(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【0006】
一般的な一態様において、方法は、気体レーザシステムの少なくとも1つの光増幅器の利得媒質にポンピングエネルギーを供給し、利得媒質中に反転分布をもたらして増幅光ビームを生成し、ガイド波長を有するガイドレーザからのガイドレーザ・ビームを光学部品に向けて方向付け、方向付けられたガイドレーザ・ビームを用いて光学部品を光軸調整するステップを含む。少なくとも1つの光増幅器は動作波長で動作する。各々の光学部品は波長範囲を伴う。ガイド波長は動作波長とは異なり且つ光学部品の波長範囲に入る。
【0007】
実施は、以下の特徴の1つ又はそれ以上を含むことができる。例えば、各々の光学部品は、少なくとも1つの光増幅器の動作波長を包含する波長範囲を有することができる。
ガイド波長は動作波長とは異なるようにすることができるので、ガイドレーザ・ビームは気体レーザシステムの利得には実質的に寄与しない。
【0008】
光学部品の1つ又はそれ以上は、気体レーザシステム内に存在することができる。ガイドレーザ・ビームは、気体レーザシステムを通してガイドレーザ・ビームを方向付けることにより、光学部品に向けて方向付けることができる。この方法はまた、気体レーザシステムの裏面に反射鏡を配置して、気体レーザシステムを出た増幅光ビームが反射鏡で反射して裏面を通して気体レーザシステム内に戻るようにするステップを含む。ガイドレーザ・ビームは、光反射鏡を通してガイドレーザ・ビームを方向付けることにより光学部品に向けて方向付けることができる。
【0009】
本方法はまた、増幅光ビームを、動作レーザビームとなる程度に増幅するステップを含むことができる。本方法はまた、動作レーザビームを標的位置に向けて方向付けるステップを含む。1つ又はそれ以上の光学部品が気体レーザシステムと標的位置の間に存在することができる。本方法は、ガイドレーザ・ビームを用いて動作レーザビームを標的位置に対して光軸調整するステップを含むことができる。動作レーザビームは、ガイドレーザ・ビームを1つ又はそれ以上の光学部品を通して標的位置に向けて方向付けることによって光軸調整することができる。本方法はまた、標的材料を標的位置に標的時間の間に供給するステップを含むことができる。この場合、ガイドレーザ・ビームは、ガイドレーザ・ビームを標的時間外の時間に標的位置に向けて方向付けることによって、標的位置に向けて方向付けることができる。本方法は標的材料を標的位置に供給するステップを含むことができる。この場合、動作レーザビームを標的位置に向けて方向付けて、標的材料においてプラズマの生成を引き起こすことができる。
【0010】
標的材料はスズを含むことができる。標的材料は液滴とすることができる。
光学部品は、増幅光ビームを用いて、気体レーザシステムの初期セットアップ中に光学部品を光軸調整することによって、光軸調整することができる。
光学部品は、増幅光ビームを用いて、気体レーザシステムのレーザ動作中に光学部品を光軸調整することによって、光軸調整することができる。
ガイド波長は、少なくとも1つの光増幅器の動作波長から約100nm以内とすることができる。
【0011】
別の一般的態様において、光学部品を光軸調整するためのシステムは、各々が動作波長で動作し、且つ各々がポンピングされた状態のときに増幅光ビームを生成する利得媒質を含む、1つ又はそれ以上の光増幅器を有する気体レーザシステムと、各々が波長範囲を伴う光学部品と、ガイド波長を有するガイドレーザ・ビームを生成するガイドレーザと、を含む。ガイドレーザは、気体レーザシステムの1つ又はそれ以上の光増幅器の利得媒質がポンピングされた状態にある間に、ガイドレーザ・ビームが光学部品に向けて方向付けられるように配置される。ガイド波長は動作波長とは異なり且つ光学部品の波長範囲内にある。
【0012】
実施は、次の特徴の1つ又はそれ以上を含むことができる。例えば、各々の光学部品の波長範囲は、気体レーザシステムの動作波長を包含することができる。ガイド波長は動作波長とは異なるようにすることができるので、ガイドレーザ・ビームは気体レーザシステムの利得には実質的に寄与しない。
【0013】
気体レーザシステムには主発信器がなくてもよい。気体レーザシステムは、互いに直列に配置された3つの光増幅器を含むことができる。
気体レーザシステムの1つ又はそれ以上の光増幅器は、利得媒質としてCO
2を含むことができる。
気体レーザシステムは、約10600nmの波長で動作することができる。
【0014】
光学部品は、1つ又はそれ以上の光増幅器の外部の曲面鏡を含むことができる。曲面鏡は放物面鏡とすることができる。光学部品は1つ又はそれ以上の鏡を含むことができる。
【0015】
本システムは、気体レーザシステムの前面の出力カップラと、気体レーザシステムの前面とは異なる裏面の反射鏡とを含むことができる。反射鏡は、気体レーザシステムから出射した増幅光ビームが反射鏡の前面から反射して裏面を通して気体レーザシステム内に戻るように配置することができる。ガイドレーザ・ビームは反射鏡の裏面を通して光学部品に向けて方向付けることができる。
【0016】
気体レーザシステムは、約10kWを越える出力で動作することができる。
ガイドレーザ・ビームは、気体レーザシステムが増幅光ビームを動作レーザビームに転換するのに十分な利得を有した後に、光学部品に向けて方向付けることができる。
光学部品は1つ又はそれ以上の光増幅器の内部に存在することができる。光学部品は1つ又はそれ以上の光増幅器の外部に存在することができる。
1つ又はそれ以上の光増幅器は直列に配置することができ、また空洞形成鏡を含むことができ、空洞形成鏡の1つは高反射鏡を含み、空洞形成鏡の他方は出力カップラを含む。
ガイドレーザは同位体CO
2気体レーザを含むことができる。同位体CO
2気体レーザは約11000nmの動作波長で動作することができる。
ガイドレーザは、約8100nmの波長で動作する量子カスケードレーザを含むことができる。
【0017】
別の一般的態様において、極端紫外光を生成するためのレーザ生成プラズマシステムは、標的材料を標的位置に生成する標的材料送出システムと、増幅帯域を定める利得媒質を含んだ少なくとも1つの光増幅器と、利得媒質内で形成された増幅光ビームを利得媒質中に伝搬させ、増幅光ビームを標的位置に送出するように構成され配置された一組の光学部品と、利得媒質の増幅帯域外且つ光学部品の波長範囲内の波長を有するガイドレーザ・ビームを生成するガイドレーザとを含む。ガイドレーザ・ビームは光学部品の組を通して方向付けられる。
【0018】
実施は、次の特徴の1つ又はそれ以上を含むことができる。例えば、光学部品の組は鏡を含むことができる。
少なくとも1つの光増幅器は、標的材料が標的位置にあるときに増幅光ビームを動作レーザビームに転換するのに十分な利得を有することができる。
【0019】
光学部品の組は、少なくとも1つの光増幅器と標的位置の間の合焦アセンブリを含むことができる。合焦アセンブリは、増幅光ビームを標的位置に合焦させるように構成され配置される。ガイドレーザ・ビームは光学部品の組を通して方向付けられて、増幅光ビームを標的位置に対して操作することができる。合焦アセンブリは1つ又はそれ以上のレンズ及び1つ又はそれ以上の鏡を含むことができる。合焦アセンブリは曲面鏡を含むことができる。曲面鏡は、放物線様の形状の反射面を有することができる。合焦アセンブリはレンズを含むことができる。レンズはZnSe製とすることができる。
【0020】
レーザシステムは、光学素子を含んだ計量システムを含み、これはガイドレーザ・ビームの1つ又はそれ以上の部分及び増幅光ビームの一部分をサンプリングしてサンプリング部分の性質を分析し、増幅光ビームの光軸調整及び拡散を調節するためのフィードバックをもたらすように配置される。
【0021】
少なくとも1つの光増幅器は、標的位置に向けられる気体レーザビームを生成することができる。
ガイドレーザ・ビームは、気体レーザシステムが、増幅光ビームを、標的位置に向けて方向付けられる動作レーザビームに転換するのに十分な利得を有する間に、光学部品の組を通して方向付けることができる。
少なくとも1つの光増幅器の利得媒質はCO
2利得媒質を含むことができる。
少なくとも1つの光増幅器には主光増幅器がなくともよい。
少なくとも1つの光増幅器は、軸流システムとして設計することができる。
レーザシステムは、ガイドレーザのサンプリング光を分析し、この情報を用いて合焦アセンブリを調節する計量システムを含むことができる。
【0022】
別の一般的態様において、極端紫外光を生成する方法は、標的材料を標的位置に生成し、増幅帯域を有する少なくとも1つの光増幅器の利得媒質にポンピングエネルギーを供給しして増幅光ビームを生成し、一組の光学部品のうちの1つ又はそれ以上の光学部品を用いて増幅光ビームを利得媒質中に伝搬させ、光学部品の組のうちの1つ又はそれ以上の光学部品を用いて増幅光ビームを標的位置に送出し、ガイドレーザを用いて利得媒質の増幅帯域外且つ光学部品の波長範囲内の波長を有するガイドレーザ・ビームを生成し、ガイドレーザ・ビームを光学部品の組を通して方向付け、それにより光学部品の組のうちの1つ又はそれ以上の光学部品を光軸調整するステップを含む。
【0023】
実施は、次の特徴の1つ又はそれ以上を含むことができる。例えば、増幅光ビームを少なくとも1つの光増幅器と標的位置の間の合焦アセンブリを通して方向付けることによって、増幅光ビームを標的位置に送出することができる。合焦アセンブリは、増幅光ビームを標的位置に合焦するように構成され配置される。ガイドレーザ・ビームは、増幅光ビームを標的位置上に光軸調整することによって方向付けることができる。
【発明を実施するための形態】
【0025】
図1を参照すると、LPPEUV光源100は、真空チャンバ130内の標的位置105で増幅光ビームを用いて標的材料114を照射して、標的材料114をEUV領域に輝線を有する元素を有するプラズマ状態に転換することによって形成される。光源100は、レーザシステム115の利得媒質内の反転分布によって増幅光ビームを生成するレーザシステム115を含む。
【0026】
図1に示すレーザシステム115内に用いることができる適切なレーザ増幅器には、必ずしもそれに限定されないが、パルスレーザ装置、例えば、DC又はRF励起により9.3μm又は10.6μmの放射を生成し、例えば、10kW又はそれより大きい比較的高出力、及び、例えば40kHz又はそれより大きい高パルス繰返し速度で動作する、パルス気体放電CO
2レーザ装置を挙げることができる。
【0027】
光源100はまた、レーザシステム115と標的位置105の間のビーム送出システム119を含み、ビーム送出システム119はビーム移送システム120及び合焦アセンブリ122を含む。ビーム移送システム120は、レーザシステム115から増幅光ビーム110を受け取り、増幅光ビーム110を必要に応じて操作及び修正して増幅光ビーム110を合焦アセンブリ122に向けて出力する。合焦アセンブリ122は増幅光ビーム110を受け取ってビーム110を標的位置105に合焦させる。
【0028】
幾つかの実施において、レーザシステム115は、各々のレーザ増幅器が利得媒質、励起源及び内部光学系を含む1つ又はそれ以上のレーザ増幅器を有するように構成することができる。レーザ増幅器は、レーザ鏡、又はレーザ空洞を形成する他のフィードバック機器を有しても有さなくてもよい。従って、レーザシステム115は、レーザ空洞がない場合にも、レーザ増幅器の利得媒質内の反転分布による増幅光ビーム110を生成する。さらにレーザシステム115は、レーザシステム115に十分なフィードバックをもたらすレーザ空洞が存在する場合にコヒーレントなレーザビームとなる増幅光ビーム110を生成することができる。用語「増幅光ビーム」は、単に増幅されたが必ずしもコヒーレントなレーザ発振ではないレーザシステム115からの光、及び、増幅されたばかりでなくコヒーレントなレーザ発振でもあるレーザシステム115からの光のうちの1つ又はそれ以上を包含する。
【0029】
図5に示す実施においては、以下で詳しく説明するように、レーザシステム115に背面部分反射光学素子(
図5中で535とラベル付けされた)を加え、標的位置105に標的材料(
図5中で540とラベル付けされた)を配置することによりレーザ空洞を形成することができる。標的材料540及び背面部分反射光学素子535は、増幅光ビーム110の一部を反射してレーザシステム115内に戻すように機能してレーザ空洞を形成する。従って、標的位置105における標的材料540の存在は、レーザシステム115がコヒーレントなレーザ発振を起こすのに十分なフィードバックを与え、この場合には増幅光ビームはレーザビームと見なすことができる。標的材料540が標的位置105に存在しないときは、レーザシステム115は依然としてポンピングされて増幅光ビームを生成することができるが、コヒーレントレーザ発振は生じない。
【0030】
光源100は、例えば、液体小滴、液体ストリーム、固体粒子又はクラスタ、液体小滴内に含まれる固体粒子、又は液体ストリーム内に含まれる固体粒子の形態の標的材料を送出する、標的材料送出システムを含む。標的材料には、例えば、水、スズ、リチウム、キセノン、又は、プラズマ状態に転化したときにEUV領域に輝線を有する任意の材料を含めることができる。例えば、元素スズは、純粋なスズ(Sn)として、スズ化合物、例えば、SnBr
4、SnBr
2、SnH
4などとして、スズ合金、例えば、スズ・ガリウム合金、スズ・インジウム合金、スズ・インジウム・ガリウム合金、又はこれらの合金の任意の組合せとして、用いることができる。標的材料は、上記の元素の1つ、例えばスズで被覆されたワイヤを含むことができる。標的材料が固体状態である場合、任意の適切な形状、例えば、環、球、又は立方体などを有することができる。標的材料は、例えば、標的材料送出システム125によって、チャンバ130の内部に標的位置105に至るまで送出することができ、標的位置105は照射位置とも呼ばれ、そこで標的材料が増幅光ビーム110によって照射されてプラズマを生成する。
【0031】
照射位置において、増幅光ビーム110は合焦アセンブリ122によって適切に合焦され、標的材料の組成に依存する特定の特性を有するプラズマを生成するのに用いられる。これらの特性は、プラズマによって生成されるEUV光の波長並びにプラズマから放出されるデブリの種類及び量を含むことができる。
【0032】
光源110は、増幅光ビーム110が通り抜けて標的位置105に達することを可能にする開口140を有する集光鏡135を含む。集光鏡135は、例えば、第1焦点を標的位置105に、そして第2焦点を中間位置145(中間焦点とも呼ぶ)に有する楕円鏡とすることができ、この中間位置145においてEUV光が光源100から出射して、例えば、集積回路リソグラフィ・ツール(図示せず)に入射することができる。光源100はまた、集光鏡135から標的位置105に向かって先細になる開放中空円錐型隔壁150(例えば、気体コーン)含むことができ、これがビーム送出システム119に入るプラズマ生成デブリの量を減らすと同時に増幅光ビーム110が標的位置105に達することを可能にする。
【0033】
光源100はまた、液滴位置検出フィードバックシステム156、レーザ制御システム157、及びビーム制御システムに接続される主コントローラ155を含むことができる。光源100は1つ又はそれ以上の標的又は液滴撮像装置160を含むことができ、これが液滴の位置、例えば標的位置105に相対的な位置を示す出力をもたらし、この出力を液滴位置検出フィードバックシステム156に供給し、このシステム156が、例えば、液滴位置及び軌跡を計算することができ、これらから液滴位置誤差を液滴毎に又は平均的に計算することができる。従って、液滴位置検出フィードバックシステム156は液滴位置誤差を主コントローラ155に入力として供給する。その結果、主コントローラ155は、例えば、レーザタイミング回路を制御するため、及び/又は、増幅光ビームの位置及びビーム送出システムの119の成形機能を制御するために用いることができる、レーザの位置、方向、及びタイミング補正信号を、例えば、ビーム制御システム158に供給して、チャンバ130内のビーム焦点の位置及び/又は焦点出力を変えることができる。
【0034】
標的材料送出システム125は、主コントローラ155からの信号に応答して、例えば、送出機構127から放出されるときの液滴の放出位置を修正して所望の標的位置105に到達する液滴の誤差を補正するように動作することができる標的材料送出制御システム126を含む。
【0035】
さらに、光源100は、パルスエネルギー、波長の関数としてのエネルギー分布、特定の波長帯域内のエネルギー、特定の波長対域外のエネルギー、並びにEUV強度及び/又は平均出力の角度分布を含むが、これらに限定されない1つ又はそれ以上のEUV光パラメータを計測する光源検出器165を含むことができる。光源検出器165は、主コントローラ155が使用するフィードバック信号を生成する。フィードバック信号は、例えば、効果的且つ効率的なEUV光生成のための適切な位置及び時間に液滴と適切に交差するためのレーザパルスのタイミング及び焦点などのパラメータの誤差を示すことができる。
【0036】
光源100はまたガイドレーザ175を含み、これは光源100の種々の部分を光軸調整するため、又は増幅光ビーム110を標的位置105に向けて操作するのを補助するために用いることができる。ガイドレーザ175に関連して、光源100は、合焦アセンブリ内に配置されてガイドレーザ175からの光及び増幅光ビーム110の一部分をサンプリングする計量システム124を含む。他の実施において、計量システム124はビーム移送システム120内に配置される。
【0037】
計量システム124は、光の一部をサンプリングするか又は方向変更する光学素子を含むことができ、この光学素子はガイドレーザ・ビーム及び増幅光ビーム110の出力に耐えることができる任意の材料から作られたものとすることができる。例えば、計量システム124内のサンプリング用光学素子は、反射防止膜で被覆されたセレン化亜鉛(ZnSe)製基板を含むことができる。計量システム124内のサンプリング用光学素子は、増幅光ビーム110の縦方向に対してある角度で配置され、増幅光ビーム110の一部及びガイドレーザ175からの一部の光を診断目的で切り離すための回折格子とすることができる。増幅光ビーム110の波長とガイドレーザ175のビームの波長とは互いに異なるので、それらは回折格子から別々の角度で離れるように方向付けられて、ビームの分離が可能になる。他の実施において、サンプリング用光学素子は、ガイドレーザ175のビーム及び増幅光ビームの一部分を増幅光ビーム110の直接光路の外部に配置された回折格子に向ける部分反射鏡とする。
【0038】
ビーム分析システムは計量システム124及び主コントローラ155から形成されるが、その理由は主コントローラ155がガイドレーザ175からのサンプリング光を分析し、この情報を用いて、ビーム制御システム158を通して合焦アセンブリ122内の部品を調整するからである。他の実施において、計量システム124は、合焦アセンブリ122内に配置され、増幅光ビーム110をガイドレーザ175の光から分離して別々の分析をもたらすための1つ又はそれ以上の二色性ミラーを含む。そのような計量システムは、2009年12月15日に出願された整理番号002−017001/2009−0027−01の「極端紫外光源のための計量」と題する特許文献1に記載されており、引用によりその全体が本明細書に組み入れられる。
【0039】
従って、要約すれば、光源100は増幅光ビーム110を生成し、この増幅光ビーム110が標的位置105にある標的材料に向けられて、標的材料をEUV領域の光を放射するプラズマに転換する。増幅光ビーム110は、以下で詳しく説明するように、レーザシステム115の設計及び特性に基づいて定められる特定の波長で動作する。さらに、増幅光ビーム110は、標的材料がレーザシステム115に十分なフィードバックを戻すときにコヒーレントなレーザ光を生じるレーザビームとなり得る。
【0040】
レーザシステム115は、1つ又はそれ以上の光増幅器、幾つかの光学部品(例えば、約20乃至50個の鏡)、及び、例えば、鏡、レンズ、及びプリズムなど幾つかの光学部品を含んだビーム送出システム119(ビーム移送システム120及び合焦アセンブリ122を含む)を含む。全てのこれら光学部品は、増幅光ビーム110の波長を包含する波長範囲を有して、増幅光ビーム110の効率的な形成、及び標的位置105への増幅光ビーム110の出力を可能にする。さらに、1つ又はそれ以上の光学部品は基板上に多層誘電体反射防止干渉膜を有するように形成することができる。レーザシステム115及びビーム送出システム119には多数の光学部品があるので、ガイドレーザが十分な出力を有さず、及び/又はレーザシステム115及びビーム送出システム119内の光学部品の動作波長範囲から離れ過ぎた動作波長を有する場合、又はレーザシステム115の増幅光ビーム110の波長から離れ過ぎた動作波長を有する場合、ガイドレーザを用いてレーザシステム115及びビーム送出システム119内の1つ又はそれ以上の部品を光軸調整することは困難となる可能性がある。さらに、ガイドレーザの波長を、レーザシステム115及びビーム送出システム119内の光学部品の波長範囲内に入るように選択して、ガイドレーザ・ビームの光学部品による損失が増幅光ビーム110の光学部品による損失と確実に同程度となるようにすることが好ましい。
【0041】
例えば、ヘリウム−ネオン・レーザは、レーザシステム115及びビーム送出システム119の部品の光軸調整に用いるのに実際的ではなく、その理由は、十分な出力を有さず(数ミリワットで動作する)、そして動作波長(632.8nm)がレーザシステム115及びビーム送出システム119内の光学部品の波長範囲の外にあるのでヘリウム−レーザは増幅光ビーム110と同じようには伝搬しないためである。
【0042】
具体的には、レーザシステム115及びビーム送出システム119内の光学部品の波長範囲は増幅光ビーム110の動作波長を包含する。従って、増幅光ビーム110が1つ又はそれ以上のCO
2光増幅器から生成される場合、増幅光ビーム110は約10600nmの波長を有することができる。例えば、
図2は、レーザシステム115又はビーム送出システム119内に見いだすことができる実例の透過型光学部品のパーセント透過率のグラフを示す。この場合、光学部品は一般に増幅光ビーム110を光路に沿って透過させるように設計されるので、特定の波長の透過率が高い程、光学部品はより効率的にその波長の増幅光ビームを伝搬する。例えば、透過型光学部品は、光学部品の透過率が90%を上回る波長範囲200を有し、この範囲200はレーザシステム115の動作波長205を包含する。光学部品は、例えば、部分透過鏡、レンズ又は曲面鏡のような合焦素子、ビームスプリッタなどとすることができる。他の実施形態において、波長範囲200は、透過率が、例えば、80%、95%、又は98%を上回る波長に定めることができる。
【0043】
別の例として、
図3はレーザシステム115又はビーム送出システム119内で用いることができる実例の反射型光学部品のパーセント反射率のグラフを示す。この場合、光学部品は増幅光ビーム110を反射するように設計されるので、特定の波長における反射率が高い程、光学部品はより効率的にその波長の増幅光ビームを反射する。例えば、反射型光学部品は、光学部品の反射率が90%を上回る波長範囲300を有し、この範囲300はレーザシステム115の動作波長205を包含する。他の実施形態において、波長範囲300は、反射率が、例えば、80%、95%、又は98%を上回る波長に定めることができる。
【0044】
レーザシステム115を光軸調整し、及び/又は増幅光ビーム110を標的位置に向けて操作するためのガイドレーザを選択する上での別の因子は、ガイドレーザが化学作用を有してはならないことである。
図4を参照すると、レーザシステム115の一般化利得プロファイルは、レーザシステム115はレーザシステム115が動作する明確な利得ピークを有することを示す。レーザシステム115は、これらのピークのうちの1つの、動作波長205と呼ぶことができるピークにおいて増幅光ビーム110を生成するように構成される。ガイドレーザはガイド波長(例えば、波長400又は405など)において動作する。ガイドレーザは、ガイドレーザから出力されるレーザビームのガイド波長(例えば、波長400又は405)がレーザシステム115の動作波長205とは異なる(即ち、完全には一致しない)場合に化学作用を有しない。この場合、ガイドレーザ・ビームは、レーザシステム115の利得には実質的に寄与しない、即ち、ガイドレーザ・ビームはレーザシステム115の光増幅器内のレーザ利得媒質の増幅帯域の外にある。さらに、ガイド波長(例えば、波長400又は405)が動作波長205と異なる場合、ガイドレーザを増幅光ビーム110から診断目的で分離することが技術的により実際的である。例えば、増幅光ビーム110は、その強度が何桁も変化し得る、例えば、レーザシステム115内部の利得媒質が反転しない場合のほぼゼロから、例えば、レーザシステム115内部の利得媒質が反転する場合のガイドレーザ175の出力の約1,000乃至1,000,000倍まで変化し得る。そのような出力の大きな変化を扱うことは、2つのビームがビーム分析モジュールに達したときに空間的に分離していない場合には非常に困難となり得る。従って、動作波長205とは異なるガイド波長を用いることが有用となり得る。ガイド波長が動作波長205に接近するが一致はしない場合、診断目的で、2つのビームを分離する光学機器、例えば、回折格子を用いてガイドレーザ・ビームを増幅光ビーム110から区別することが依然として可能であり得る。例えば、ガイド波長を動作波長からのある範囲内(例えば、1nm、10nm、又は100nm)にすることができる。従って、
図4の例において、ガイド波長400は動作波長205からの範囲450内にあり、ガイド波長405は動作波長205からの範囲455内にある。
図4に示す値及びグラフは単に概略的表現であり、範囲のスケールを反映するものではなく、いかにしてガイド波長を光源100の構成要素の設計に基づいて選択することができるかを示すための単なる例証のために与えたものである。
【0045】
再び
図2及び
図3を参照すると、例示的なガイド波長250、255、及び260が、動作波長205及び光学部品の波長範囲に関連して示される。これらの例示的なガイド波長250、255、及び260は単に例証目的のためだけに示したものであり、ガイド波長を選択するときに上記の制約条件、即ち、ガイド波長が光学部品の定められた波長範囲内にあり、しかし動作波長205とは異なるという条件に従う限り、任意の波長をガイド波長に選択することができることに留意されたい。
【0046】
さらに、レーザシステム115が高出力レーザシステムである場合、レーザシステム115の動作出力の変化に伴って、レーザシステム115及びビーム送出システム119内の光学部品の局所的な加熱のために、アライメントが変化する可能性がある。
【0047】
光源100は、上で識別したこれらの問題の全てを考慮に入れて配置し設計されたガイドレーザ175を含む。従って、ガイドレーザ175は、レーザシステム115の動作波長とは異なり、且つレーザシステム115及び/又はビーム送出システム119内の光学部品の波長範囲に入るガイド波長を有するガイドレーザ・ビームを生成する。さらに、ガイドレーザ175のガイドレーザ・ビームは、光軸調整する必要のある光学部品を通過するのに十分な出力を有する必要がある。ガイド波長が動作波長205から遠く離れ、且つ光学部品の波長範囲の外にある場合、ガイドレーザをより高出力で動作させ得ることも可能であるが、このようにガイドレーザを動作させることは、ガイドレーザが光学部品の波長範囲の外で駆動されるときに生じる効率の低下により必要な出力量が非線形的に(例えば、指数関数的に)増加するために、好ましくない。
【0048】
図1に示し、以下で
図5−
図7に関連して詳しく論じるように、ガイドレーザ175は、第1の実施176において、レーザシステム115内の部品を光軸調整するために、例えば、レーザシステム115の1つの光増幅器を別の光増幅器と光軸調整するために用いることができる。この実施176において、ガイドレーザ175は、光源100の初期セットアップ中、且つチャンバ130内でのEUV生成の前に部品を光軸調整するのに用いることができる。チャンバ130内でのEUV生成には、増幅光ビーム110を生成することばかりでなく、増幅光ビーム110を標的位置105に向けて方向付け、標的材料に当てて標的材料をEUV領域内で放射するプラズマに転換させることが必要である。さらに、この実施176において、ガイドレーザ175はまた、ビーム送出システム119内の部品を光軸調整し、増幅光ビーム110を、ビーム送出システム119を通して標的位置105に至るように操作するのに用いることができる。従って、この実施176において、ガイドレーザ175は、レーザシステム115の利得媒質が反転しているがコヒーレントレーザ発振を起こしていない(レーザ空洞が存在しない場合)間に、又はチャンバ130内でのEUV生成中に(レーザ空洞が存在し、レーザシステムがコヒーレントレーザ発振を起こしている場合)光学部品及び増幅光ビーム110を光軸調整するのに用いることができる。利得媒質が反転している間、反転利得媒質内で起り得るが非反転利得媒質中には現れないレンズ効果を打ち消すように光軸調整が行われる。
【0049】
また
図1に示し、以下で
図8に関して詳しく論じるように、ガイドレーザ175は第2の実施177において、ビーム送出システム119内の光学部品を光軸調整し、増幅光ビーム110を標的位置105に向けて操作するのに用いることができる。この実施177においてガイドレーザ175は、レーザシステム115の利得媒質が反転しているが、コヒーレントレーザ発振を起こしていない間に、又は、レーザ空洞が存在してレーザシステムがコヒーレントレーザ発振を起こしている場合にチャンバ130内でのEUV生成中ではない間に、光学部品及び増幅光ビーム110を光軸調整するのに用いることができる。
【0050】
図5を参照すると、ガイドレーザ175は第1の実施176において、セットアップ中且つ標的位置105におけるEUV生成の前に、レーザシステム515の光学部品を光軸調整するために、又は、標的位置105におけるEUV生成中にレーザシステム515及びビーム送出システム119の光学部品を光軸調整して増幅光ビーム110を標的位置105に向けて操作するために用いられる。
【0051】
レーザシステム515は1つ又はそれ以上の光増幅器500、505、及び510を有し、各々の光増幅器が、例えば所望の波長(動作波長)λ
0を高利得で光学的に増幅する機能のある利得媒質を有するように設計される。具体的には、各々の光増幅器500、505、及び510は、他のチャンバと直列に配置されたチャンバとし、各チャンバがそれ自体の利得媒質、励起源、例えば、電極、並びに、例えば、鏡、レンズ及び窓などの光学部品を有するようにすることができる。例えば、光増幅器500、505、及び510は、利得媒質としてCO
2を含む充填気体を含むことができ、約9100nm及び約11000nmの間の波長において、そして、特に利得が1000より大きいか又はそれに等しい約10600nmにおいて光を増幅することができる。CO
2光増幅器500、505、510はまた、高出力において水などの冷却システムを含むことができる。3つの光増幅器500、505、510を図示したが、この実施においては、わずか1つの増幅器又は3つより多い増幅器を用いることも可能である。幾つかの実施において、各々のCO
2光増幅器は、8個の鏡で折り返される10メートルの増幅器長を有するRF励起の軸流CO
2レーザキューブとすることができる。
【0052】
レーザシステム515は、隣り合う光増幅器500と505及び505と510の間に、それぞれ配置され、各光増幅器からの増幅光を次の光増幅器に導き方向付ける、1つ又はそれ以上の光接続システム520及び525を含むことができる。ビーム送出システム119は、増幅光ビーム110を、標的材料540が配置される(少なくともある時間の間)標的位置に向けて操作する。
【0053】
各々の光増幅器500、505、及び510は、レーザ空洞(共振器)鏡を有しないように設計することができ、その結果、それだけをセットアップするときは、増幅光ビームを、利得媒質中に一回を越えて通過させるのに必要な光学部品を含まない。それでも、前述のように、レーザ空洞は以下のように形成され得る。標的材料540の液滴が標的位置に配置される場合(明瞭にするためにビーム送出システム119及びチャンバ130の細部を省略した
図5に示すように)、光増幅器500、505、及び510から自然放射され、増幅光ビーム110に沿って標的位置105に向けて方向付けられた光子は、標的材料540によって散乱されることができ、散乱された光子の一部は光路545に入ることができ、そこで光増幅器500、505、及び510を通して逆に進む。レーザシステム515は、光増幅器500、505、及び510からの光路545上の光子を受け取り、その光子を、標的材料540との次の相互作用のために、逆向きに光増幅器500、505、及び510を通して方向付ける光学素子535を含むことができ、EUV光放射プラズマを生成することができる。光学素子535は、例えば、平面鏡、曲面鏡、位相共役鏡、又は、約10600nmの波長に対して約95%の反射率を有するコーナー反射鏡とすることができる。
【0054】
従って、ガイドレーザ175は第1の実施176において、レーザシステム515の光学部品を、例えば、セットアップ中且つ標的位置105におけるEUV生成の前に、光軸調整するのに用いることができる。ガイドレーザ175は、
図5に示すように、ガイドレーザ・ビーム550を光学素子535の裏面を通し、次いで光増幅器500を通して送ることによってレーザシステム515に結合させることができる。光学素子505はその前面においてガイド波長の光に対するより低い反射率を有し、その結果ガイド波長においてより高い透過性を有するので、光学素子535を通してガイドレーザ・ビーム550を方向付けることが実際的となる。代替的に、光軸調整中に光学素子535をレーザシステム515から取り除き、ガイドレーザ・ビーム550を、直接光増幅器500を通して送ることにより、ガイドレーザ・ビーム550をレーザシステム515内に結合させることができる。この場合、レーザシステム515は増幅光ビームとしてコヒーレントレーザ・ビームを生成しないことになる。
【0055】
いずれの場合にも、ガイドレーザ・ビーム550は光増幅器500に向けて方向付けられ、各増幅器505、510は光増幅器500と光軸調整される。任意の適切な光軸調整技法を用いることができる。例えば、技術者は、ガイドレーザ175からのガイドレーザ・ビーム550を光増幅器505の出力部において技術者が観測又は検出するまで光接続システム520及び525を移動させることができる。このことを、光学素子535からビーム送出システム119を通るチェーン内の各光学部品に対して行うことができる。
【0056】
また前述のように、ガイドレーザ175は、第1の実施176において、ビーム送出システム119の光学部品を光軸調整し、例えば、標的位置におけるEUV生成中に増幅光ビーム110を、ビーム送出システム119を通して標的位置105に向けて操作するために用いることができる。この場合、ガイドレーザ・ビーム550は、
図5に示すように、それを光学素子535の裏面を通し、次いで光増幅器チェーン500、505、510を通して送ることによって、レーザシステム515内に結合させることができる。この時点で、レーザシステム515の光学部品は、既にセットアップ中に光軸調整されているので、ここで光増幅器510から出力されるガイドレーザ・ビームを用いてビーム送出システム119内の光学部品を光軸調整することができる。さらに、EUV生成中に、ガイドレーザ175を用いて増幅光ビーム110を標的位置105に向けて操作し合焦させることができる。
【0057】
ガイドレーザ175は十分な出力を有し、その波長は上記の基準を用いて選択されるのでガイドレーザ・ビーム550は光学素子535から標的位置105までの全光路を通して検出可能な十分な出力を伴って伝搬することができ、それでもなお、増幅光ビーム110に対する光路に沿って起こり得る乱れに敏感であり、その敏感さが光軸調整の助けとなる。
【0058】
また
図6を参照すると、
図5のビーム送出システム119内で実施することができるビーム移送システム620及び合焦アセンブリ622の細部が示される。円錐型隔壁150がチャンバ130内に配置されてチャンバ130を2つのコンパートメント600と605に分離し、それでもなおコンパートメント600と605の間の流体連通を維持する。コンパートメント600は合焦アセンブリ622を収容するコンパートメントである。レーザ入射窓610はチャンバ130を密封すると同時に増幅光ビーム110がコンパートメント600に入ることができるようにする。レーザ入射窓610は、プラズマ生成デブリが発生し得る標的位置105との直接的な見通し線内に入らないように、そして標的位置105近傍の高温に対する露出を減らために標的位置105から十分に遠くなるように配置することができる。
【0059】
合焦アセンブリ622は、コンパートメント600内に配置された合焦及び操作アセンブリ625を含むことができる。合焦及び操作アセンブリ625は、1つ又はそれ以上の鏡、プリズム、レンズなどを含むことができ、増幅光ビームを焦点に合焦させる(例えば、増幅光ビーム110を標的位置105に合焦させる)ように配置された合焦光学素子を含む。この実施において、合焦及び操作アセンブリ625の合焦光学素子は、軸外し放物面鏡とすることができて増幅光ビーム110を標的位置105の焦点に合焦させるのに用いられる鏡630を含む。合焦及び操作アセンブリ625はまた、1つ又はそれ以上の鏡、プリズム、レンズなどを含むことができ、合焦光学素子によってチャンバ130内の所望の位置に確立される焦点を操作するように配置された操作光学素子を含むことができる。操作光学素子は、平面鏡635を2次元内で独立に動かすことができるチップチルト・アクチュエータ640上に取り付けられた平面鏡635を含むことができる。チップチルト・アクチュエータ640によって可能になる焦点の2次元移動に加えて、矢印645の方向の焦点の移動は、矢印645によって示される方向に平行の、合焦及び操作アセンブリ625の選択された移動によって得ることができる。
【0060】
さらに、ビーム移送システム620は、1つ又はそれ以上の鏡、プリズム、又はレンズなどを含むことができ、増幅光ビーム110の合焦出力を調節するように配置される。例えば、ビーム移送システム620は、折り返し式望遠鏡として一般に知られる光学配置にある2つの球面鏡650及び655を含むことができる。鏡650、655の一方又は両方を、それぞれの方向矢印660、665に平行に選択的に移動させて合焦出力を調節することができる。ビーム移送システム620はまた、折り返し式望遠鏡機構からの増幅光ビーム110を合焦アセンブリ622内に方向付ける反射鏡670を含むことができる。合焦アセンブリ622はまた、反射鏡670からの増幅光ビームを受け取り、この増幅光ビームを合焦光学系(鏡630)に向けて方向付ける反射鏡675を含む。
【0061】
この設計において、ガイドレーザ175からのガイドレーザ・ビーム550を用いて既にレーザシステム515内の光学部品を光軸調整しているので、ここでガイドレーザ175(具体的にはガイドレーザ・ビーム550)を用いて、ビーム送出システム119をレーザシステム515と光軸調整し、ビーム送出システム119内の種々の光学部品を互いに光軸調整して増幅光ビーム110を標的位置105に向けて操作することができる。
【0062】
ひとたびこれらの光学部品が光軸調整されると、例えば、EUV生成中に、ガイドレーザ・ビーム550を用いて増幅光ビーム110を、ビーム送出システム119を通して標的位置105に向けて操作することができる。前述のように、ガイド波長は、動作波長205から空間的に移動させて、ガイドレーザ・ビーム550と増幅光ビーム110の間の診断目的のための分離を可能にするように選択される。
【0063】
例えば、ガイドレーザ・ビーム550を標的位置105への標的材料の送出の間の時間と同期させることによる時間的分離を用いて、ガイドレーザ・ビーム550を増幅光ビーム110から分離することも可能である。前述のように、レーザシステム515はパルスモードで動作することができ、その結果レーザシステム515は増幅光ビーム110のパルスを短い繰り返し時間間隔で生成する。従って、診断計測値は、レーザシステム515がパルスを生成せずにガイドレーザ175からのガイドレーザ・ビーム550のみが標的位置に達する瞬間に取得することができる。ガイドレーザ・ビーム550を同期させる1つの方法は、ガイドレーザ・ビーム550の光路内にチョッパ輪を挿入して、チョッパ輪が、標的位置105への標的材料の送出の間の時間に、ガイドレーザ・ビーム550を通過させて標的位置105に達するようにし、しかし標的位置105への標的材料の送出中にはガイドレーザ・ビーム550を遮断するようにすることである。或いは、ガイドレーザ175は、レーザシステム515のパルスとパルスの間にパルスを生成するように構成することも可能である。いずれの場合にも、診断計測値はレーザシステム515がパルスを生成しない間に取得されることになる。
【0064】
他の実施においてガイドレーザ・ビーム550は、ガイドレーザ・ビーム550又は増幅光ビーム110のうちの一方を透過させると同時にガイドレーザ・ビーム550又は増幅光ビーム110のうちの他方を反射する二色性フィルタ又は鏡などの二色性光学デバイスを用いて、増幅光ビーム110から分離することができる。そのようなシステムは2009年12月15日に出願された整理番号002−017001/2009−0027−01の「極端紫外光源のための計量」と題する特許文献1に記載されている。
【0065】
ガイドレーザ・ビーム550は、標的位置105への標的材料の送出中に(従ってEUV生成中に)標的位置105における他の診断テストを実施するのに用いることができる。ガイドレーザ・ビーム550は、EUV生成中及びEUV生成の間に常にサンプリングされる。このサンプリングから得られる情報は、例えば、合焦アセンブリ622内の光学部品を細かく調整してビーム合焦鏡630が標的位置105において最良のスポット品質をもたらすために用いることができる。
【0066】
図7を参照すると、別の実施においてレーザシステム715は、主発信器(MO)700及び1つ又はそれ以上の電力増幅器720、725、730(PAと呼ぶ)を有する、軸流RF励起CO
2レーザとすることができる。このような構成はMOPA構成と呼ばれる。
【0067】
MO700はシード光ビーム735をPA720に供給する。主発信器700は、中心波長及び帯域幅などのパラメータを微調整することができる。主発信器700は、比較的低い出力エネルギー及び高繰返し速度を有する、例えば約100kHz動作が可能な、QスィッチMOとすることができる。MO700からのシード光ビーム735は、PA720、725、及び730のチェーンによって増幅され、次いでビーム送出システム119によって成形され合焦されて、標的位置105に達することができる。例えば、主発信器及び3つの電力増幅器を有する適切なCO
2レーザ装置(MO−PA1−PA2−PA3構成)は、引用によりその全内容が本明細書に組み入れられる2005年6月29日出願の「LPPEUV光源駆動レーザシステム」と題する特許文献2に開示されている。
【0068】
代替的に、レーザシステム115は、標的材料が光学的空洞の1つの鏡として働くいわゆる「自動ターゲッティング」レーザシステムとして構成することができる。幾つかの「自動ターゲッティング」構成において、主発信器は不要となり得る。自動ターゲッティング・レーザシステムは、引用によりその全内容が本明細書に組み入れられる2006年10月13日出願の「EUV光源用の駆動レーザ送出システム」と題する特許文献3に開示され特許請求されている。
【0069】
ビーム送出システム119は、増幅光ビームを必要に応じて修正して、チャンバ130内に結合させる。前述のように、ビーム送出システム119は、1つ又はそれ以上の鏡、プリズム、レンズなどを含むことができ、これらは、チャンバ130から出る前に増幅光ビームの合焦出力を調節するように配置される。鏡、プリズム、レンズは、レーザシステム715からの増幅光ビームをチャンバ130内に向けて曲げる又は方向付けるのに用いることができる。ビーム送出システムの一例が特許文献4に記載されている。
【0070】
前述のように、ガイドレーザ175は第1の実施176において、例えば、セットアップ中且つ標的位置105におけるEUV生成の前に、レーザシステム715の光学部品を光軸調整するのに用いることができる。ガイドレーザ・ビーム750(ガイドレーザ175からの)は、
図7に示すように、主発信器700の出力部にあるビームスプリッタ755を通して送ることによってレーザシステム715内に結合させることができる。この場合、ガイドレーザ・ビーム750はビームスプリッタ755で反射されるが、主発信器700からの出力ビームはビームスプリッタ755を透過するので、ガイドレーザ・ビーム750及び主発信器出力ビームの両方がPA720に入射する。従ってガイドレーザ・ビーム750を用いて、PA720、725、730の各々を相互に及びMO700に対して光軸調整し、さらにビーム送出システム119内の光学部品を光軸調整することができる。
【0071】
また前述のように、ガイドレーザ175は付加的に又は代替的に第1の実施176において、ビーム送出システム119の光学部品を光軸調整するため、及び、増幅光ビーム110を、例えば標的位置105におけるEUV生成中に、ビーム送出システム119を通して標的位置105に向けて操作するために用いることができる。この場合、ガイドレーザ・ビーム750は、
図7に示すように、ビームスプリッタ755を通して送ることによってレーザシステム715内に結合させることができる。ガイドレーザ・ビーム750は十分な出力を有し、その波長は前述の基準を用いて選択されるので、ガイドレーザ・ビーム750は、ビームスプリッタ755から標的位置105までの全光路を通して伝搬することができ、それでもなお、増幅光ビーム110に対する光路に沿って起こり得る乱れに敏感であり、そこでそのような敏感さが光軸調整の助けとなる。
【0072】
図8を参照すると、ガイドレーザ175が第2の実施177においてビーム送出システム120の光学部品を光軸調整するため、及び、標的位置105におけるEUV生成中に増幅光ビーム110を標的位置に向けて操作するために用いられる。第2の実施177においてガイドレーザ175は、レーザシステム115内の光学部品の光軸調整には用いられないことになり、それゆえに第2の実施177はEUV生成中及び初期セットアップの後にのみ用いることができる。ガイドレーザ175から出力されたガイドレーザ・ビーム850は、チャンバ130を密封すると同時にガイドレーザ・ビーム850がビーム送出システム119内に入ることを可能にする窓855を通してビーム送出システム119内に結合させることができる。前述のように、チャンバ130は2つのコンパートメントを含み、このうちの1つのコンパートメントはビーム送出システム119の少なくとも一部分を含み、他のコンパートメントは標的位置105を含む。
【0073】
ガイドレーザ175は、光増幅器内の利得媒質として、CO
2を含み約9100乃至約11000nm、特に約10600nmの波長の光を増幅することができる充填気体を含むレーザシステム115に関して前述した基準に適合するものを選択することができる。第1の実施においてガイドレーザ175は、量子カスケード技術に基づく広範囲に調節可能な中赤外外部空洞レーザとする。このようなレーザは、例えば、約8100nmの波長に調節することができ、この波長はCO
2増幅器の動作波長に近く、そしてCO
2増幅器のセットアップに用いることができる光学部品の波長範囲内にある。そのような量子カスケードレーザは、カリフォルニア州ポーウェイ所在のDaylight Solutionsから購入することができる。第2の実施においてガイドレーザ175は、回折格子調整型又は無回折格子調整型とすることができ、空洞内の特別の光学系及び/又はCO
2同位体気体充填を選択することによって、レーザシステム115内に用いられるCO
2光増幅器とは異なるようにすることができる選択可能な波長範囲を有するチューナブルCO
2レーザとする。そのようなレーザはワシントン州メリーズビル所在のAcess Laser Companyから購入することができる。例えば、ガイドレーザ175が、利得媒質としてCO
2同位体を用いたCO
2レーザである場合、ガイド波長は約11000nm、又は9000nmから11000nmまでの間の任意の波長に選ぶことができる。
【0074】
他の実施は、添付の特許請求の範囲に含まれる。
図1を参照すると、他の型のレーザシステム115、例えば、固体レーザ、引用によりその全体が本明細書に組み入れられる特許文献5、特許文献6、及び特許文献7に示されるような2チャンバ発信器−増幅器システム(MOPA又はMOPRAとも呼ばれる)、単一チャンバを有するエキシマレーザ、2つ又はそれ以上のチャンバ、例えば、1つの発信器チャンバ及び1つ又はそれ以上の増幅チャンバ(増幅チャンバは並列又は直列)を有するエキシマレーザ、主発信器/電力発信器(MOPO)構成、電力発信器/電力増幅器(POPA)構成、又は、1つ又はそれ以上のエキシマ又はフッ素分子増幅器又は発信器チャンバにシードする固体レーザなどが適切であり得る。
【0075】
図1には、検出器165は標的位置105から直接光を受けるように配置して示したが、検出器165は、代替的に中間焦点145において又はその下流で、或いはどこか他の位置で光をサンプリングするように配置することができる。
【0076】
一般に、標的材料の照射はまた標的位置105においてデブリを発生する可能性があり、このデブリが集光鏡135を含むがそれに限定されない光学素子の表面を汚染する可能性がある。従って、引用によりその全体が本明細書に組み入れられる特許文献8に記載されているように、標的材料の成分と反応することができる気体エッチャント源をチャンバ130内に導入して、光学素子の表面に付着した汚染物質を取り除くことができる。例えば、1つの用途において、標的材料はSnを含むことができ、エッチャントはHBr、Br
2、Cl
2、HCl、H
2、HCF
3、又はこれら化合物のいずれかの組合せとすることができる。
【0077】
光源100はまた、光学素子の表面上での付着標的材料とエッチャントの間の化学反応を起こさせ及び/又は反応速度を高める1つ又はそれ以上のヒータ170を含むことができる。例えば、HBrエッチャントと共に用いられるSnを含んだ標的材料に対して、ヒータ170は、光学素子、例えば、動作レーザシステム115とビーム送出システム119の間の界面にあるレーザ入射窓、の汚染表面を、150乃至400℃範囲の温度に、そして幾つかの用途に対しては400℃を越える温度に加熱することができる。Liを含むプラズマ標的材料に対しては、ヒータ170は1つ又はそれ以上の光学素子の表面を約400乃至550℃の範囲の温度に加熱してLiを表面から蒸発させる、即ち、必ずしもエッチャントを使用せずに蒸発させるように設計することができる。適切であり得るヒータの型には、放射ヒータ、マイクロ波ヒータ、RFヒータ、オームヒータ、又はこれらヒータの組合せが含まれる。ヒータは特定の光学素子表面に向けることができ、それゆえに指向性とすることができ、又は非指向性としてチャンバ130全体若しくはチャンバ130の実質的な部分を加熱できるようにすることができる。
【0078】
例えば、ビーム送出システム119は、必ずしもチャンバ130と流体連通する必要はなく、むしろビーム送出システム119は、分離チャンバとして設計することができる。
図9を参照すると、他の実施において、合焦アセンブリ122は、引用によりその全体が本明細書に組み入れられる2009年12月15日に出願された整理番号002−018001/2009−0029−01の「極端紫外光源のためのビーム移送システム」と題する特許文献9に記載されているように、反射合焦素子900、及び、二色性ミラー905を含んだ計量システムを含む。ビーム送出システム119は、レーザシステム115と標的位置105の間に配置され、ビーム送出システム119は、ビーム移送システム120及び合焦アセンブリ122を含む。ビーム移送システム120はレーザシステム115によって生成された増幅光ビーム910を受け取り、増幅光ビーム910を方向転換させ拡大し、次いで拡大し方向転換された増幅光ビーム910を合焦アセンブリに向けて方向付ける。合焦アセンブリ122は、増幅光ビーム910を標的位置105に合焦させる。
【0079】
ビーム移送システム120は、増幅光ビーム910の方向を変える鏡(折返し鏡と呼ばれることもある)などの一組の光学部品を含む。折返し鏡は、増幅光ビーム910を反射するのに適した任意の基板及びコーティングで作られたものとすることができる。
【0080】
合焦アセンブリ122は、最後の折返し鏡915及び屈折合焦素子900を含み、この屈折合焦素子900は鏡915から反射された増幅光ビーム910を標的位置105に合焦させるように構成され配置された収束レンズである。屈折合焦素子900は、増幅光ビーム910の波長において透過させることができる材料から作られたものとする。幾つかの実施において、屈折合焦素子900はZnSe製のものとする。
【0081】
合焦アセンブリ122はまた、屈折合焦素子900からの反射光920を捕捉する計量システム124を含むことができる。この捕捉された光を用いて、増幅光ビーム910及びガイドレーザ175からの光の性質を分析し、例えば、増幅光ビーム910の位置を決定して増幅光ビーム910の焦点距離の変化をモニタすることができる。具体的には、捕捉された光は、屈折合焦素子900上の増幅光ビーム910の位置に関する情報をもたらすため、及び、屈折合焦素子900の温度変化(例えば加熱)による屈折合焦素子900の焦点距離の変化をモニタするために用いることができる。
【0082】
屈折合焦素子900は、鏡915から反射された増幅光ビーム910の、標的位置105の所望の位置への合焦を可能にする又は促進するためのメニスカスレンズとすることができる。さらに、屈折合焦素子900は、その各々の表面上に非球面補正を含むことができ、強く収束した透過増幅光ビーム910、及び屈折合焦素子900から反射された強く収束した光920を同時に供給する。屈折合焦素子900は、放物面の軸上セグメントである少なくとも1つの表面を有するように設計することができる。
【0083】
屈折合焦素子900は、赤外用途に用いることができる材料であるZnSeで作成されたものとすることができる。ZnSeは0.6乃至20μmの透過範囲を有し、高出力増幅器から生成された高出力光ビーム用に用いることができる。ZnSeは、電磁スペクトルの赤(具体的には赤外)末端において低い熱吸収を有する。屈折合焦素子900用に用いることができる他の材料には、それらに限定されないが、ガリウムヒ素(GaAs)、ゲルマニウム、シリコン、赤外放射を透過させる非晶質材料(AMTIR)、及びダイアモンドが含まれる。
【0084】
ビーム移送システム120内の折返し鏡の少なくとも幾つか及び鏡915は、主コントローラ155によって制御できるモータにより作動される可動架台を用いて可動にすることができ、標的位置105に対する増幅光ビーム910の能動的位置決め制御をもたらすことができる。可動折返し鏡は、屈折合焦素子900上の増幅光ビーム910の位置、及び標的材料における増幅光ビーム910の焦点を維持するように調節することができる。
【0085】
二色性ミラー905は、光920の診断部分を、各々の部分の波長に基づいて1つの部分の実質的に全てを透過させ、他の部分の実質的に全てを反射することによって分離するように構成される。以下で説明する実施において、二色性ミラー905は実質的に全ての(即ち、約99%を上回る)ガイドレーザ・ビームを透過させ、実質的に全ての(即ち、約99%を上回る)増幅光ビームを反射する。しかし、二色性ミラーは実質的に全部の(即ち、約99%を上回る)増幅光ビームを透過させ、実質的に全部の(即ち、約99%を上回る)ガイドレーザ・ビームを反射するように構成することができることに留意されたい。