅粉1は、直線的に成長した主幹2とその主幹2から分かれた複数の枝3とを有する樹枝状の形状をなし、主幹2及び枝3は、断面平均厚さが0.2μm〜1.0μmの平板状で表面に銀が被覆されている銅粒子により構成されており、レーザー回折散乱式粒度分布測定法により測定した平均粒子径(D50)が5.0μm〜30μmである。