特許第5831129号(P5831129)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱レイヨン株式会社の特許一覧
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5831129
(24)【登録日】2015年11月6日
(45)【発行日】2015年12月9日
(54)【発明の名称】炭素繊維前駆体アクリル繊維束
(51)【国際特許分類】
   D06M 13/425 20060101AFI20151119BHJP
   D06M 13/224 20060101ALI20151119BHJP
   D06M 101/28 20060101ALN20151119BHJP
【FI】
   D06M13/425
   D06M13/224
   D06M101:28
【請求項の数】8
【全頁数】27
(21)【出願番号】特願2011-233008(P2011-233008)
(22)【出願日】2011年10月24日
(65)【公開番号】特開2013-91864(P2013-91864A)
(43)【公開日】2013年5月16日
【審査請求日】2014年10月10日
(73)【特許権者】
【識別番号】000006035
【氏名又は名称】三菱レイヨン株式会社
(74)【代理人】
【識別番号】100064908
【弁理士】
【氏名又は名称】志賀 正武
(74)【代理人】
【識別番号】100108578
【弁理士】
【氏名又は名称】高橋 詔男
(74)【代理人】
【識別番号】100094400
【弁理士】
【氏名又は名称】鈴木 三義
(74)【代理人】
【識別番号】100107836
【弁理士】
【氏名又は名称】西 和哉
(72)【発明者】
【氏名】麻生 宏実
【審査官】 平井 裕彰
(56)【参考文献】
【文献】 特開2007−332518(JP,A)
【文献】 特開2011−208290(JP,A)
【文献】 特表2005−519176(JP,A)
【文献】 特開2004−300630(JP,A)
【文献】 特開2001−003266(JP,A)
【文献】 特開2002−226542(JP,A)
【文献】 米国特許出願公開第2003/0065213(US,A1)
【文献】 英国特許出願公開第2272437(GB,A)
(58)【調査した分野】(Int.Cl.,DB名)
D06M13/00〜15/715
D01F 1/00〜 6/96
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記式(1)で示される化合物(A)と、構造中に1〜2つの芳香環を有するエステル化合物(B)とが付着した、炭素繊維前駆体アクリル繊維束。
【化1】
(式(1)中、RおよびRはそれぞれ独立して炭素数8〜22の炭化水素基であり、RおよびRはそれぞれ独立して炭素数2〜4の炭化水素基であり、nおよびmはそれぞれ独立して0〜5である。)
【請求項2】
乾燥繊維質量に対して、前記化合物(A)が0.1〜0.5質量%付着し、前記エステル化合物(B)が0.01〜1.0質量%付着した、請求項1に記載の炭素繊維前駆体アクリル繊維束。
【請求項3】
前記エステル化合物(B)が、下記式(2)で示されるトリメリット酸エステルおよび/または下記式(3)で示されるポリオキシエチレンビスフェノールAジアルキレートである、請求項1または2に記載の炭素繊維前駆体アクリル繊維束。
【化2】
(式(2)中、R〜Rはそれぞれ独立して炭素数8〜16の炭化水素基である。)
【化3】
(式(3)中、RおよびRはそれぞれ独立して炭素数7〜21の炭化水素基であり、oおよびpはそれぞれ独立して1〜5である。)
【請求項4】
非イオン系界面活性剤がさらに付着した、請求項1〜3のいずれか一項に記載の炭素繊維前駆体アクリル繊維束。
【請求項5】
前記非イオン系界面活性剤が乾燥繊維質量に対して0.1〜0.3質量%付着した、請求項4に記載の炭素繊維前駆体アクリル繊維束。
【請求項6】
前記非イオン系界面活性剤の乾燥繊維質量に対する付着量が、前記化合物(A)と前記エステル化合物(B)との乾燥繊維質量に対する付着量の合計100質量部に対して、20〜150質量部である、請求項4または5に記載の炭素繊維前駆体アクリル繊維束。
【請求項7】
前記非イオン系界面活性剤が、下記式(4)で示されるブロック共重合型ポリエーテルおよび/または下記式(5)で示されるポリオキシエチレンアルキルエーテルである、請求項4〜6のいずれか一項に記載の炭素繊維前駆体アクリル繊維束。
【化4】
(式(4)中、R10およびR11はそれぞれ独立して、水素原子、炭素数1〜24の炭化水素基であり、x、y、zはそれぞれ独立して、1〜500である。)
【化5】
(式(5)中、R12は炭素数10〜20の炭化水素基であり、qは3〜20である。)
【請求項8】
酸化防止剤が、乾燥繊維質量に対して0.01〜0.1質量%さらに付着した、請求項1〜7のいずれか一項に記載の炭素繊維前駆体アクリル繊維束。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、炭素繊維前駆体アクリル繊維束に関する。
【背景技術】
【0002】
従来、炭素繊維束の製造方法として、アクリル繊維などからなる炭素繊維前駆体アクリル繊維束(以下、「前駆体繊維束」とも表記する。)を200〜400℃の酸化性雰囲気下で加熱処理することにより耐炎化繊維束に転換し(耐炎化工程)、引き続いて1000℃以上の不活性雰囲気下で炭素化して(炭素化工程)、炭素繊維束を得る方法が知られている。この方法で得られた炭素繊維束は、優れた機械的物性により、特に複合材料用の強化繊維として工業的に広く利用されている。
【0003】
しかし、炭素繊維束の製造方法において、前駆体繊維束を耐炎化繊維束に転換する耐炎化工程で単繊維間に融着が発生し、耐炎化工程およびそれに続く炭素化工程(以下、耐炎化工程と炭素化工程を総合して「焼成工程」とも表記する。)において、毛羽や束切れといった工程障害が発生する場合があった。この単繊維間の融着を防止する方法として、前駆体繊維束の表面に油剤組成物を付与する方法(油剤処理)が知られており、多くの油剤組成物が検討されてきた。
【0004】
油剤組成物としては、これまで、単繊維間の融着を防止する効果を有するシリコーンを主成分とするシリコーン系油剤が一般的に用いられていた。
しかし、シリコーン系油剤は加熱により架橋反応が進行して高粘度化し、その粘着物が前駆体繊維束の製造工程や、耐炎化工程で使用される繊維搬送ローラーやガイドなどの表面に堆積しやすかった。そのため、前駆体繊維束や耐炎化繊維束が、繊維搬送ローラーやガイドに巻き付いたり引っかかったりして断糸するなどの操業性低下を引き起こす原因になることがあった。
【0005】
また、シリコーン系油剤が付着した前駆体繊維束は、焼成工程において酸化ケイ素、炭化ケイ素、窒化ケイ素などのケイ素化合物を生成しやすく、工業的な生産性や製品の品質を低下させるという問題を有していた。
近年、炭素繊維の需要拡大により、生産設備の大型化、生産効率の向上の要望が高まる中、上記の焼成工程におけるケイ素化合物の生成による工業的な生産性の低下は解決しなければならない課題の1つである。
【0006】
そこで、油剤処理された前駆体繊維束のケイ素含有量を低減することを目的として、シリコーンの含有率を低減した、またはシリコーンを含有しない油剤組成物が提案されている。例えば、多環芳香族化合物を50〜100質量%含有する乳化剤を40〜100質量%含有させ、シリコーン含有量を低減させた油剤組成物が提案されている(特許文献1参照)。
また、空気中250℃で2時間加熱した後の残存率が80質量%以上である耐熱樹脂とシリコーンとを組み合わせた油剤組成物が提案されている(特許文献2参照)。
さらに、ビスフェノールA系の芳香族化合物とアミノ変性シリコーンとを組み合わせた油剤組成物(特許文献3、4参照)や、ビスフェノールAのアルキレンオキサイド付加物の脂肪酸エステルを主成分とする油剤組成物(特許文献5参照)が提案されている。
また、分子内に3個以上のエステル基を有するエステル化合物を用いることによりシリコーン含有量を低減させた油剤組成物が提案されている(特許文献6参照)。さらに、分子内に3個以上のエステル基を有するエステル化合物と水溶性アマイド系化合物とを併用することで、シリコーン含有量を低減しつつ、繊維間の融着防止と安定した操業性とを両立させることができることが報告されている(特許文献7参照)。
また、反応性官能基を有する化合物を10質量%以上含み、シリコーン化合物を含有しない、またはシリコーン化合物を含有する場合はケイ素質量に換算して2質量%以下の範囲とする油剤組成物が提案されている(特許文献8参照)。
さらに、アミノアルキレン基を側鎖に有するアクリル系重合体を0.2〜20重量%、特定のエステル化合物を60〜90重量%、および界面活性剤10〜40重量%からなる油剤組成物が提案されている(特許文献9参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2005−264384号公報
【特許文献2】特開2000−199183号公報
【特許文献3】特開2003−55881号公報
【特許文献4】特開2004−149937号公報
【特許文献5】国際公開第97/009474号
【特許文献6】国際公開第07/066517号
【特許文献7】特開2010−24582号公報
【特許文献8】特開2005−264361号公報
【特許文献9】特開2010−53467号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、特許文献1に記載の油剤組成物では、乳化剤の含有量が多いため乳化物の安定性は高くなるものの、この油剤組成物を付着させた前駆体繊維束の集束性が低下しやすく、高い生産効率で製造するには適していなかった。さらに、機械的物性に優れた炭素繊維束が得られにくいという問題があった。
また、特許文献2に記載の油剤組成物は、耐熱樹脂としてビスフェノールA系の芳香族エステルを用いているので耐熱性は極めて高いものの、焼成工程においてもビスフェノールA系の芳香族エステルの残存物が単繊維間に残り、それらが単繊維間の接着点となり、焼成工程での操業性低下の原因となる場合があった。さらに、機械的物性に優れた炭素繊維束が安定して得られにくいという問題があった。
【0009】
また、特許文献3〜5に記載の油剤組成物においても、機械的物性に優れた炭素繊維束を安定して製造できるものではなかった。
さらに、特許文献6に記載の油剤組成物の場合、分子内に3個以上のエステル基を有するエステル化合物だけでは耐炎化工程における集束性を維持することが困難であった。そのため、シリコーン化合物が必須成分となっており、焼成工程において問題となるケイ素化合物の発生は避けられない。また、水溶性アマイド系化合物を含有した特許文献7に記載の油剤組成物においても、実質的にシリコーンが存在しない系では安定した操業と製品の品質を維持することができなかった。
【0010】
また、特許文献8に記載の油剤組成物は、100〜145℃における油剤組成物の粘度を上げることで油剤付着性を高めることができるが、粘度が高いがために油剤処理後の前駆体繊維束が紡糸工程において繊維搬送ローラーに付着し、繊維束が巻き付くなどの工程障害を引き起こす問題があった。
さらに、特許文献9に記載の油剤組成物は、耐炎化工程における単繊維の基質同士が接着する融着は防げるものの、油剤成分が単繊維間に接着剤として存在するため膠着は避けられない。また、この膠着により、耐炎化工程での繊維束内部への酸素の拡散が阻害されることにより耐炎化処理が均一に行われず、続く炭素化工程で毛羽や束切れといった障害となる問題があった。
【0011】
このように、シリコーン含有量を低減した油剤組成物、あるいは非シリコーン成分のみの油剤組成物では、シリコーン系油剤に比べて、融着防止性や油剤処理された前駆体繊維束の集束性が低下したり、得られる炭素繊維束の機械的物性が劣ったりする傾向にあった。そのため、高品質な炭素繊維束を安定して得ることが困難であった。
一方、シリコーン系油剤では、上述したように、高粘度化による操業性の低下やケイ素化合物の生成による工業的な生産性の低下が問題であった。
つまり、シリコーン系油剤による操業性や工業的な生産性の低下の問題と、シリコーン含有量を低減した、あるいは非シリコーン成分のみの油剤組成物による融着防止性、前駆体繊維束の集束性、炭素繊維束の機械的物性の低下の問題は表裏一体の関係にあり、従来技術ではこの両者の課題を全て解決することはできない。
【0012】
本発明の目的は、集束性および操業性に優れ、炭素繊維束製造工程における単繊維間の融着を効果的に防止すると共に、機械的物性に優れた炭素繊維束を生産性よく得ることができる炭素繊維前駆体アクリル繊維束を提供することにある。
【課題を解決するための手段】
【0013】
本発明者らは鋭意検討した結果、非シリコーン成分である、特定の構造を有するエステル化合物と、構造中に1〜2つの芳香環を有するエステル化合物とを油剤として用いることにより、上述したシリコーン系油剤の問題と、非シリコーン成分を用いた油剤組成物の問題を共に解決できることを見出し、本発明を完成するに至った。
【0014】
すなわち、本発明の炭素繊維前駆体アクリル繊維束は、下記式(1)で示される化合物(A)と、構造中に1〜2つの芳香環を有するエステル化合物(B)とが付着したことを特徴とする。
【0015】
【化1】
【0016】
式(1)中、RおよびRはそれぞれ独立して炭素数8〜22の炭化水素基であり、RおよびRはそれぞれ独立して炭素数2〜4の炭化水素基であり、nおよびmはそれぞれ独立して0〜5である。
【0017】
また、乾燥繊維質量に対して、前記化合物(A)が0.1〜0.5質量%付着し、前記エステル化合物(B)が0.01〜1.0質量%付着したことが好ましい。
さらに、前記エステル化合物(B)が、下記式(2)で示されるトリメリット酸エステルおよび/または下記式(3)で示されるポリオキシエチレンビスフェノールAジアルキレートであることが好ましい。
【0018】
【化2】
【0019】
式(2)中、R〜Rはそれぞれ独立して炭素数8〜16の炭化水素基である。
【化3】
【0020】
式(3)中、RおよびRはそれぞれ独立して炭素数7〜21の炭化水素基であり、oおよびpはそれぞれ独立して1〜5である。
【0021】
また、非イオン系界面活性剤がさらに付着したことが好ましい。
さらに、前記非イオン系界面活性剤が乾燥繊維質量に対して0.1〜0.3質量%付着したことが好ましい。
また、前記非イオン系界面活性剤の乾燥繊維質量に対する付着量が、前記化合物(A)と前記エステル化合物(B)との乾燥繊維質量に対する付着量の合計100質量部に対して、20〜150質量部であることが好ましい。
さらに、前記非イオン系界面活性剤が、下記式(4)で示されるブロック共重合型ポリエーテルおよび/または下記式(5)で示されるポリオキシエチレンアルキルエーテルであることが好ましい。
【0022】
【化4】
【0023】
式(4)中、R10およびR11はそれぞれ独立して、水素原子、炭素数1〜24の炭化水素基であり、x、y、zはそれぞれ独立して、1〜500である。
【0024】
【化5】
【0025】
式(5)中、R12は炭素数10〜20の炭化水素基であり、qは3〜20である。
【0026】
また、酸化防止剤が、乾燥繊維質量に対して0.01〜0.1質量%さらに付着したことが好ましい。
【発明の効果】
【0027】
本発明によれば、集束性および操業性に優れ、炭素繊維束製造工程における単繊維間の融着を効果的に防止すると共に、機械的物性に優れた炭素繊維束を生産性よく得ることができる炭素繊維前駆体アクリル繊維束を提供できる。
【発明を実施するための形態】
【0028】
以下、本発明を詳細に説明する。
本発明の炭素繊維前駆体アクリル繊維束は、油剤処理によってアクリル繊維からなる炭素繊維前駆体繊維束(以下、「前駆体繊維束」とも表記する。)に特定のエステル化合物が付着した繊維束である。
【0029】
<前駆体繊維束>
本発明に用いる、油剤処理前の前駆体繊維束としては、公知技術により紡糸されたアクリル繊維束を用いることができる。具体的には、アクリロニトリル系重合体を紡糸して得られるアクリル繊維束が挙げられる。
アクリロニトリル系重合体は、アクリロニトリルを主な単量体とし、これを重合して得られる重合体である。アクリロニトリル系重合体は、アクリロニトリルのみから得られるホモポリマーであってもよく、主成分であるアクリロニトリルに加えて他の単量体を併用したアクリロニトリル系共重合体であってもよい。
【0030】
アクリロニトリル系共重合体におけるアクリロニトリル単位の含有量は、96.0〜98.5質量%であることが焼成工程での繊維の熱融着防止、共重合体の耐熱性、紡糸原液の安定性、および炭素繊維にした際の品質の観点でより好ましい。アクリロニトリル単位が96質量%以上の場合は、炭素繊維に転換する際の焼成工程で繊維の熱融着を招くことなく、炭素繊維の優れた品質および性能を維持できるので好ましい。また、共重合体自体の耐熱性が低くなることもなく、前駆体繊維を紡糸する際、繊維の乾燥あるいは加熱ローラーや加圧水蒸気による延伸のような工程において、単繊維間の接着を回避できる。一方、アクリロニトリル単位が98.5質量%以下の場合には、溶剤への溶解性が低下することもなく、紡糸原液の安定性を維持できると共に共重合体の析出凝固性が高くならず、前駆体繊維の安定した製造が可能となるので好ましい。
【0031】
共重合体を用いる場合のアクリロニトリル以外の単量体としては、アクリロニトリルと共重合可能なビニル系単量体から適宣選択することができ、耐炎化反応を促進する作用を有するアクリル酸、メタクリル酸、イタコン酸、または、これらのアルカリ金属塩もしくはアンモニウム塩、アクリルアミド等の単量体から選択すると、耐炎化を促進できるので好ましい。
アクリロニトリルと共重合可能なビニル系単量体としては、アクリル酸、メタクリル酸、イタコン酸等のカルボキシル基含有ビニル系単量体がより好ましい。アクリロニトリル系共重合体におけるカルボキシル基含有ビニル系単量体単位の含有量は0.5〜2.0質量%が好ましい。
これらビニル系単量体は、1種単独で用いてもよく、2種以上を併用してもよい。
【0032】
紡糸の際には、アクリロニトリル系重合体を溶剤に溶解し、紡糸原液とする。このときの溶剤には、ジメチルアセトアミドあるいはジメチルスルホキシド、ジメチルホルムアミド等の有機溶剤、または塩化亜鉛やチオシアン酸ナトリウム等の無機化合物水溶液等、公知のものから適宜選択して使用することができる。これらの中でも、生産性向上の観点から凝固速度が早いジメチルアセトアミド、ジメチルスルホキシドおよびジメチルホルムアミドが好ましく、ジメチルアセトアミドがより好ましい。
【0033】
また、緻密な凝固糸を得るためには、紡糸原液の重合体濃度がある程度以上になるように紡糸原液を調製することが好ましい。具体的には、紡糸原液中の重合体濃度が17質量%以上になるように調製することが好ましく、より好ましくは19質量%以上である。
なお、紡糸原液は適正な粘度・流動性を必要とするため、重合体濃度は25質量%を超えない範囲が好ましい。
【0034】
紡糸方法は、上述した紡糸原液を直接凝固浴中に紡出する湿式紡糸法、空気中で凝固する乾式紡糸法、および一旦空気中に紡出した後に浴中凝固させる乾湿式紡糸法など公知の紡糸方法を適宜採用できるが、より高い性能を有する炭素繊維束を得るには湿式紡糸法または乾湿式紡糸法が好ましい。
【0035】
湿式紡糸法または乾湿式紡糸法による紡糸賦形は、紡糸原液を円形断面の孔を有するノズルより凝固浴中に紡出することで行うことができる。凝固浴としては、紡糸原液に用いられる溶剤を含む水溶液を用いるのが溶剤回収の容易さの観点から好ましい。
凝固浴として溶剤を含む水溶液を用いる場合、水溶液中の溶剤濃度は、ボイドがなく緻密な構造を形成させ高性能な炭素繊維束を得られ、かつ延伸性が確保でき生産性に優れる等の理由から、50〜85質量%、凝固浴の温度は10〜60℃が好ましい。
【0036】
重合体あるいは共重合体を溶剤に溶解し、紡糸原液として凝固浴中に吐出して繊維化して得た凝固糸には、凝固浴中または延伸浴中で延伸する浴中延伸を行うことができる。あるいは、一部空中延伸した後に、浴中延伸してもよく、延伸の前後あるいは延伸と同時に水洗を行って水膨潤状態の前駆体繊維束を得ることができる。
浴中延伸は、通常50〜98℃の水浴中で1回あるいは2回以上の多段に分割するなどして行い、空中延伸と浴中延伸の合計倍率が2〜10倍になるように凝固糸を延伸するのが、得られる炭素繊維束の性能の点から好ましい。
【0037】
<油剤処理>
油剤処理の工程で用いられる油剤組成物は、後述する化合物(A)と、構造中に1〜2つの芳香環を有するエステル化合物(B)とを必須成分として含む。この油剤組成物を用いて前駆体繊維束を油剤処理することで、化合物(A)およびエステル化合物(B)が付着した炭素繊維前駆体アクリル繊維束が得られる。
【0038】
化合物(A)は、下記式(1)で示されるエステル化合物であり、耐炎化工程において十分な耐熱性を有しているうえに、芳香環を有していないことから熱分解性にも優れ、炭素化工程において低分子化して炉内流通ガスと共に系外に排出されやすく、工程障害や品質低下の原因になりにくい。加えて、N元素部位やO元素部位での水素結合による前駆体繊維束への定着性、またアルキル鎖により繊維と搬送ローラーやバーなどとの間の円滑性が保て、繊維束への損傷を低減することが可能となる。
さらに、化合物(A)は、後述する非イオン系界面活性剤を用い、乳化法によって水分中に分散しやすい。そのため、前駆体繊維束に化合物(A)およびエステル化合物(B)等を含む油剤組成物を均一に付着させることができ、良好な機械的物性を有する炭素繊維束を得るための炭素繊維前駆体アクリル繊維束の製造に効果的である。
【0039】
【化6】
【0040】
式(1)中、RおよびRはそれぞれ独立して炭素数8〜22の炭化水素基である。
炭化水素基の炭素数が8以上であれば、化合物(A)の熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が22以下であれば、化合物(A)の粘度が高くなりすぎず、固形化しにくいので、化合物(A)を含む油剤組成物のエマルションを容易に調製でき、油剤組成物が前駆体繊維束に均一に付着する。炭化水素基の炭素数は15〜22が好ましい。
【0041】
およびRとしては、炭素数8〜22のアルキル基、アルケニル基、アルキニル基が挙げられ、直鎖状でもよいし、分岐鎖状でもよい。
アルキル基としては、例えばn−およびiso−オクチル基、2−エチルヘキシル基、n−およびiso−ノニル基、n−およびiso−デシル基、n−およびiso−ウンデシル基、n−およびiso−ドデシル基、n−およびiso−トリデシル基、n−およびiso−テトラデシル基、n−およびiso−ヘキサデシル基、n−およびiso−ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等が挙げられる。
アルケニル基としては、例えばオクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基等が挙げられる。
アルキニル基としては、例えば1−および2−オクチニル基、1−および2−ノニニル基、1−および2−デシニル基、1−および2−ウンデシニル基、1−および2−ドデシニル基、1−および2−トリデシニル基、1−および2−テトラデシニル基、1−および2−ヘキサデシニル基、1−および2−ステアリニル基、1−および2−ノナデシニル基、1−および2−エイコシニル基等が挙げられる。
およびRは、同じ構造であってもよいし、個々に独立した構造であってもよい。
【0042】
式(1)中、RおよびRはそれぞれ独立して炭素数2〜4の炭化水素基である。
およびRとしては、炭素数2〜4のアルキレン基が挙げられる。具体的にはエチレン基、プロピレン基、ブチレン基であり、好ましくはエチレン基、プロピレン基である。 RおよびRは、同じ構造であってもよいし、個々に独立した構造であってもよい。
【0043】
nおよびmはアルキレンオキサイドの付加量を示すものであり、それぞれ独立して0〜5である。ポリアルキレンオキサイド構造は必須の構造ではなく、すなわちnおよびmは0であっても差し支えない。親水性、繊維との親和性を向上させる目的で導入する場合は、nおよびmは各々5モルまで入れることができる。nおよびmは、同じ数でもよいし、異なる数でもよい。
【0044】
化合物(A)は、3−イソシアナトメチル−3,5,5−トリメチルシクロヘキシル=イソシアネート(以下、「イソホロンジイソシアネート」とも表記する。)と、炭素数8〜22の1価の脂肪族アルコールおよびそのポリオキシアルキレンエーテル化合物からなる群より選ばれる1種以上の化合物とを反応させて得られる化合物(イソホロンジイソシアネート・アルコール付加物)である。
【0045】
化合物(A)の原料となるアルコールとしては、1価の脂肪族アルコールから選ばれる1種以上のアルコールを用いる。
1価の脂肪族アルコールの炭素数は8〜22である。炭素数が8以上であれば、得られる化合物(A)の熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭素数が22以下であれば、化合物(A)の粘度が高くなりすぎず、固形化しにくいので、油剤成分である化合物(A)を含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。
1価の脂肪族アルコールの炭素数は15〜22が好ましい。
なお、式(1)中のRおよびRは、炭素数8〜22の1価の脂肪族アルコールに由来する。
【0046】
炭素数8〜22の1価の脂肪族アルコールとしては、例えばオクタノール、2−エチルヘキサノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、ヘンエイコサノール、ドコサノール等のアルキルアルコール;オクテニルアルコール、ノネニルアルコール、デセニルアルコール、ウンデセニルアルコール、ドデセニルアルコール、テトラデセニルアルコール、ペンタデセニルアルコール、ヘキサデセニルアルコール、ヘプタデセニルアルコール、オクタデセニルアルコール(オレイルアルコール)、ノナデセニルアルコール、イコセニルアルコール、ヘンイコセニルアルコール、ドコセニルアルコール、ガドレイルアルコール、2−エチルデセニルアルコール等のアルケニルアルコール;オクチニルアルコール、ノニニルアルコール、デシニルアルコール、ウンデシニルアルコール、ドデシニルアルコール、トリデシニルアルコール、テトラデシニルアルコール、ヘキサデシニルアルコール、ステアリニルアルコール、ノナデシニルアルコール、エイコシニルアルコール、ヘンイコシニルアルコール、ドコシニルアルコール等のアルキニルアルコールなどが挙げられる。中でも後述する油剤処理液の調製のし易さ、紡糸工程において繊維搬送ローラーへ付着した場合に搬送ローラーに繊維が巻き付くなどの工程障害が起こりにくく、かつ所望の耐熱性を有するという、ハンドリング・工程通過性・性能のバランスから、オクタデセニルアルコール(オレイルアルコール)が好ましい。
これら脂肪族アルコールは、1種単独で用いてもよく、2種以上を併用してもよい。
【0047】
化合物(A)の原料としてポリオキシアルキレンエーテルを用いる場合は、上述した炭素数8〜22の1価の脂肪族アルコールに、アルキレンオキサイドを1〜5モル付加重合した化合物を用いる。
なお、式(1)中の−RO−および−RO−は、ポリオキシアルキレンエーテルのアルキレンオキサイドに由来し、nおよびmは、アルキレンオキサイドの付加量に由来する。
【0048】
アルキレンオキサイドは油剤の親水性、前駆体繊維束に付与した時の繊維との親和性に寄与する。
アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドが挙げられ、好ましくはエチレンオキサイドである。
また、アルキレンオキサイドの付加量は、1〜5モルの間で脂肪族アルコールの炭素数とのバランスで決定されるが、脂肪族アルコールの炭素数が上記の好ましい範囲にある場合、アルキレンオキサイドの付加量は3〜5モルが好ましい。
【0049】
このようなポリオキシアルキレンエーテルとしては、オクタノールのポリオキシエチレン4モル付加物(以下、「POE(4)オクチルエーテル」のように表記する。)、POE(3)ドデシルエーテル、ドデカノールのポリオキシプロピレン3モル付加物(以下、「POP(3)ドデシルエーテル」のように表記する。)、POE(2)オクタデシルエーテル、POP(1)オクタデシルエーテル等のポリオキシアルキレンアルキルエーテル;POE(2)ドデセニルエーテル、POP(2)ドデセニルエーテル、POE(2)オクタデセニルエーテル、POP(1)オクタデセニルエーテル等のポリオキシアルキレンアルケニルエーテル;POE(2)ドデシニルエーテル、POE(2)オクタデシニルエーテル、POP(1)オクタデシニルエーテル等のポリオキシアルキニルエーテルなどが挙げられる。
【0050】
エステル化合物(B)は芳香族エステルエステルであり、耐炎化工程において十分な耐熱性を有していることから、工程中の炭素繊維前駆体アクリル繊維束の集束性が向上するとともに、操業安定性を良好に維持できる。また、化合物(A)を効果的に繊維表面に均一に付与する作用を有する。
【0051】
エステル化合物(B)としては、例えばフタル酸エステル、イソフタル酸エステル、テレフタル酸エステル、ヘミメリト酸エステル、トリメリット酸エステル、トリメシン酸エステル、プレーニト酸エステル、メロファン酸エステル、ピロメリット酸エステル、メリト酸エステル、トルイル酸エステル、キシリル酸エステル、ヘメリト酸エステル、メシチレン酸エステル、プレーニチル酸エステル、ジュリル酸エステル、クミン酸エステル、ウビト酸エステル、トルイル酸エステル、ヒドロアトロパ酸エステル、アトロパ酸エステル、ヒドロケイ皮酸エステル、ケイ皮酸エステル、o−ピロカテク酸エステル、β−レソルシル酸エステル、ゲンチジン酸エステル、プロトカテク酸エステル、バニリン酸エステル、ベラトルム酸エステル、没食子酸エステル、ヒドロカフェー酸エステル等の構造中に1つの芳香環をするエステル化合物;ジフェン酸エステル、ベンジル酸エステル、ナフトエ酸エステル、ヒドロキシナフトエ酸エステル、ポリオキシエチレンビスフェノールAカルボン酸エステル、脂肪族炭化水素ジオール安息香酸エステル等の構造中に2つの芳香環をするエステル化合物などが挙げられる。
【0052】
これらの中でも、エステル化合物(B)としては、下記式(2)で示されるトリメリット酸エステル(以下、「エステル化合物(B1)」と表記する。)、下記式(3)で示されるポリオキシエチレンビスフェノールAジアルキレート(以下、「エステル化合物(B2)」と表記する。)が好ましい。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
【0053】
【化7】
【0054】
【化8】
【0055】
式(2)中、R〜Rはそれぞれ独立して炭素数8〜16の炭化水素基である。炭化水素基の炭素数が8以上であれば、当該エステル化合物(B1)の耐熱性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が16以下であれば、当該エステル化合物(B1)を含有する油剤組成物のエマルションを容易に調製でき、油剤組成物が前駆体繊維束に均一に付着する。その結果、耐炎化工程において十分な融着防止効果が得られるとともに、炭素繊維前駆体アクリル繊維束の集束性が向上する。R〜Rは、均一な油剤組成物のエマルションを調製しやすい点で炭素数8〜12の飽和炭化水素基が好ましく、水蒸気存在下での耐熱性に優れる点では炭素数10〜14の飽和炭化水素基が好ましい。
〜Rは、同じ構造であってもよいし、個々に独立した構造であってもよい。
【0056】
炭化水素基としては、飽和鎖式炭化水素基や飽和環式炭化水素基等の飽和炭化水素基が好ましい。具体的には、オクチル基、ノニル基、デシル基、ウンデシル基、ラウリル基(ドデシル基)、トリデシル基、テトラデシル基等のアルキル基などが挙げられる。
【0057】
一方、式(3)中、RおよびRはそれぞれ独立して炭素数7〜21の炭化水素基である。炭化水素基の炭素数が7以上であれば、当該エステル化合物(B2)の耐熱性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が21以下であれば、当該エステル化合物(B2)を含有する油剤組成物のエマルションを容易に調製でき、油剤組成物が前駆体繊維束に均一に付着する。その結果、耐炎化工程において十分な融着防止効果が得られるとともに、炭素繊維前駆体アクリル繊維束の集束性が向上する。炭化水素基の炭素数は9〜15が好ましい。
およびRは、同じ構造であってもよいし、個々に独立した構造であってもよい。
【0058】
炭化水素基としては、飽和炭化水素基が好ましく、その中でも特に飽和鎖式炭化水素基が好ましい。具体的には、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ラウリル基(ドデシル基)、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル、ノナデシル基、イコシル基(エイコシル基)、ヘンイコシル基(ヘンエイコシル基)等のアルキル基などが挙げられる。
【0059】
式(3)中、oおよびpはそれぞれ独立して1〜5である。oおよびpの値が上記範囲を超えると、当該エステル化合物(B2)の耐熱性が低下し、耐炎化工程で単繊維間の融着が起きる場合がある。
なお、エステル化合物(B2)は、複数の化合物の混合物である場合もあり、従って、oおよびpは整数でない場合もあり得る。また、RおよびRを形成する炭化水素基は1種類であっても複数の種類の混合物であっても差し支えない。
【0060】
エステル化合物(B1)は、耐炎化工程において熱分解あるいは飛散しやすく、繊維束表面に残りにくいため、炭素繊維束の機械的物性を高品質に維持することが可能となる。しかしながら、耐熱性にやや劣るため、この物質だけでは耐炎化工程において炭素繊維前駆体アクリル繊維束が集束性にやや劣る場合がある。
一方、エステル化合物(B2)は、耐熱性が高く、耐炎化工程が終了するまで炭素繊維前駆体アクリル繊維束が集束性を保持するのに有効であり、操業性を向上させる働きがある。しかしながら、炭素化工程に至るまで繊維束に残存するため、炭素繊維束の機械的物性を低下させる場合がある。
従って、エステル化合物(B)としては、エステル化合物(B1)とエステル化合物(B2)を併用することがより好ましい。
【0061】
上述した化合物(A)およびエステル化合物(B)は非シリコーン系化合物の油剤である。
油剤中の化合物(A)およびエステル化合物(B)の割合は、化合物(A)とエステル化合物(B)の合計を100質量部としたときに、化合物(A)10〜99質量部、エステル化合物(B)1〜90質量部が好ましく、化合物(A)20〜60質量部、エステル化合物(B)40〜80質量部がより好ましい。
化合物(A)の割合が10質量部以上であれば、前駆体繊維束への定着性や、繊維と搬送ローラーやバーなどとの間の円滑性を保持でき、繊維束への損傷を低減できる。一方、化合物(A)の割合が99質量部を超えても工業生産上は問題ないが、油剤がエステル化合物(B)を1質量部以上含有することで、焼成工程において均質な炭素繊維束が得られやすくなる。
また、エステル化合物(B)の割合が上記範囲内であれば、耐炎化工程中の炭素繊維前駆体アクリル繊維束の集束性を維持し易くなる。加えて、化合物(A)の効果を十分に引き出すことが可能となる。
【0062】
化合物(A)およびエステル化合物(B)を用いて前駆体繊維束を油剤処理する際は、化合物(A)およびエステル化合物(B)を含む油剤を界面活性剤などと混合して油剤組成物とし、該油剤組成物を水中に分散させた形態で前駆体繊維束に付与するのが好ましく、より均一に油剤を前駆体繊維束に付与できる。
なお、本発明に用いる油剤は、上述した化合物(A)およびエステル化合物(B)のみで構成されていてもよいし、これら以外の化合物を含有してもよい。例えば本発明の効果を損なわない範囲内であれば、脂肪族エステルやアミノ変性シリコーンなどを含有してもよい。ただし、ケイ素化合物の生成を抑制することを考慮すると、アミノ変性シリコーンなどのシリコーン化合物は含有しないのが好ましい。
【0063】
また、油剤処理に用いる油剤組成物は、非イオン系界面活性剤を含有してもよい。
非イオン系界面活性剤の含有量は、油剤100質量部に対し、20〜150質量部が好ましく、20〜100質量部がより好ましい。非イオン系界面活性剤の含有量が20質量部以上であれば乳化しやすく、乳化物の安定性が良好となる。一方、非イオン系界面活性剤の含有量が150質量部以下であれば、油剤組成物が付着した前駆体繊維束の集束性が低下するのを抑制できる。加えて、該前駆体繊維束を焼成して得られる炭素繊維束の機械的物性が低下しにくい。
【0064】
非イオン系界面活性剤としては公知の様々な物質を用いることができる。例えば高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪族エチレンオキサイド付加物、多価アルコール脂肪族エステルエチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、脂肪族アミドエチレンオキサイド付加物、油脂のエチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物などのポリエチレングリコール型非イオン性界面活性剤;グリセロールの脂肪族エステル、ペンタエリストールの脂肪族エステル、ソルビトールの脂肪族エステル、ソルビタンの脂肪族エステル、ショ糖の脂肪族エステル、多価アルコールのアルキルエーテル、アルカノールアミン類の脂肪酸アミドなどの多価アルコール型非イオン性界面活性剤等が挙げられる。
これら非イオン系界面活性剤は1種単独で用いてもよく、2種以上を併用してもよい。
【0065】
非イオン系界面活性剤としては、下記式(4)で示されるオキシプロピレン(OP)ユニットとオキシエチレン(OE)ユニットからなるブロック共重合型ポリエーテル、および/または、下記式(5)で示されるOEユニットからなるポリオキシエチレンアルキルエーテルが特に好ましい。
【0066】
【化9】
【0067】
【化10】
【0068】
式(4)中、R10およびR11はそれぞれ独立して水素原子、炭素数1〜24の炭化水素基である。炭化水素基は直鎖状であってもよく分岐鎖状であってもよい。
10およびR11は、OE、OPとの均衡、その他の油剤組成物成分を考慮して決定されるが、水素原子、あるいは炭素数1〜5の直鎖状または分岐鎖状のアルキル基が好ましく、より好ましくは水素原子である。
【0069】
式(4)中、xおよびzはOEの付加モル数を示し、yはOPの付加モル数を示す。
x、y、zはそれぞれ独立して、1〜500であり、20〜300が好ましい。
また、xおよびzの合計と、yとの比(x+z:y)が90:10〜60:40であることが好ましい。
【0070】
また、ブロック共重合型ポリエーテルは、数平均分子量が3000〜20000であることが好ましい。数平均分子量が上記範囲内であれば、油剤組成物として要求される熱的安定性と水への分散性を共に有することが可能となる。
さらに、ブロック共重合型ポリエーテルは、100℃における動粘度が300〜15000mm/sであることが好ましい。動粘度が上記範囲内であれば、油剤組成物の過剰な繊維内部への浸透を防ぎ、かつ前駆体繊維束に付与した後の乾燥工程において、油剤組成物の粘性により搬送ローラー等に単繊維が取られて巻きつくなどの工程障害が起こりにくくなる。
【0071】
なお、ブロック共重合型ポリエーテルの動粘度は、JIS−Z−8803に規定されている“液体の粘度−測定方法”、あるいはASTM D 445−46Tに準拠して測定される値であり、例えばウッベローデ粘度計を用いて測定できる。
【0072】
一方、式(5)中、R12は炭素数10〜20の炭化水素基である。炭素数が10未満であると、油剤組成物の熱的安定性が低下しやすくなると共に、適切な親油性を発現しにくくなる。一方、炭素数が20を超えると、油剤組成物の粘度が高くなったり、油剤組成物が固形化したりして、操業性が低下する場合がある。また、親水基とのバランスが悪くなり、乳化性能が低下する場合がある。
【0073】
12の炭化水素基としては、飽和鎖式炭化水素基や飽和環式炭化水素基等の飽和炭化水素基が好ましく、具体的にはデシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等が挙げられる。
これらの中でも、油剤組成物を効率よく乳化するために、その他の油剤組成物成分に馴染みやすい適度な親油性を付与できる点でドデシル基が特に好ましい。
【0074】
式(5)中、qはOEの付加モル数を示し、3〜20であり、5〜15が好ましく、5〜10がより好ましい。qが3未満であると、水と馴染みにくくなり、乳化性能が得られにくくなる。一方、qが20を超えると、粘性が高くなり、油剤組成物の構成成分として用いた場合、得られる油剤組成物が付着した前駆体繊維束の分繊性が低下しやすくなる。
なお、R12は油剤組成物の親油性に関与する要素であり、qは油剤組成物の親水性に関与する要素である。従って、qの値は、R12との組み合わせにより適宜決定される。
【0075】
非イオン系界面活性剤としては、市販品を用いることができ、例えば上記式(4)で示される非イオン系界面活性剤として三洋化成工業株式会社製の「ニューポールPE−68」;上記式(5)で示される非イオン系界面活性剤として花王株式会社製の「エマルゲン109P」などが好適である。
【0076】
油剤組成物は、酸化防止剤をさらに含有するのが好ましい。
酸化防止剤の含有量は、油剤100質量部に対し、1〜5質量部が好ましく、1〜3質量部がより好ましい。酸化防止剤の含有量が1質量部以上であれば酸化防止効果が十分に得られる。一方、酸化防止剤の含有量が5質量部以下であれば、酸化防止剤が油剤組成物中に均一に分散しやすくなる。
【0077】
酸化防止剤は公知の様々な物質を用いることができるが、フェノール系、硫黄系の酸化防止剤が好適である。
フェノール系酸化防止剤の具体例としては、2,6−ジ−t−ブチル−p−クレゾール、4,4’−ブチリデンビス−(6−t−ブチル−3−メチルフェノール)、2,2’−メチレンビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス−(4−エチル−6−t−ブチルフェノール)、2,6−ジ−t−ブチル−4−エチルフェノール、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、テトラキス〔メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕メタン、トリエチレングリコールビス〔3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート〕、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート等が挙げられる。
硫黄系の酸化防止剤の具体例としては、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジトリデシルチオジプロピオネート等が挙げられる。
これら酸化防止剤は1種単独で用いてもよく、2種以上を併用してもよい。
【0078】
さらに、油剤組成物は、その特性向上を目的として、必要に応じて帯電防止剤を含有してもよい。
帯電防止剤としては公知の物質を用いることができる。帯電防止剤はイオン型と非イオン型に大別され、イオン型としてはアニオン系、カチオン系及び両性系があり、非イオン型ではポリエチレングリコール型、多価アルコール型がある。帯電防止の観点からイオン型が好ましく、中でも脂肪族スルホン酸塩、高級アルコール硫酸エステル塩、高級アルコールエチレンオキシド付加物硫酸エステル塩、高級アルコールリン酸エステル塩、高級アルコールエチレンオキシド付加物硫酸リン酸エステル塩、第4級アンモニウム塩型カチオン界面活性剤、ベタイン型両性界面活性剤、高級アルコールエチレンオキシド付加物ポリエチレングリコール脂肪酸エステル、多価アルコール脂肪酸エステルなどが好ましく用いられる。
これら帯電防止剤は、1種単独で用いてもよく、2種以上を併用してもよい。
【0079】
さらに、油剤組成物は、前駆体繊維束に付着させるための設備や使用環境によって、工程の安定性や油剤組成物の安定性、付着特性を向上させることを目的として、消泡剤、防腐剤、抗菌剤、浸透剤などの添加物を含有してもよい。
【0080】
上述した油剤組成物を用いて、前駆体繊維束を油剤処理する。
前駆体繊維束への油剤組成物の付与には、油剤として化合物(A)およびエステル化合物(B)を含有する油剤組成物が水中で分散し、平均粒子径0.01〜0.3μmのミセルを形成している、炭素繊維前駆体アクリル繊維用油剤処理液(以下、単に「油剤処理液」とも表記する。)を用いるのが好ましい。
ミセルの平均粒子径が上記範囲内であれば、前駆体繊維束の表面に化合物(A)およびエステル化合物(B)をより均一に付与できる。
なお、油剤処理液中のミセルの平均粒子径は、レーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、「LA−910」)を用いて測定することができる。
【0081】
油剤処理液は、例えば以下のようにして調製できる。
油剤である化合物(A)およびエステル化合物(B)と、非イオン系界面活性剤などを混合して油剤組成物とし、これを攪拌しながら水を加え、油剤組成物が水に分散したエマルション(水系乳化溶液)を得る。
酸化防止剤を含有させる場合は、酸化防止剤を予め化合物(A)に溶解しておくことが好ましい。
各成分の混合または水中分散は、プロペラ攪拌、ホモミキサー、ホモジナイザー等を使用して行うことができる。特に、高粘度の油剤組成物を用いて水系乳化溶液を調製する場合には、150MPa以上に加圧可能な超高圧ホモジナイザーを用いることが好ましい。
【0082】
水系乳化溶液中の油剤組成物の濃度は、2〜40質量%が好ましく、10〜30質量%がより好ましく、20〜30質量%が特に好ましい。油剤組成物の濃度が2質量%未満であると、必要な量の油剤を水膨潤状態の前駆体繊維束に付与することが困難となる。一方、油剤組成物の濃度が40質量%を超えると、水系乳化溶液が不安定となり乳化の破壊が起こりやすくなる。
【0083】
得られた水系乳化溶液は、そのまま油剤処理液として用いることもできるが、水系乳化溶液を所定の濃度になるまでさらに希釈したものを油剤処理液として用いるのが好ましい。
なお、「所定の濃度」は油剤処理時の前駆体繊維束の状態によって調整される。
【0084】
油剤の前駆体繊維束への付与は、上述した浴中延伸後の水膨潤状態にある前駆体繊維束に油剤処理液を付着することにより行うことができる。
浴中延伸の後に洗浄を行う場合は、浴中延伸および洗浄を行った後に得られる水膨潤状態にある繊維束に油剤処理液を付着することもできる。
【0085】
油剤処理液を水膨潤状態の前駆体繊維束に付着させる方法としては、ローラーの下部を油剤処理液に浸漬させ、そのローラーの上部に前駆体繊維束を接触させるローラー付着法、ポンプで一定量の油剤処理液をガイドから吐出し、そのガイド表面に前駆体繊維束を接触させるガイド付着法、ノズルから一定量の油剤処理液を前駆体繊維束に噴射するスプレー付着法、油剤処理液の中に前駆体繊維束を浸漬した後にローラー等で絞って余分な油剤処理液を除去するディップ付着法等の公知の方法を用いることができる。
これらの方法の中でも、均一付着の観点から、前駆体繊維束に十分に油剤処理液を浸透させ、余分な処理液を除去するディップ付着法が好ましい。より均一に付着するためには油剤処理の工程を2つ以上の多段にし、繰り返し付与することも有効である。
【0086】
<乾燥緻密化処理>
油剤処理液が付与された前駆体繊維束は、続く乾燥工程で乾燥緻密化される。
乾燥緻密化の温度は、繊維のガラス転移温度を超えた温度で行う必要があるが、実質的には含水状態から乾燥状態によって異なることもある。例えば温度が100〜200℃程度の加熱ローラーによる方法にて緻密乾燥化するのが好ましい。このとき加熱ローラーの個数は、1個でもよく、複数個でもよい。
【0087】
<二次延伸処理>
乾燥緻密化した前駆体繊維束には、加熱ローラーにより加圧水蒸気延伸処理を施すのが好ましい。該加圧水蒸気延伸処理により、得られる炭素繊維前駆体アクリル繊維束の緻密性や配向度をさらに高めることができる。
ここで、加圧水蒸気延伸とは、加圧水蒸気雰囲気中で延伸を行う方法である。加圧水蒸気延伸は、高倍率の延伸が可能であることから、より高速で安定な紡糸が行えると同時に、得られる繊維の緻密性や配向度向上にも寄与する。
【0088】
加圧水蒸気延伸処理においては、加圧水蒸気延伸装置直前の加熱ローラーの温度を120〜190℃、加圧水蒸気延伸における水蒸気圧力の変動率を0.5%以下に制御することが好ましい。このように加熱ローラーの温度および水蒸気圧力の変動率を制御することにより、繊維束になされる延伸倍率の変動、およびそれによって発生するトウ繊度の変動を抑制することができる。加熱ローラーの温度が120℃未満では前駆体繊維束の温度が十分に上がらず延伸性が低下しやすくなる。
【0089】
加圧水蒸気延伸における水蒸気の圧力は、加熱ローラーによる延伸の抑制や加圧水蒸気延伸法の特徴が明確に現れるようにするため、200kPa・g(ゲージ圧、以下同じ。)以上が好ましい。この水蒸気圧は、処理時間との兼ね合いで適宜調節することが好ましいが、高圧にすると水蒸気の漏れが増大したりする場合があるので、工業的には600kPa・g程度以下が好ましい。
【0090】
乾燥緻密化処理および加熱ローラーによる二次延伸処理を経て得られる炭素繊維前駆体アクリル繊維束は、室温のローラーを通し、常温の状態まで冷却した後にワインダーでボビンに巻き取られる、あるいはケンスに振込まれて収納される。
【0091】
<炭素繊維前駆体アクリル繊維束>
このようにして得られる炭素繊維前駆体アクリル繊維束は、油剤組成物が乾燥繊維質量に対して0.1〜2.0質量%付着していることが好ましく、より好ましくは0.1〜1.0質量%である。油剤組成物の付着量が0.1質量%未満であると、油剤組成物本来の機能を十分に発現することが困難となる場合がある。一方、油剤組成物の付着量が2.0質量%を超えると、過剰に付着した油剤組成物が、焼成工程において高分子化して、単繊維間の接着の誘因となる場合がある。
ここで、「乾燥繊維質量」とは、乾燥緻密化処理された後の前駆体繊維束の乾燥繊維質量のことである。
【0092】
また、炭素繊維前駆体アクリル繊維束は、化合物(A)が乾燥繊維質量に対して0.1〜0.5質量%付着していることが好ましく、機械的物性の点から、0.25〜0.45質量%付着していることがさらに好ましい。化合物(A)の付着量が上記範囲内であれば、化合物(A)の熱的安定性を効果的に利用でき、工程通過性や、得られる炭素繊維の性能が良好となる。
【0093】
また、炭素繊維前駆体アクリル繊維束は、エステル化合物(B)が乾燥繊維質量に対して0.01〜1.0質量%付着していることが好ましく、機械的物性の点から、0.2〜0.5質量%付着していることがさらに好ましい。エステル化合物(B)の付着量が上記範囲内であれば、化合物(A)と相溶して均一に繊維束表面に塗布することができ、耐炎化工程における融着防止効果が高く、得られる炭素繊維の機械的物性を向上できる。
【0094】
さらに、油剤組成物が非イオン系界面活性剤を含有する場合、炭素繊維前駆体アクリル繊維束は、非イオン系界面活性剤が乾燥繊維質量に対して0.1〜0.3質量%付着していることが好ましい。非イオン系界面活性剤の付着量が上記範囲内であれば、油剤組成物の水系乳化溶液(エマルション)が調製しやすく、過剰な界面活性剤により油剤処理槽で泡立ちが起こったり、繊維束の集束性を低下させたりすることを抑制できる。
また、非イオン系界面活性剤の乾燥繊維質量に対する付着量は、化合物(A)とエステル化合物(B)の乾燥繊維質量に対する付着量の合計100質量部に対して、20〜150質量部であることが好ましい。非イオン系界面活性剤の付着量が上記範囲内であれば、油剤組成物の水系乳化溶液(エマルション)が調製しやすく、過剰な界面活性剤により油剤処理槽で泡立ちが起こったり、繊維束の集束性を低下させたりすることを抑制できる。
【0095】
さらに、油剤組成物が酸化防止剤を含有する場合、炭素繊維前駆体アクリル繊維束は、酸化防止剤が乾燥繊維質量に対して0.01〜0.1質量%付着していることが好ましい。酸化防止剤の付着量が上記範囲内であれば、酸化防止効果が十分に得られ、前駆体繊維束の製造過程において前駆体繊維束に付着した化合物(A)ならびにエステル化合物(B)が熱ロール等により加熱されて酸化されることがない。加えて、油剤組成物の水系乳化溶液(エマルション)を調製する際にも影響を与えにくい。
【0096】
油剤組成物の付着量は、以下のようにして求められる。
メチルエチルケトンによるソックスレー抽出法に準拠し、90℃のメチルエチルケトンに炭素繊維前駆体アクリル繊維束を8時間浸漬させて油剤組成物を抽出し、抽出前の炭素繊維前駆体アクリル繊維束の質量W、および抽出後の炭素繊維前駆体アクリル繊維束の質量Wをそれぞれ測定し、下記式(i)により油剤組成物の付着量を求める。
油剤組成物の付着量(質量%)=(W−W)/W×100 ・・・(i)
【0097】
なお、炭素繊維前駆体アクリル繊維束に付着した油剤組成物に含まれる各成分の付着量は、油剤組成物の付着量と、油剤組成物の組成から算出できる。
また、炭素繊維前駆体アクリル繊維束に付着した油剤組成物の構成は、油剤処理槽中の油剤組成物の収支バランスから、調製した油剤組成物の構成と同じであることが好ましい。
【0098】
本発明の炭素繊維前駆体アクリル繊維束は、フィラメント数が1000〜300000本であることが好ましく、より好ましくは3000〜200000本であり、さらに好ましくは12000〜100000本である。フィラメント数が1000本より少ないと、生産効率が悪くなる傾向にある。一方、フィラメント数が300000本より多いと、均一な炭素繊維前駆体アクリル繊維束を得ることが困難となる場合がある。
【0099】
また、本発明の炭素繊維前駆体アクリル繊維束は、単繊維繊度が大きいほど、得られる炭素繊維束の繊維径が大きくなり、複合材料の強化繊維として用いた場合の圧縮応力下での座屈変形を抑制できるので、圧縮強度向上の観点からは単繊維繊度が大きい方が好ましい。ただし、単繊維繊度が大きいほど、後述する耐炎化工程において焼成斑を起こすため、均一性の観点からは好ましくない。これらの兼ね合いで、炭素繊維前駆体アクリル繊維束の単繊維繊度は、0.6〜3dTexであることが好ましく、より好ましくは0.7〜2.5dTexであり、さらに好ましくは0.8〜2.5dTexである。
【0100】
以上説明した本発明の炭素繊維前駆体アクリル繊維束は、特定の化合物(A)と特定のエステル化合物(B)が付着しているので、集束性に優れる。さらに、焼成工程において単繊維間の融着を防止し、かつケイ素化合物の生成やシリコーン分解物の飛散を抑制できるので、操業性、工程通過性が著しく改善され、工業的な生産性を維持できる。従って、機械的物性に優れた炭素繊維束を、安定な連続操業によって生産性よく得ることができる。
【0101】
本発明の炭素繊維前駆体アクリル繊維束は、焼成工程へと移され、耐炎化、炭素化、必要に応じて黒鉛化、表面処理を施し、炭素繊維束となる。
耐炎化工程では、炭素繊維前駆体アクリル繊維束を酸化性雰囲気下で加熱処理して耐炎化繊維束に転換する。
耐炎化条件としては、酸化性雰囲気中200〜300℃の緊張下、密度が好ましくは1.28〜1.42g/cm、より好ましくは1.29〜1.40g/cmになるまで加熱するのがよい。密度が1.28g/cm未満であると、次の工程である炭素化工程の際に単繊維間接着が起こりやすく、炭素化工程で糸切れが発生する。また、密度が1.42g/cmより大きくするためには、耐炎化工程が長くなり、経済性の面から好ましくない。雰囲気については、空気、酸素、二酸化窒素など公知の酸化性雰囲気を採用できるが、経済性の面から空気が好ましい。
【0102】
耐炎化処理を行なう装置としては特に限定されないが、従来公知の熱風循環炉や加熱固体表面に接触させる方法を採用できる。通常、耐炎化炉(熱風循環炉)では、耐炎化炉に入った炭素繊維前駆体アクリル繊維束を一旦耐炎化炉の外部に出した後、耐炎化炉の外部に配設された折り返しロールによって折り返して耐炎化炉に繰り返し通過させる方法が採られる。また、加熱固体表面に接触させる方法では、間欠的に接触させる方法が採られる。
【0103】
耐炎化繊維束は連続して炭素化工程に導かれる。
炭素化工程では、耐炎化繊維束を不活性雰囲気下で炭素化して炭素繊維束を得る。
炭素化は最高温度が1000℃以上の不活性雰囲気で行う。不活性雰囲気を形成するガスとしては、窒素、アルゴン、ヘリウムなどのいずれの不活性ガスでも差し支えないが、経済面から窒素を用いることが好ましい。
炭素化工程の初期の段階、すなわち処理温度300〜400℃では、繊維の成分であるポリアクリロニトリル共重合体の切断および架橋反応が起きる。この温度領域においては300℃/分以下の昇温速度で緩やかに繊維の温度を上げることが、最終的に得られる炭素繊維束の機械的物性を向上させるために好ましい。
また、処理温度400〜900℃においてはポリアクリロニトリル共重合体の熱分解が起こり、次第に炭素構造が構築される。この炭素構造を構築する段階においては、炭素構造の規則配向が促されるため、緊張下で延伸をかけながら処理するのが好ましい。よって、900℃以下における温度勾配や延伸(張力)をコントロールするために、最終的な炭素化工程とは別に前工程(前炭素化工程)を設置することがより好ましい。
【0104】
処理温度900℃以上においては、残存していた窒素原子が脱離し、炭素質構造が発達することにより繊維全体としては収縮する。このような高温域での熱処理においても、最終的な炭素繊維の良好な機械的物性を発現させるためには、緊張下で処理することが好ましい。
【0105】
このようにして得られた炭素繊維束には、必要に応じて黒鉛化処理を施してもよい。黒鉛化処理することで、炭素繊維束の弾性がより高まる。
黒鉛化の条件としては、最高温度が2000℃以上の不活性雰囲気中、伸長率3〜15%の範囲で伸長しながら行うことが好ましい。伸長率が3%未満の場合は十分な機械的物性を有する高弾性の炭素繊維束(黒鉛化繊維束)が得られにくい。これは、所定の弾性率を有する炭素繊維束を得ようとする場合に、伸長率の低い条件ほどより高い処理温度が必要であるためである。一方、伸長率が15%を超える場合は、表層と内部において、伸長による炭素構造の成長促進効果の差が大きくなり、不均一な炭素繊維束を形成し、物性が低下する。
【0106】
上記の焼成工程後の炭素繊維束には、最終用途に適合するように表面処理を施すのが好ましい。
表面処理の方法に制限はないが、電解質溶液中で電解酸化する方法が好ましい。電解酸化は、炭素繊維束の表面で酸素を発生させることで表面に含酸素官能基を導入し、表面改質処理をするものである。
電解質としては、硫酸、塩酸、硝酸などの酸やそれらの塩類を用いることができる。
電解酸化の条件として、電解液の温度は室温以下、電解質濃度は1〜15質量%、電気量は100クーロン/g以下が好ましい。
【0107】
本発明の炭素繊維前駆体アクリル繊維束を焼成して得られる炭素繊維束は、機械的物性に優れ、高品質であり、様々な構造材料に用いられる繊維強化樹脂複合材料に用いる強化繊維として好適である。
【実施例】
【0108】
以下、本発明を実施例によりさらに具体的に説明する。ただし、本発明はこれらによって限定されるものではない。
本実施例に用いた各成分、および各種測定方法、評価方法は以下の通りである。
【0109】
[成分]
<化合物(A)>
・A−1:3−イソシアナトメチル−3,5,5−トリメチルシクロヘキシル=イソシアネートとオレイルアルコール(モル比1.0:2.0)からなるエステル化合物(上記式(1)の構造で、RおよびRが共にオクタデセニル基(オレイル基)、nおよびmが共に0である化合物)
【0110】
(A−1の合成方法)
3Lの四つ口フラスコに、オレイルアルコール1970g(7.2モル)を秤取り、窒素雰囲気下、攪拌しながら3−イソシアナトメチル−3,5,5−トリメチルシクロヘキシル=イソシアネート800g(3.6モル)を、滴下ロートを用いて滴下した。その後100℃で10時間反応させ、A−1を得た。
【0111】
<エステル化合物(B)>
・B−1:トリイソデシルトリメリテート(花王株式会社製、商品名:トリメックスT−10)(上記式(2)の構造で、R〜Rが共にイソデシル基である化合物)
・B−2:ポリオキシエチレンビスフェノールAラウリン酸エステル(花王株式会社製、商品名:エキセパールBP−DL)(上記式(3)の構造で、RおよびRが共にドデシル基(ラウリル基)であり、oおよびpが共に約1である化合物)
【0112】
<鎖状脂肪族エステル>
・C−1:トリイソオクタデカン酸トリメチロールプロパン(和光純薬工業株式会社製)
・C−2:ペンタエリトリトールテトラステアラート(東京化成工業株式会社製、製品コード:P0739)
【0113】
<アミノ変性シリコーン>
・D−1:1級側鎖アミノ変性シリコーン(Gelest,Inc.社製、商品名:AMS−132)
・D−2:両末端アミノ変性シリコーン(Gelest,Inc.社製、商品名:DMS−A21)
【0114】
<非イオン系界面活性剤>
・E−1:上記式(4)の構造で、x=75、y=30、z=75、R10およびR11が共に水素原子であるOP/OEブロック共重合型ポリエーテル(三洋化成工業株式会社、商品名:ニューポールPE−68)
・E−2:上記式(5)の構造で、q=9、R12がドデシル基であるポリオキシエチレン(9)ラウリルエーテル(花王株式会社、商品名:エマルゲン109P)
【0115】
<酸化防止剤>
・n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート(株式会社エーピーアイ コーポレーション製、商品名:トミノックスSS)
【0116】
[測定・評価]
<油剤付着量の測定>
炭素繊維前駆体アクリル繊維束を105℃で1時間乾燥させた後、メチルエチルケトンによるソックスレー抽出法に準拠し、90℃のメチルエチルケトンに8時間浸漬して付着した油剤組成物を溶媒抽出した。抽出前の炭素繊維前駆体アクリル繊維束の質量W、および抽出後の炭素繊維前駆体アクリル繊維束の質量Wをそれぞれ測定し、上記式(i)により油剤組成物の付着量を求めた。なお、油剤付着量の測定は、油剤組成物がその効力を発現する適正な範囲で前駆体繊維束に付与されていることを確認するものである。
【0117】
<集束性の評価>
炭素繊維前駆体アクリル繊維束の製造過程の最終ローラー、すなわち該繊維束をボビンに巻き取る直前のローラー上での炭素繊維前駆体アクリル繊維束の状態を目視にて観察し、以下の評価基準にて集束性を評価した。なお、集束性の評価は、炭素繊維前駆体アクリル繊維束の生産性、続く炭素化工程におけるハンドリング性を考慮した炭素繊維前駆体アクリル繊維束の品質を評価するものである。
○:集束しており、トウ幅が一定で、隣接する繊維束と接触しない。
△:集束しているが、トウ幅が一定ではない、あるいはトウ幅が広い。
×:繊維束中に空間があり、集束していない。
【0118】
<操業性の評価>
炭素繊維前駆体アクリル繊維束を24時間連続して製造したときに、搬送ローラーへ単繊維が巻き付き、除去した頻度により操業性を評価した。評価基準は以下の通りとした。なお、操業性の評価は、炭素繊維前駆体アクリル繊維束の安定生産の目安となる指標である。
○:除去回数(回/24時間)が1回以下。
△:除去回数(回/24時間)が2〜5回。
×:除去回数(回/24時間)が6回以上。
【0119】
<単繊維間融着数の測定>
炭素繊維束を長さ3mmに切断し、アセトン中に分散させ、10分間攪拌した後の全単繊維数と、単繊維同士が融着している数(融着数)を計数し、単繊維100本当たりの融着数を算出し、以下の評価基準にて評価した。なお、単繊維間融着数の測定は、炭素繊維束の品質を評価するものである。
○:融着数(個/100本)が1個以下。
×:融着数(個/100本)が1個超。
【0120】
<ストランド強度の測定>
炭素繊維束の製造を開始し、定常安定化した状態で炭素繊維束のサンプリングを行い、JIS−R−7608に規定されているエポキシ樹脂含浸ストランド法に準じて、炭素繊維束のストランド強度を測定した。なお、測定回数は10回とし、その平均値を評価の対象とした。
【0121】
<Si飛散量の測定>
耐炎化工程におけるシリコーン由来のケイ素化合物飛散量は、炭素繊維前駆体アクリル繊維束と、それを耐炎化した耐炎化繊維束のケイ素(Si)含有量をICP発光分析法により測定し、それらの差から計算されるSi量の変化を耐炎化工程で飛散したSi量(Si飛散量)とし、評価の指標とした。
具体的には、炭素繊維前駆体アクリル繊維束および耐炎化繊維束をそれぞれ鋏で細かく粉砕した試料を密閉るつぼに50mg秤量し、粉末状としたNaOH、KOHを各0.25g加え、マッフル炉にて210℃で150分間加熱分解した。これを蒸留水で溶解し、100mLに定容したものを測定試料として用い、ICP発光分析法にて各測定試料のSi含有量を求め、下記式(ii)によりSi飛散量を求めた。ICP発光分析装置には、サーモエレクトロン株式会社製の「IRIS Advantage AP」を用いた。
Si飛散量(mg/kg)=炭素繊維前駆体アクリル繊維束のSi含有量−耐炎化繊維束のSi含有量 ・・・(ii)
【0122】
[実施例1]
<油剤組成物および油剤処理液の調製>
上記で調製した化合物(A−1)に、酸化防止剤を加熱混合して分散させた。この混合物に非イオン系界面活性剤(E−1、E−2)を加えて十分に混合攪拌し、その後さらにエステル化合物(B−1、B−2)を加えて十分に混合攪拌し、油剤組成物を調製した。
ついで、油剤組成物の濃度が30質量%になるように、油剤組成物を攪拌しながらイオン交換水を加え、ホモミキサーで乳化した。この状態でのミセルの平均粒子径をレーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、商品名:LA−910)を用いて測定したところ、3.0μm程度であった。
その後、さらに高圧ホモジナイザーにより、ミセルの平均粒子径が0.2μm以下になるまで油剤組成物を分散させ、水系乳化溶液を得た。得られた水系乳化溶液をイオン交換水でさらに希釈し、油剤組成物の濃度が1.3質量%の油剤処理液を調製した。
油剤組成物中の各成分の種類と配合量(質量%)を表1に示す。
【0123】
<炭素繊維前駆体アクリル繊維束の製造>
油剤を付着させる前駆体繊維束は、次の方法で調製した。アクリロニトリル系共重合体(組成比:アクリロニトリル/アクリルアミド/メタクリル酸=96.5/2.7/0.8(質量比))を21質量%の割合でジメチルアセトアミドに分散し、加熱溶解して紡糸原液を調製し、濃度67質量%のジメチルアセトアミド水溶液を満たした38℃の凝固浴中に孔径(直径)50μm、孔数50000の紡糸ノズルより吐出し凝固糸とした。凝固糸は水洗槽中で脱溶媒するとともに3倍に延伸して水膨潤状態の前駆体繊維束とした。
先に得られた油剤処理液を満たした油剤処理槽に水膨潤状態の前駆体繊維束を導き、油剤を付与させた。
その後、油剤が付与された前駆体繊維束を表面温度150℃のローラーにて乾燥緻密化した後に、圧力0.3MPaの水蒸気中で5倍延伸を施し、炭素繊維前駆体アクリル繊維束を得た。得られた炭素繊維前駆体アクリル繊維束のフィラメント数は50000本、単繊維繊度は1.3dTexであった。
製造工程における集束性および操業性を評価し、得られた炭素繊維前駆体アクリル繊維束の油剤付着量を測定した。また、油剤付着量の測定値と油剤組成物の組成から、各成分の付着量を求めた。これらの結果を表1に示す。
【0124】
<炭素繊維束の製造>
得られた炭素繊維前駆体アクリル繊維束を、220〜260℃の温度勾配を有する耐炎化炉に40分かけて通して耐炎化し、耐炎化繊維束とした。
引き続き、該耐炎化繊維束を窒素雰囲気中で400〜1400℃の温度勾配を有する炭素化炉を3分間かけて通過させて焼成し、炭素繊維束とした。
耐炎化工程におけるSi飛散量を測定した。また、得られた炭素繊維束の単繊維間融着数、およびストランド強度を測定した。これらの結果を表1に示す。
【0125】
[実施例2〜6]
油剤組成物を構成する各成分の種類と配合量を表1に示すように変更した以外は、実施例1と同様にして油剤組成物および油剤処理液を調製し、炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表1に示す。
【0126】
[比較例1〜11]
油剤組成物を構成する各成分の種類と配合量を表2に示すように変更した以外は、実施例1と同様にして油剤組成物および油剤処理液を調製した。
なお、化合物(A)を用いない比較例1〜9の場合、酸化防止剤は、エステル化合物(B)、鎖状脂肪族エステル、またはアミノ変性シリコーンのいずれかに予め分散させた。また、アミノ変性シリコーンとエステル化合物(B)を併用する比較例6の場合は、エステル化合物(B)に非イオン系界面活性剤を攪拌混合した後にアミノ変性シリコーンを加えた。また、アミノ変性シリコーンを用い、エステル化合物(B)、鎖状脂肪族エステルを用いない比較例7、8の場合は、予め酸化防止剤を分散させたアミノ変性シリコーンに非イオン系界面活性剤を入れ混合攪拌した後に、イオン交換水を加えた。
このようにして調製した油剤処理液を用いた以外は、実施例1と同様にして炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表2に示す。
【0127】
【表1】
【0128】
【表2】
【0129】
表1から明らかなように、各実施例の場合、油剤付着量は適正な量であった。また、炭素繊維前駆体アクリル繊維束の集束性、その製造過程の操業性は良好であった。
全ての実施例において、炭素繊維束を連続的に製造していく上で、工程上、何ら問題がない状況であった。
【0130】
また、各実施例で得られた炭素繊維束は、単繊維間の融着数が実質的に無く、ストランド強度が高い数値を示し、機械的物性に優れていた。また、シリコーンを全く含有しないことから、焼成工程におけるSi飛散量は実質的に無く、焼成工程における工程負荷が少なく良好であった。
【0131】
また、各実施例で得られた炭素繊維束のストランド強度は、アミノ変性シリコーンを使用しない油剤組成物を用いた比較例1〜5、9と比較して高かった。
また、化合物(A)とエステル化合物(B)の割合がそれぞれ50質量部の場合(実施例3〜5)が、ストランド強度が高かった。その中でも、化合物(A)が50質量部、トリメリットエステル(B−1)が50質量部で、非イオン系界面活性剤のE−1が23質量部、E−2が40質量部の実施例5が最もストランド強度が高かった。
【0132】
一方、表2から明らかなように、化合物(A)の代わりに、鎖状脂肪族エステル、または鎖状脂肪族エステルとエステル化合物(B)を用いた場合(比較例1〜4、9)、油剤付着量は適正な量であり、焼成工程におけるSi飛散量は実質的に無く良好であったが、得られた炭素繊維前駆体アクリル繊維束の集束性や、その製造過程における操業性が悪く、得られた炭素繊維束には融着が多く見られた。さらに、炭素繊維束のストランド強度が各実施例に比べて劣っていた。
中でもエステル化合物(B)を含有せずに、鎖状脂肪族エステルと非イオン系界面活性剤と酸化防止剤からなる油剤組成物の場合(比較例3、4)は、集束性、操業性およびストランド強度が著しく劣る結果であった。
また、エステル化合物(B)を含有するものの、酸化防止剤の割合が多い場合(比較例9)は、ストランド強度が著しく劣る結果であった。
【0133】
化合物(A)の代わりに、エステル化合物(B)のみを用いた場合(比較例5)、操業性は良好で、耐炎化工程におけるSi飛散量も実質的に無く良好であったが、得られた炭素繊維前駆体アクリル繊維束の集束性が悪かった。また、製造された炭素繊維束の融着数は多く、ストランド強度が各実施例と比較して著しく劣っていた。
アミノ変性シリコーンを含有させた場合(比較例6〜8)、集束性および操業性は良好で、製造された炭素繊維束の融着も無く良好であった。また、各実施例と同等のストランド強度であった。しかし、シリコーンを用いたことにより発生する耐炎化工程でのケイ素飛散量が多く、工業的に連続して生産するためには焼成工程への負荷が大きいという問題があった。
【0134】
化合物(A)と鎖状脂肪族エステルを混合して用いた場合(比較例10,11)は、アミノ変性シリコーンを含有しない比較例1〜5および9と比べると高いストランド強度を示したが、実施例に及ぶレベルではなかった。また集束性がやや悪く、融着数が多いという問題があった。
【産業上の利用可能性】
【0135】
本発明の炭素繊維前駆体アクリル繊維束は、焼成工程での単繊維間の融着を効果的に抑制できる。さらに、シリコーンを主成分とする油剤組成物を使用する場合に発生する操業性の低下を抑制でき、かつ、機械的物性に優れた炭素繊維束を生産性よく製造できる。
本発明の炭素繊維前駆体アクリル繊維束から得られた炭素繊維束は、プリプレグ化した後、複合材料に成形することもできる。また、炭素繊維束を用いた複合材料は、ゴルフシャフトや釣り竿などのスポーツ用途、さらには構造材料として自動車や航空宇宙用途、また各種ガス貯蔵タンク用途などに好適に用いることができ、有用である。