特許第5871446号(P5871446)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ケーエルエー−テンカー コーポレイションの特許一覧

特許5871446試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステム
<>
  • 特許5871446-試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステム 図000002
  • 特許5871446-試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステム 図000003
  • 特許5871446-試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステム 図000004
  • 特許5871446-試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステム 図000005
  • 特許5871446-試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステム 図000006
  • 特許5871446-試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステム 図000007
  • 特許5871446-試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステム 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5871446
(24)【登録日】2016年1月22日
(45)【発行日】2016年3月1日
(54)【発明の名称】試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステム
(51)【国際特許分類】
   G01N 21/88 20060101AFI20160216BHJP
   G01N 21/956 20060101ALI20160216BHJP
   G01N 23/225 20060101ALI20160216BHJP
   H01L 21/66 20060101ALI20160216BHJP
【FI】
   G01N21/88 J
   G01N21/956 A
   G01N23/225
   H01L21/66 J
【請求項の数】18
【全頁数】21
(21)【出願番号】特願2007-536825(P2007-536825)
(86)(22)【出願日】2005年10月12日
(65)【公表番号】特表2008-516259(P2008-516259A)
(43)【公表日】2008年5月15日
(86)【国際出願番号】US2005036598
(87)【国際公開番号】WO2006044426
(87)【国際公開日】20060427
【審査請求日】2008年10月6日
【審判番号】不服2013-10985(P2013-10985/J1)
【審判請求日】2013年6月12日
(31)【優先権主張番号】60/618,475
(32)【優先日】2004年10月12日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】500049141
【氏名又は名称】ケーエルエー−テンカー コーポレイション
(74)【代理人】
【識別番号】100064621
【弁理士】
【氏名又は名称】山川 政樹
(74)【代理人】
【識別番号】100098394
【弁理士】
【氏名又は名称】山川 茂樹
(72)【発明者】
【氏名】テー,チョウ,ヒューク
(72)【発明者】
【氏名】トレリイ,トマソ
(72)【発明者】
【氏名】デビット、ドミニク
(72)【発明者】
【氏名】ユング,チウマン
(72)【発明者】
【氏名】スコット,マイケル,ゴードン
(72)【発明者】
【氏名】バラスブラマニアン,ラリタ,エイ
(72)【発明者】
【氏名】ガオ,リシェング
(72)【発明者】
【氏名】ハング,トング
(72)【発明者】
【氏名】ザング,ジアンジン
(72)【発明者】
【氏名】コワルスキ,マイケル
(72)【発明者】
【氏名】オークレー,ジョナサン
【合議体】
【審判長】 尾崎 淳史
【審判官】 藤田 年彦
【審判官】 信田 昌男
(56)【参考文献】
【文献】 特開2000−162135(JP,A)
【文献】 特開2004−47939(JP,A)
【文献】 特開2001−256480(JP,A)
【文献】 特開2002−14054(JP,A)
【文献】 特開2003−317082(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/84-21/958
(57)【特許請求の範囲】
【請求項1】
コンピュータに実装された半自動欠陥分類方法であって、
試験体上で検出された個々の欠陥を、該個々の欠陥の一つまたはそれ以上の特性に基づいて、複数の欠陥グループへ自動的に割り付ける割付工程と、
該割付工程に続いて、該複数の欠陥グループについての情報をユーザに表示する表示工程と、
該ユーザの操作によって、該複数の欠陥グループのそれぞれに前記コンピュータによって提案された間違った欠陥グループの名称修正することを可能にする割付可能化工程と、
を含み、
該割付工程において、ユーザによる該個々の欠陥の該複数の欠陥グループへの一つずつの割り付けは行われず、
該情報は、該複数の欠陥グループのそれぞれに含まれている一つまたはそれ以上の代表的な欠陥についての情報を含み、
該表示工程は、該一つまたはそれ以上の代表的な欠陥と他の欠陥が該複数の欠陥グループに割り付けられるまで実行されず、
該割付可能化工程は、ユーザによる個々の欠陥画像のクリックおよびドラグによって、自動的に割り付けられた欠陥グループから他の欠陥グループへ個々の欠陥画像を移動させることを可能にし、それによって選択された個々の欠陥の属する欠陥グループを変更する工程を含み、
該割付工程、該表示工程、および該割付可能化工程は、コンピュータシステムによって実行される、ことを特徴とする方法。
【請求項2】
一つまたはそれ以上の特性は、欠陥特徴のベクトル、抽出された特徴、特徴の属性、またはそれらの何らかの組合せを含むこととする請求項1に記載の方法。
【請求項3】
一つまたはそれ以上の特性は、個々の欠陥の電子ビームレビューによって生成されたデータから判定されることとする請求項1に記載の方法。
【請求項4】
一つまたはそれ以上の特性は、個々の欠陥の電子ビームレビューによって生成されたデータと試験体の光学検査によって生成されたデータとの組合せから判定されることとする請求項1に記載の方法。
【請求項5】
欠陥グループは、一つまたはそれ以上の認識されていない特性を有する個々の欠陥に対する欠陥グループを含むこととする請求項1に記載の方法。
【請求項6】
欠陥グループは、光学検査によって検出されたが、電子ビームレビューによっては再検出されなかった個々の欠陥に対する欠陥グループを含むこととする請求項1に記載の方法。
【請求項7】
情報は、欠陥グループに対する可能性のある欠陥グループの名称を含むこととする請求項1に記載の方法。
【請求項8】
情報は、個々の欠陥のうちの一つまたはそれ以上についてのデータを含み、かつ、該データは、電子ビームレビューツールによって生成されることとする請求項1に記載の方法。
【請求項9】
情報は、個々の欠陥のうちの一つまたはそれ以上についてのデータを含み、かつ、該データは、光学検査ツールによって生成されることとする請求項1に記載の方法。
【請求項10】
前記割付可能化工程は、ユーザの操作によって、一つまたはそれ以上の追加の欠陥グループを作成させ、かつ、個々の欠陥のうちの一つまたはそれ以上を欠陥グループから追加の欠陥グループの一つまたはそれ以上へと移動させることを可能にする工程をさらに含むこととする請求項1に記載の方法。
【請求項11】
ユーザによる前記割付可能化工程の結果に基づいて訓練セットを生成する工程をさらに含むこととする請求項1に記載の方法。
【請求項12】
個々の欠陥、試験体、試験体上で行われたプロセス、または、それらの組合せを、ユーザによる前記割付可能化工程の結果に基づいて分析する工程をさらに含むこととする請求項1に記載の方法。
【請求項13】
ユーザによる前記割付可能化工程の結果に基づいて歩留管理決定を行なう工程をさらに含むこととする請求項1に記載の方法。
【請求項14】
コンピュータに実装された半自動欠陥分類方法であって、
該試験体上で検出された個々の欠陥を、該個々の欠陥の一つまたはそれ以上の特性に基づいて、複数の欠陥グループへ自動的に割り付ける割付工程と、
該割付工程に続いて、該複数の欠陥グループについての情報をユーザに表示する表示工程と、
該ユーザの操作によって、該複数の欠陥グループのそれぞれに前記コンピュータによって提案された間違った欠陥グループの名称修正することを可能にする工程と、
を含み、
該割付工程において、ユーザによる該個々の欠陥の該複数の欠陥グループへの一つずつの割り付けは行われず、
該情報が、該複数の欠陥グループのそれぞれに割り付けられた欠陥グループの名称を含み、該複数の欠陥グループのそれぞれに含まれている一つまたはそれ以上の代表的な欠陥についての情報を含み、
該表示工程は、該一つまたはそれ以上の代表的な欠陥と他の欠陥が該複数の欠陥グループに割り付けられるまで実行されず、
該複数の欠陥グループのそれぞれに割り付けられた分類を最終的に変更させることを可能にする工程は、ユーザによる個々の欠陥画像のクリックおよびドラグによって、自動的に割り付けられた欠陥グループから他の欠陥グループへ個々の欠陥画像を移動させることを可能にし、それによって選択された個々の欠陥の属する欠陥グループを変更する工程を含み、
該割付工程、該表示工程、および該割付可能化工程は、コンピュータシステムによって実行される、
ことを特徴とする方法。
【請求項15】
欠陥グループは、光学検査によって検出されたが、電子ビームレビューによっては再検出されなかった個々の欠陥に対する欠陥グループを含むこととする請求項14に記載の方法。
【請求項16】
半自動欠陥分類を実行するように構成されたシステムであって、
試験体上で検出された個々の欠陥を、該個々の欠陥の一つまたはそれ以上の特性に基づいて、複数の欠陥グループへ自動的に割り付けるために、プロセッサ上で実行可能なプログラム命令と、
該割り付けに続いて、上記複数の欠陥グループについての情報をユーザに表示し、かつ、該ユーザの操作によって、該複数の欠陥グループのそれぞれに前記コンピュータによって提案された間違った欠陥グループの名称修正することを可能にする割付可能化構成を有するユーザインタフェースと、
を含み、
該割り付けにおいて、ユーザによる該個々の欠陥の該複数の欠陥グループへの一つずつの割り付けは行われず、
該情報は、該複数の欠陥グループのそれぞれに含まれている一つまたはそれ以上の代表的な欠陥についての情報を含み、
該表示は、該一つまたはそれ以上の代表的な欠陥と他の欠陥が該複数の欠陥グループに割り付けられるまで実行されず、
上記割付可能化構成は、ユーザによる個々の欠陥画像のクリックおよびドラッグによって、自動的に割り付けられた欠陥グループから他の欠陥グループへ個々の欠陥画像を移動させることを可能にし、それによって選択された個々の欠陥の属する欠陥グループを変更する構成を含むことを特徴とするシステム。
【請求項17】
割付可能化構成は、ユーザが、プログラム命令によって欠陥グループのそれぞれに割り付けられた欠陥グループの名称を確認または拒否することを可能にする構成を含むこととする請求項16に記載のシステム。
【請求項18】
欠陥グループは、光学検査によって検出されたが、電子ビームレビューによっては再検出されなかった個々の欠陥に対する欠陥グループを含むこととする請求項16に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、試験体上の欠陥を分類するための、コンピュータに実装された方法およびシステムに関する。ある種の形態は、試験体上で検出された個々の欠陥が、個々の欠陥の一つまたはそれ以上の特性に基づいて割り付けられた欠陥グループに、ユーザが、分類を割り付けることを可能にする工程を含むコンピュータに実装された方法に関する。
【背景技術】
【0002】
以下の説明および例は、それらがこのセクションに含まれているからといって、それらが先行技術である、と認められるものではない。
【0003】
ウェーハ検査システムは、しばしば、各ウェーハ上に数千の異常(一般に、「事象」または「欠陥」と呼ばれている)を見出す。欠陥は、半導体ウェーハ製造中に生ずる場合がある構造上の傷、プロセス残留物、および外部汚染などの多くの形態を有している場合がある。ウェーハを作成するプロセスが進化するにつれ、興味ある欠陥のタイプは変化する。欠陥の重要性は、外観などのいくつかの要因、並びに、サイズおよび場所などの他の特性に左右される。
【0004】
したがって、ウェーハおよび他の試験体上で見出される欠陥を分類する工程は、いかなる種類の欠陥がウェーハ上に存在するかを判定する上で、また、興味ある欠陥のタイプと他の欠陥のタイプとを見分ける上で、ますます重要になって来ている。欠陥を分類する工程は、欠陥が実際の欠陥であるか、それとも、ニューサンス欠陥であるかを判定する工程を含む場合がある。ニューサンス欠陥は、一般に、検査中は欠陥であるように見えるが、実際には、欠陥性がない試験体の部分として定義できる。
【0005】
一般に、分類は、ウェーハ検査が完了した後で行われる。また、分類は、一般に、欠陥レビュー中に、または、欠陥レビュー後に行われる。欠陥レビューは、一般に、検査に使用されたツールとは異なるツールを用いて行なわれる。例えば、欠陥検出は、一般に、光学検査ツールを用いて行われるが、欠陥レビューは、一般に、電子ビームレビューツールを用いて行われる。しかしながら、欠陥レビューは、光学検査ツールよりもより高い倍率または解像度を有する光学レビューツールを用いて行われる場合がある。このやり方で、欠陥レビューツールは、可能な欠陥について、より詳細な情報を得るのに使用できる。そのようなものとして、欠陥レビューツールによって生成された情報は、欠陥分類に特に適している場合がある。
【0006】
過去において、欠陥分類は、いくつかの異なるやり方で行われて来た。例えば、欠陥分類は、オペレータが完全に手動で行なうことが可能である。一般に、オペレータには、各欠陥について、一度に一つずつ、順次、欠陥画像または他の欠陥データが与えられる。オペレータは、次いで、欠陥の外観、および、可能的には、他の特性(例えば、粗さ)に基づいて、欠陥に分類(例えば、ピット、粒子、など)を割り付ける。経験を積んだオペレータは、ウェーハ上の欠陥をかなり能率的に分類することができる。しかしながら、手動欠陥分類は、最も熟練し、かつ、経験を積んだオペレータによって行われても、受け入れがたいほど長い時間が掛かる。例えば、オペレータは、一般に、個々の欠陥を一度に一つずつ分類する。このやり方では、オペレータが、どんなに熟練していようとも、分類を行なうのに要する時間は、ウェーハ上で検出された欠陥の数に必然的に左右されることになる。さらに、多くの欠陥画像または他のデータを、次々と、繰り返しレビューすると、オペレータの疲労および集中力の喪失が必ず生じる。したがって、熟練したオペレータでも、用心深さの低下のため、欠陥を誤って分類する場合がある。さらに、特に上記のような手動欠陥分類は、非常に時間集約的であるため、欠陥をレビューし、かつ、分類するオペレータを雇用するのは、かなり高価である。
【発明の開示】
【発明が解決しようとする課題】
【0007】
手動欠陥分類用に現在使用されている方法には、かなり多数の欠点があるため、欠陥分類プロセスを自動化する努力が行なわれて来た。現在、いくつかの全自動欠陥分類(ADC)ツールが入手できる。一般に、これらのツールは、分類「レシピ」を使用して、欠陥分類を行なう。「レシピ」は、一般に、ツールによって行われるべき作業を定義し、かつ、ユーザによる要求に基づいて、ツールに与えられ、かつ、ツール上で走らせる一組の命令として定義できる。レシピは、一般に、適当なデータベースに組み込むことができる特定の欠陥クラスについての以前のデータを用いて生成される。最も簡単なインプリメンテーションでは、ADCツールは、未知の欠陥を、特定の欠陥クラスに含まれている欠陥と比較して、未知の欠陥が、どの欠陥クラスに最もよく類似しているかを判定する。ADCツールが、はるかにより複雑なアルゴリズムを使用して、未知の欠陥が、欠陥クラスのうちのどれに最もよく属しそうかを判定することができるのは、言うまでもない。
【0008】
ADCのコンセプトは、比較的簡単である。しかしながら、実行は、かなり複雑で困難であることが分かった。例えば、ADCレシピに適したデータベースを生成するには、一般に、ウェーハ検査および手動の欠陥分類(これは上記のように行なわれる場合がある)を行って、ウェーハ上に、各欠陥タイプを相当数発見しなければならない。各欠陥に対する特定のタイプのデータは、適当なデータベースに組み合わせることができる。ユーザは、データベースに含まれている欠陥データを選択することができる。この代表的な欠陥データのセットは、一般に、「訓練セット」と呼ばれる場合がある。上記のように生成されたデータベースは、かなり正確である場合があるが、データベースを生成するには、一般に時間が掛かり、かつ、費用が掛かる。また、ADCレシピは、訓練セット内の欠陥にある程度似たものにのみ正確である傾向が有るため、ADCレシピは、時間に亘って同じ種類の欠陥を生ずる実質的に同様のプロセスに対してのみ有用な場合がある。データベース内の欠陥との類似性が十分でない欠陥は、不正確に分類されるか、あるいは、全く分類されない場合がある。したがって、ADCレシピは、一般に、異なるプロセスまたは異なるタイプの試験体に対しては、使用できず、したがって、多くのこのようなレシピは、検査すべき欠陥および試験体に依存して生成される場合がある。そのようなものとして、ADCレシピの柔軟性の無さは、ADCのコストを増大させる場合があるが、これは、プロセッサデバイスが変わるごとに、ADCレシピを手動で更新しなければならない場合があるためである。また、多くの異なるADCレシピを生成するための時間および費用は、実質的に手が出ないほど長かったり高かったりする場合がある。
【0009】
上記の各種のタイプの欠陥分類法およびツールの欠点にもかかわらず、欠陥分類は、将来における半導体デバイスの製造において、その重要性が増すばかりであろう。例えば、欠陥分類は、半導体製造プロセスの問題を識別するのに使用できる。また、欠陥分類は、半導体デバイス設計の問題を識別するのに使用できる。したがって、欠陥分類の結果は、半導体プロセスおよび設計について歩留管理決定を行なうのに使用できるため、欠陥分類の正確さは、半導体製造の成功に直接的な影響を及ぼす場合がある。
【0010】
したがって、試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステムであって、比較的安価、迅速、正確、柔軟で、かつ、多くの異なるタイプのウェーハまたは他の試験体上の予期しない欠陥タイプに容易に対処できるシステムを開発するのが有利であると思われる。
【課題を解決するための手段】
【0011】
方法およびシステムの各種の形態についての以下の説明は、いかなる点においても、添付の請求項の主題を限定するものと解釈されるべきではない。
【0012】
本発明の一形態は、試験体上の欠陥を分類するための、コンピュータに実装された方法に関する。該方法は、試験体上で検出された個々の欠陥を、該個々の欠陥の一つまたはそれ以上の特性に基づいて、欠陥グループに割り付ける工程(割付工程)を含んでいる。一形態では、一つまたはそれ以上の特性は、欠陥特徴のベクトル、抽出された特徴、特徴の属性、またはそれらの何らかの組合せを含んでいる。いくつかの形態では、一つまたはそれ以上の特性は、個々の欠陥の電子ビームレビューによって生成されたデータから判定される。他の形態では、一つまたはそれ以上の特性は、個々の欠陥の電子ビームレビューによって生成されたデータと、試験体の光学検査によって生成されたデータとの組合せから判定される。
【0013】
一形態では、該方法は、試験体の一つまたはそれ以上の特性に基づいて、分類レシピを選択する工程を含んでいる。例えば、分類レシピは、試験体上に形成されつつあるデバイスに基づいて選択されてよい。異なる形態では、該方法は、試験体上で行われた一つまたはそれ以上のプロセスに基づいて分類レシピを選択する工程を含んでいる。両方の形態では、個々の欠陥を欠陥グループに割り付ける工程は、個々の欠陥を、分類レシピを用いて、欠陥グループに割り付ける工程を含んでいてよい。他の形態では、個々の欠陥を欠陥グループに割り付ける工程は、個々の欠陥を、自動欠陥分類コードを用いて、欠陥グループに割り付ける工程を含んでいる。代わりの形態では、個々の欠陥を欠陥グループに割り付ける工程は、個々の欠陥を、自然グループ化を用いて、欠陥グループに割り付ける工程を含んでいる。
【0014】
一形態では、欠陥グループは、一つまたはそれ以上の認識されていない特性を有する個々の欠陥に対する欠陥グループを含んでいる。別の形態では、欠陥グループは、検査によって検出されたが、レビューによっては再検出されなかった個々の欠陥に対する欠陥グループを含んでいる。
【0015】
該方法はまた、欠陥グループについての情報をユーザに表示する工程(表示工程)を含んでいる。いくつかの形態では、ユーザに表示される情報は、欠陥グループに対する有り得る分類を含んでいる。別の形態では、情報は、欠陥グループのそれぞれに含まれている一つまたはそれ以上の代表的な欠陥(例えば、非外れ値)についての情報を含んでいる。一追加の形態では、情報は、個々の欠陥のうちの一つまたはそれ以上についてのデータを含んでいる。データは、電子ビームレビューツールによって生成されてよい。別法として、または追加的に、データは、光学検査ツールによって生成されてよい。
【0016】
また、該方法は、ユーザの操作によって、欠陥グループのそれぞれに分類を割り付けることを可能にする工程(割付可能化工程)を含んでいる。該方法は、ユーザが、個々の欠陥のうちの一つまたはそれ以上を、欠陥グループのうちの一つから欠陥グループのうちの他の一つへと移動させることを可能にする工程を含んでいてもよい。いくつかの形態では、該方法は、ユーザの操作によって、一つまたはそれ以上の追加の欠陥グループを作成させ、かつ、個々の欠陥のうちの一つまたはそれ以上を、欠陥グループから追加の欠陥のグループ一つまたはそれ以上に移動させることを可能にする工程を含んでいる。
【0017】
さらなる形態では、該方法は、ユーザによって割り付けられた分類に基づいて、分類レシピを生成する工程を含んでいる。このやり方で、該方法は、「スクラッチから」分類レシピを生成する工程を含んでいてよい。分類レシピは、半自動欠陥分類法および自動欠陥分類法で使用することができる。別の形態では、個々の欠陥を欠陥グループに割り付ける工程は、個々の欠陥を、分類レシピを用いて、欠陥グループに割り付ける工程を含んでいる。分類レシピは、上記のように選択されてよい。該方法のこのような形態はまた、ユーザによって割り付けられた分類に基づいて分類レシピを変更する工程を含んでいてもよい。このやり方で、該方法は、既存の分類レシピを「修正する工程」または「更新する工程」を含んでいてよい。追加の形態では、該方法は、ユーザによって割り付けられた分類に基づいて、訓練セットを生成する工程を含んでいる。
【0018】
該方法は、ユーザによって割り付けられた分類に基づいて、個々の欠陥、試験体、試験体上で行なわれたプロセス、またはそれらの組合せを分析する工程を含んでいてもよい。また、該方法は、ユーザによって割り付けられた分類に基づいて、歩留管理決定を行なう工程を含んでいてよい。上記の該方法の形態のそれぞれは、ここで述べる任意の他の工程(複数も可)を含んでいてよい。
【0019】
別の形態は、試験体上の欠陥を分類するための、異なるコンピュータに実装された方法に関する。本形態は、個々の欠陥の一つまたはそれ以上の特性に基づいて、試験体上で検出された個々の欠陥を欠陥グループに割り付ける工程を含んでいる。個々の欠陥は、上記のように、欠陥グループに割り付けられてよい。該方法は、欠陥グループについての情報をユーザに表示する工程も含んでいる。該情報は、欠陥グループのそれぞれに割り付けられた分類を含んでいる。また、該方法は、ユーザが、欠陥グループのそれぞれに割り付けられた分類を確認または変更することを可能にする工程を含んでいる。この方法は、ここで述べる任意の他の工程(複数も可)を含んでいてもよい。
【0020】
追加の形態は、試験体上の欠陥を分類するよう構成されたシステムに関する。該システムは、試験体上で検出された個々の欠陥を、個々の欠陥の一つまたはそれ以上の特性に基づいて、欠陥グループに割り付けるために、プロセッサ上で実行可能なプログラム命令を含んでいる。該システムはまた、欠陥グループについての情報をユーザに表示し、かつ、ユーザの操作によって、欠陥グループのそれぞれに分類を割り付けさせることを可能にする構成(割付可能化構成)を有するユーザインタフェースも含んでいる。
【0021】
一形態では、ユーザが、欠陥グループに分類を割り付けることを可能にする構成は、ユーザが、プログラム命令によって欠陥グループのそれぞれに割り付けられた分類を確認または拒否することを可能にする構成を含んでいる。別の形態では、ユーザが、分類を欠陥グループに割り付けることを可能にする構成は、ユーザが、プログラム命令によって欠陥グループのそれぞれに割り付けられた分類を変更することを可能にする構成を含んでいる。上記のシステムの形態のそれぞれは、さらにここで述べるように構成されてよい.
【発明を実施するための最良の形態】
【0022】
以下の好適な実施形態の詳細な説明により、また、添付の図面を参照することにより、本発明のさらなる利点が、当業者には、明らかになるであろう。
【0023】
本発明は、各種の変更態様および代わりの形態が可能であるが、その特定の実施形態を、図面の例により示し、ここに詳述することになる。図面は、一定の縮尺ではない場合がある。しかしながら、図面およびそれに対する詳細な説明は、本発明を、開示された特定の形態に限定することを意図したものではなく、反対に、添付のクレームによって定義された本発明の精神および範囲内にある全ての変更態様、同等物および代替物を包含することを意図していることを理解されたい。
【0024】
術語「欠陥」は、ここで使用される場合、試験体上で見出される場合がある任意の異常を指す。術語「試験体」は、ここで使用される場合、ウェーハ、あるいは、レチクル(これは、一般に「マスク」とも呼ばれる場合がある)などの技術上既知の任意の他の試験体を指すのに用いられる。ここで、ウェーハに関して、実施形態を説明しているが、該実施形態は、技術上既知の任意の他の試験体上で検出された欠陥を分類するのに用いてよいことを理解すべきである。
【0025】
術語「ウェーハ」は、ここで使用される場合、一般に、半導体または非半導体材料から形成された基板を指す。このような半導体または非半導体材料の例としては、単結晶シリコン、砒化ガリウム、および燐化インジウムなどが挙げられるが、それらに限定されない。このような基板は、一般に、半導体製造設備において見出され、かつ(あるいは)、処理されてよい。
【0026】
ウェーハは、基板(例えば、バージンウェーハ)のみを含んでいてよい。別法として、ウェーハは、基板上に形成された一つまたはそれ以上の層を含んでいてよい。例えば、このような層は、レジスト、誘電体材料、および導体材料を含んでいてよいが、それらに限定されない。レジストは、ホトリソグラフィー技法、電子ビームリソグラフィー技法、または、X線リソグラフィー技法によってパターン形成することができる任意の材料を含んでいてよい。誘電体材料の例としては、二酸化シリコン、窒化シリコン、酸窒化シリコン、および窒化チタンなどが挙げられるが、それらに限定されない。誘電体材料の追加の例としては、「低K」誘電体材料(例えば、Applied Materials(登録商標), Inc., Santa Clara, Californiaから市販されているBlack Diamond、およびNovellus Systems, Inc., San Jose, Californiaから市販されているCORAL)、「超低K」誘電体材料(例えば、「キセロゲル」)、および「高K」誘電体材料(例えば、五酸化タンタル)などが挙げられる。また、導体材料の例としては、アルミニウム、ポリシリコン、および銅などが挙げられるが、それらに限定されない。
【0027】
ウェーハ上に形成された一つまたはそれ以上の層は、パターン形成されていてよく、あるいは、パターン形成されていなくてよい。例えば、ウェーハは、それぞれが繰り返し可能なパターン形体を有する複数のダイを含んでいてよい。材料のこのような層の形成および処理は、最終的に、完成した半導体デバイスをもたらしてよい。そのようなものとして、ウェーハは、その上に、完全な半導体デバイスの全ての層が形成されていない基板、または、その上に、完全な半導体デバイスの全ての層が形成されている基板を含んでいてよい。術語「半導体デバイス」は、ここで、術語「集積回路」と可換的に使用される。また、微小電気機械(MEMS)デバイスなどの他のデバイスを、ウェーハ上に形成してもよい。
【0028】
ここで述べる方法は、一般に、半自動欠陥分類法として説明することができる。ここで述べる方法はまた、パワーアシステド分類(PAC)法としても説明することができる。例えば、ここで述べる方法は、一般に、欠陥の一つまたはそれ以上の特性に基づく欠陥の自動グループ化を含んでいる。したがって、ユーザは、欠陥のグループを分類することができる。このような一つの例では、ユーザは、欠陥についての何らかの情報と共に、欠陥のグループに対する、有り得る、もしくは可能な、分類を提供されてよい。ユーザは、次いで、提案された分類を確認または拒否してよい。また、ユーザは、提案された分類を変更してよい。このやり方で、該方法は、自動および手動工程の両方を含んでいる。
【0029】
ここで述べる方法およびシステムには、上記の欠陥分類法およびシステムなど、他の欠陥分類法およびシステム(例えば、手動分類または自動分類)に比べて、利点が有る。例えば、ここで述べる方法は、欠陥グループに最終的に割り付けられる分類に対して、有意なユーザコントロールを与える。しかしながら、ユーザは、現在利用できる手動分類法における場合のように個々の欠陥を一度に一つずつ分類する必要なしに、欠陥を分類することができる。そのようなものとして、ここで述べる方法は、手動分類法よりもはるかに迅速で、能率的で、かつ、安価である。また、ここで述べる方法およびシステムは、個々の欠陥のグループ化および欠陥グループに割り付けられる分類を修正する能力をユーザに与えるため、ここで述べる方法およびシステムは、自動欠陥分類(ADC)法より正確である一方、ADCの利点のうちの多くもの(例えば、高い処理量)を与えることができる。
【0030】
さらに、ここで述べる方法およびシステムは、該方法の結果に基づいて分類レシピをダイナミックに作成し、かつ、更新するのに使用することができる。このやり方で、該方法およびシステムは、半自動および(または)ADCに使用することができる分類レシピを作成するのに使用することができ、これは、他のやり方で作成される分類レシピより正確な場合がある。さらに、ここで述べる方法およびシステムは、グループ化に使用される欠陥の特性(複数も可)が、試験体、興味の有る欠陥、および(または)試験体上で行われるプロセスについての情報に基づいて選択できる点で、ADC法より柔軟である。さらに、ここで述べる方法およびシステムは、光学検査および(または)レビューツール、電子ビームレビューツール、または光学検査および(または)レビューツール、および、電子ビームレビューツールの両方から得たデータの組合せによって生成されるデータなどの各種の欠陥データに使用することができる。欠陥を分類するための該方法およびシステムの追加の利点およびさらなる詳細については、以下の説明で述べる。
【0031】
ここで図面を見ると、図1は、試験体上の欠陥を分類するためのコンピュータに実装された方法の一実施形態を示している。図1に示した工程は、該方法の実践にとって必須ではないことに気付く。図1に示されている方法からは、一つまたはそれ以上の工程を省略してよく、かつ(あるいは)、追加してよく、かつ、該方法は、なお、本実施形態の範囲内で実践することができる。
【0032】
該方法は、ユーザが、分類すべき一組の結果(図示せず)を選択する時に開始してよい。一組の結果は、ここでさらに述べるユーザインタフェースを用いて選択してよい。該方法には、工程10に示すように、試験体上で検出された個々の欠陥を、欠陥グループに割り付ける工程が含まれている。個々の欠陥は、個々の欠陥の一つまたはそれ以上の特性に基づいて、欠陥グループに割り付けられる。一実施形態では、欠陥をグループ化するのに使用される欠陥の一つまたはそれ以上の特性は、欠陥特徴のベクトル、抽出された特徴、特徴の属性、またはそれらの何らかの組合せを含んでいる。欠陥特徴のベクトル、抽出された特徴、および特徴の属性は、技術上既知のそれらのうちの任意のものを含んでいてよい。また、欠陥特徴のベクトル、抽出された特徴、および特徴の属性は、技術上既知の任意のやり方で判定されてよい。抽出された特徴のうちの一つまたはそれ以上はまた、重み付けしてもよく、かつ、抽出された特徴は、Baker他へのPCT Publication No. WO 01/40145(これは、あたかもここで完全に記述されているかのように、引用によって組み込まれている)に示されているところに従って比較されてよい。さらに、欠陥の抽出された特徴は、HanへのU.S. Patent No. 6,104,835(これは、あたかもここで完全に記述されているかのように、引用によって組み込まれている)に示されている知識データベースなどのデータベースにおける分類された欠陥の特徴に比較されてよい。
【0033】
欠陥の一つまたはそれ以上の特性は、個々の欠陥の電子ビームレビューによって生成されたデータから判定されてよい。個々の欠陥の電子ビームレビューは、eV300走査型電子顕微鏡(SEM)レビューツール(これは、KLA-Tencor(登録商標), San Jose, Californiaから市販されている)などの電子ビームレビューツール、または、技術上既知の任意の他の適当な電子ビームレビューツールで行われてよい。異なる実施形態では、欠陥の一つまたはそれ以上の特性は、個々の欠陥の光学レビューによって生成されたデータから判定される。光学レビューは、2360およびAIT XPシステム(これらは共に、KLA-Tencorから市販されている)などの光学高解像度イメージングシステム、または、技術上既知の任意の他の光学レビューツールを用いて行われてよい。また別の実施形態では、欠陥の一つまたはそれ以上の特性は、個々の欠陥の電子ビームレビューによって生成されたデータと試験体の光学検査によって生成されたデータとの組合せから判定されてよい。光学検査は、上記の光学システム、並びに、技術上既知の任意の他の光学検査システムを用いて行われてよい。
【0034】
欠陥は、技術上既知の任意の方法を用いてグループ化してよい。しかしながら、他の方法およびシステムと異なり、ここで述べる方法およびシステムは、利用できるデータに基づいて欠陥をグループ化するやり方が、さまざまであってよい。言い換えれば、コンピュータに実装された方法の挙動は、データを処理するのに利用できるツールに基づいて変化してよい。例えば、検査された試験体に対する既存の分類レシピがない場合は、該方法は、現在の試験体の検査およびレビューから利用できるデータを基にすることになる。個々の欠陥が割り付けられる欠陥のグループは、ユーザからの入力(例えば、ユーザが興味あることを示した欠陥の数またはタイプ)を基に判定されてよい。対照的に、試験体上で形成された層に対する既存の分類レシピが、検査の前に存在する場合は、該方法は、欠陥グループ化のためのパラメータを設定する際に、その分類レシピを出発点として使用することになる。また、検査されている試験体上の層に形成されたデバイスに対して、既存の分類レシピが存在する場合は、該方法は、その分類レシピを、欠陥のグループ化のために使用することになる。
【0035】
このやり方で、該方法は、工程12に示すように、個々の欠陥を欠陥グループに割り付けるのに使用される分類レシピを選択する工程を含んでいてよい。分類レシピは、試験体の一つまたはそれ以上の特性および(または)試験体上で行われる一つまたはそれ以上のプロセスに基づいて選択されてよい。また、分類レシピの選択は、検査されているデバイスレベルに割り付けられているのと同じ名称を分類レシピに割り付けることによって、自動化してよい。他の実施形態では、欠陥グループに個々の欠陥を割り付ける工程は、個々の欠陥を、ADCコードを用いて、欠陥グループに割り付ける工程を含んでいてよい。異なる実施形態では、個々の欠陥を欠陥グループに割り付ける工程は、個々の欠陥を、自然グループ化を用いて、欠陥グループに割り付ける工程を含んでいてよい。
【0036】
該方法はまた、工程14に示すように、欠陥グループについての情報をユーザに表示する工程も含んでいる。該情報は、ユーザインタフェース(例えば、ここでさらに述べるものなどの)によって表示されてよい。好ましくは、欠陥グループについての情報は、ユーザが、欠陥グループに対する個々の欠陥の割付けの結果を容易にレビューでき、かつ、評価できるような、また、ユーザが、個々の欠陥および欠陥グループに対して、一つまたはそれ以上の機能を行なうことができるようなやり方で、表示される。
【0037】
例えば、該情報は、欠陥グループに対する、有り得る、もしくは、可能な、分類を含んでいてよい。また、該情報は、欠陥グループのうちの全てに対して、有り得る分類を含んでいなくてよい。例えば、欠陥グループは、一つまたはそれ以上の認識されていない特性を有する個々の欠陥に対する欠陥グループを含んでいてよい。言い換えれば、欠陥グループのうちの一つは、可能な欠陥グループのうちの一つに割り付けることができなかった個々の欠陥を含んでいてよい。この欠陥グループは、「未知の」として示すか、あるいは、これらの欠陥が認識されなかったことを示す何らか他の適当な欠陥グループ識別子で示してよい。また、欠陥グループは、検査によって検出されたが、レビューによっては再検出されなかった個々の欠陥に対する欠陥グループを含んでいてよい。このような欠陥は、実際の欠陥であってもよく、あるいは、そうでなくてもよい。したがって、これらの個々の欠陥は、ユーザレビューに対して、共にグループ化され、かつ、識別されてよい。
【0038】
ユーザに表示される情報は、欠陥グループのそれぞれに含まれている一つまたはそれ以上の代表的な欠陥についての情報含んでいてもよい。代表的な欠陥(複数も可)は、非外れ値欠陥を含んでいてよい。このやり方で、代表的な欠陥は、一般に、欠陥グループ全体を代表する個々の欠陥を含んでいてよい。また、ユーザに対して2つ以上の代表的な欠陥を表示する工程は、欠陥グループにおける欠陥の平均的な特性の推定値をユーザに与え、それによって、ユーザが、可能的に、欠陥グループ分類のより正確な査定を行なえるようにしてよい。
【0039】
また、ユーザに表示される欠陥グループのうちの一つまたはそれ以上における個々の欠陥のうちの一つまたはそれ以上についてのデータは、電子ビームレビューツールによって生成されるデータを含んでいてよい。このやり方で、表示されるデータは、SEM画像(例えば、トップダウンSEM画像および(または)横断面SEM画像)を含んでいてよい。このタイプのデータは、ユーザに対して、欠陥についての実質的な量の情報を視覚的に与えることになる以上、ユーザに表示される情報は、好ましくは、高倍率画像となるであろう。追加的に、または別法として、ユーザに表示されるデータは、光学検査ツールによって生成されるデータを含んでいてよい。例えば、光学検査データは、レビューによって再検出されなかった個々の欠陥に対する電子ビームレビューデータの代わりに、あるいは、それに加えて、表示されてよい。このやり方で、検出された欠陥が、実際に存在するかどうか判定する場合は、ユーザは、欠陥が存在することを示したデータ(例えば、検査データ)、および、欠陥が存在しなかったことを示データ(例えば、レビューデータ)の両方をレビューしてよい。
【0040】
該方法は、さらに、工程16に示すように、ユーザが、欠陥グループのそれぞれに分類を割り付けることを可能にする工程を含んでいる。欠陥グループのそれぞれに分類を割り付ける工程は、コンピュータに実装された方法によって提案された分類を確認または拒否する工程を含んでいてよい。また、欠陥グループのそれぞれに分類を割り付ける工程は、コンピュータに実装された方法によって提案された一つまたはそれ以上の分類を変更する工程を含んでいてよい。このやり方で、ここで述べる方法およびシステムは、ユーザに対して、割り付けられた分類に対する最終的なコントロールを与える。したがって、ユーザは、コンピュータに実装された方法によって、間違って提案された任意の分類を修正することができる。
【0041】
該方法は、工程18に示すように、ユーザが、個々の欠陥のうちの一つまたはそれ以上を、欠陥グループのうちの一つから、欠陥グループのうちの別のものに移動させることを可能にする工程も含んでいてよい。このやり方で、ユーザは、コンピュータに実装された方法によって行われた、欠陥グループに対する個々の欠陥の任意の不正確な割り付けを修正してよい。また、該方法は、工程20に示すように、ユーザが、一つまたはそれ以上の追加の欠陥グループを作成すること、および、個々の欠陥のうちの一つまたはそれ以上を、欠陥グループから一つまたはそれ以上の追加の欠陥グループに移動させることを可能にする工程を含んでいてよい。新しい欠陥グループを作成する能力は、例えば、試験体上で予期しない欠陥タイプが検出された場合、特に有用である場合がある。ユーザは、特定の欠陥グループのサブグループに対して、新しい欠陥グループを作成することもできる。
【0042】
いくつかの実施形態では、該方法は、工程22に示すように、分類レシピを生成する工程を含んでいてもよい。分類レシピは、ユーザによって割り付けられた分類に基づいて生成されてよい。このような分類レシピは、半自動欠陥分類法(例えば、ここで述べるもの)で使用されてよい。また、分類レシピは、ADC法で使用されてよい。このやり方で、分類結果は、欠陥の自動分類またはビンニングを創成および改良するのに使用されてよい。
【0043】
別の実施形態では、分類レシピが、個々の欠陥を欠陥グループに割り付けるのに使用される場合、該方法は、工程24に示すように、分類レシピを変更する工程を含んでいてよい。分類レシピは、ユーザによって割り付けられた分類に基づいて変更されてよい。このやり方で、分類の結果は、初期グループ化のために使用される分類レシピを改良するのに使用することができ、これは、次いで、他のウェーハに対する直ぐ後の欠陥分類に使用することができる。一モードでは、特権を与えられたユーザは、分類レシピの改良を案内することが許されてよい。別の作業スタイルでは、分類レシピは、自動的に変更されてよい。このやり方で、該方法は、実際の欠陥データ、実際の分類結果、およびユーザからのフィードバックに基づいて、既存の分類レシピを生成および更新するのに使用し、それによって、他のやり方で生成される分類レシピよりも「よりスマート」となる分類レシピを作成してよい。
【0044】
例えば、図2は、手動分類が完了した推定時間と、ここで述べる方法を用いて分類が完了した推定時間とを、ウェーハ数について示す。図2に示した時間は、各ウェーハ上の欠陥100個が分類された時間を示し、これは、ウェーハを横切る時間を正規化するのに役立つ。欠陥が分類されたウェーハは、検査およびレビューに先立って同様に処理される。手動分類は、標準の欠陥画像ギャラリーを用いて、シニアオペレータによって、上記のように行われた。ウェーハは、順次処理された(すなわち、欠陥は、ウェーハ1上で分類され、次いで、欠陥は、ウェーハ2上で分類された、など)。
【0045】
図2に示すように、最初の3つのウェーハの場合は、手動分類が完了した時間、および、ここで述べる分類法(図2で、「ePAC」または「電子ビームパワーアシステド分類」と呼ぶ)で分類が完了した時間の両方が、減少する。この、オペレータが手動分類を完了した時間の減少は、少なくとも部分的には、オペレータが、次第に、欠陥を分類するにつれて、オペレータが、ウェーハ上の欠陥にますます慣れたことによっている。ここで述べる分類法で分類が完了した時間の減少も、少なくとも部分的には、より多くの欠陥が分類されるにつれて、該方法が、ウェーハ上の欠陥にますます慣れたことによっている。言い換えれば、コンピュータに実装された方法は、ウェーハによって、「よりスマート」になり、かつ、迅速になる。この、コンピュータに実装された方法の増大する熟知性は、少なくとも部分的には、欠陥が分類されるにつれて、分類レシピが更新されることによっている。
【0046】
図2でさらに示すように、オペレータがウェーハ3〜6上の欠陥の分類を完了した時間は、実質的に一定であった。この一定の時間は、オペレータの経験レベルおよび欠陥に対する熟知性は、時間に亘って増大するが、ある点で、完了までの最短時間に達するという事実を反映している。この完了までの最短時間は、分類される欠陥数によって変化することになるが、これは、オペレータが、一度に一つずつ、各欠陥を分類しなければならないためである。対照的に、コンピュータに実装された方法で、ウェーハ3〜6上の欠陥分類が完了した時間は、減少し続ける。図2に示すように、コンピュータに実装された方法で、ウェーハ1〜6上の欠陥分類が完了した時間は、指数関数的に減少した。このような実質的な欠陥分類時間の減少は、コンピュータに実装された方法が、欠陥が分類される各ウェーハに対して、上記のように「よりスマート」になることを反映している。また、図2に示すように、オペレータが、最短の分類時間に達した場合でも、コンピュータに実装された方法は、より速くなり続ける。このやり方で、ここで述べるコンピュータに実装された方法の処理量は、手動分類の処理量より実質的により高い場合がある。
【0047】
図3に示すように、ここで述べるコンピュータに実装された方法はまた、欠陥が分類されるウェーハの数が増大するにつれて、より正確になる。例えば、図3に示すように、成功率、もしくは、コンピュータに実装された方法によって正確に分類された欠陥のパーセンテージは、ウェーハ4個に亘って、実質的に60%から90%に増大した。また、コンピュータに実装された方法の誤分類指数は、欠陥が分類された各ウェーハと共に減少した。このやり方で、ここで述べるコンピュータに実装された方法は、時間に亘ってより迅速になるばかりでなく、時間に亘ってより正確になる。そのようなものとして、コンピュータに実装された方法は、ADC法およびツールで相当数のウェーハ上の欠陥を分類した後で、それらに使用するのに特に適している場合がある。
【0048】
該方法は、図1の工程26に示すように、ユーザによって割り付けられた分類に基づいて、訓練セットを生成する工程を含んでいてもよい。訓練セットは、一般に、分類レシピにおけるパラメータを定義するのに使用でき、かつ、欠陥分類を確認するのに使用できる欠陥についての一組のデータとして定義できる。ここで述べる方法における訓練セットは、ユーザが、欠陥グループに対してフィードバックを与えた後、自動的に生成され得る。また、訓練セットは、2つ以上の試験体に対する欠陥データを含んでいてよい。データが訓練セットに含まれている試験体には、試験体上で同じプロセスが行われた後で検査された試験体が含まれていてよい。また、該方法は、完全に新しい訓練セットを生成する工程、または、既存の訓練セットを更新する工程を含んでいてよい。このやり方で、コンピュータに実装された方法は、欠陥分類から収集された知識の「メモリ」を維持し、それによって、知識の連続的な構築を行なうことができる。さらに、訓練セットは、同じタイプのより多くの欠陥を含むことによって欠陥グループを定義するパラメータの正確さを増大させることができる。
【0049】
いくつかの実施形態では、該方法は、工程28に示すように、個々の欠陥、試験体、試験体上で行われたプロセス、またはそれらの組合せを分析する工程を含んでいてよい。個々の欠陥を分析する工程は、例えば、個々の欠陥をデポジショニングする工程(例えば、個々の欠陥が、修理できるか、あるいは、修理すべきかどうかを判定する工程)を含んでいてよい。試験体を分析する工程は、試験体をデポジショニングする工程(例えば、試験体が清掃できるか、あるいは、別様に修理できるかを判定する工程、試験体を再処理すべきかどうかを判定する工程、試験体上で行われるであろう一つまたはそれ以上のプロセスの一つまたはそれ以上のパラメータを判定する工程、など)を含んでいてよい。試験体上で行われたプロセスを分析する工程は、例えば、プロセスに対して使用されたプロセスツールを維持すべきかどうかを判定する工程、プロセスが、仕様外れであるかどうかを判定し、もしそうであれば、プロセスのパラメータを修正して、プロセスを再び仕様に合わせるべきかどうかを判定する工程、プロセスの一つまたはそれ以上のパラメータに対して、修正期間を判定する工程、などを含んでいてよい。このやり方で、ここで述べる方法は、試験体上に存在する欠陥のタイプについての貴重な情報を生成する以上、該方法は、この情報を用いて、欠陥、試験体、および(または)プロセスに関して事情によく通じた決定を行なう工程を含んでいてよい。
【0050】
同様のやり方で、該方法は、工程30に示すように、歩留管理決定を行なう工程を含んでいてよい。歩留管理決定は、ユーザによって割り付けられた分類に基づいていてよい。歩留管理決定は、試験体上で行われたプロセスを、変更すべきかどうか、かつ、どのように変更すべきかを決定する工程を含んでいてよい。好ましくは、該プロセスは、該プロセスが行われる他の試験体上に存在する欠陥の数を減らすよう変更されることになろう。歩留管理決定は、試験体上で行われるであろうプロセスを変更すべきかどうか、かつ、どのように変更すべきかを決定する工程を含んでいてよい。例えば、試験体上で行われるであろうプロセスは、試験体の欠陥および他の特性を補償するよう変更してよい。また、歩留管理決定は、試験体上に形成されつつあるデバイスの設計を変更すべきかどうか、かつ、どのように変更すべきかを決定する工程を含んでいてよい。例えば、欠陥が、該方法によって、試験体のあるレベル上に形成された形体のコーナーラウンディングとして分類される場合は、該方法は、光学近接効果補正(OPC)特徴を設計に加えるべきであることを示してよい。OPC特徴が、設計に既に含まれている場合は、該方法は、設計におけるOPC特徴を変更すべきであることを示してよい。明らかに、これは、集積回路設計などの設計をいかに変更してよいかの一例であり、設計は、多数の他のやり方のうちの任意のやり方で変更してよい。
【0051】
したがって、上記の方法の実施形態は、分類プロセスに対する準備の際に、半導体ウェーハ上の欠陥をグループ化することによって、より迅速で、より容易、かつ、より確実な半手動分類を与えるものである。このグループ化は、欠陥の現在の特徴および(または)属性を利用し、かつ、ウェーハを検査した他のツールからの特徴および(または)属性を用いるものである。コンピュータに実装された方法はまた、分類プロセスを通して、ユーザを「パワーアシスト」することも行なう。また、ここで述べる分類法は、自動化された分類(高解像度ツール用)および情報の共有による検査者のためのビンニングへのユーザフレンドリな足がかりとして使用できる。手動分類および欠陥画像または他の欠陥データは、コンピュータに実装された方法の分類完了時に、データ分析での使用を目的として、(例えば、KLARFまたは他の標準ファイルの形式で)送信されてよい。
【0052】
図4は、試験体40上の欠陥を分類するよう構成されたシステムの一実施形態を示す。特に、図4に示されているシステム実施形態は、ここで述べるコンピュータに実装された方法のうちの一つまたはそれ以上を行なうのに特に適している場合がある。図4に示したシステムは、試験体40(これは、ウェーハであってよい)上の欠陥をレビューするよう構成されている。しかしながら、該システムは、任意の他の試験体(例えば、レチクル)上の欠陥のレビューに適した技術上既知の任意の構成を有していてよい。
【0053】
該システムは、プロセッサ42およびキャリア媒体44を含んでいる。キャリア媒体44は、プログラム命令46(これは、プロセッサ42上で実行可能である)を含んでいる。プログラム命令は、試験体上で検出された個々の欠陥を、個々の欠陥の一つまたはそれ以上の特性に基づいて、欠陥グループに割り付けるために、プロセッサ上で実行可能である。個々の欠陥を欠陥グループに割り付ける工程は、上記のように行われてよい。プログラム命令は、上記の方法の実施形態のうちの任意の実施形態の、追加の工程のうちの任意の工程を行なうために、実行可能であってもよい。プログラム命令は、さらに上記のように構成されていてよい。
【0054】
該方法(例えば、ここで記述する方法)を実行するプログラム命令は、キャリア媒体を越えて伝送され、あるいは、キャリア媒体上に格納されていてよい。キャリア媒体は、伝送媒体(例えば、ワイヤー、ケーブル、または無線伝送リンク)であってよい。キャリア媒体は、記憶媒体(例えば、読取り専用メモリ、ランダムアクセスメモリ、磁気または光ディスク、あるいは、磁気テープ)であってもよい。
【0055】
プログラム命令は、とりわけ、手続きベースの技法、コンポーネントベースの技法、および(または)、オブジェクト指向技法を含む、各種のやり方のうちの任意のやり方で、実行されてよい。例えば、プログラム命令は、必要に応じて、ActiveX(登録商標)コントロール、C++オブジェクト、JavaBeans(登録商標)、Microsoft Foundation Class(「MFC」)、あるいは、他の技術または方法論を用いて、実行されてよい。
【0056】
プロセッサは、パーソナルコンピュータシステム、メインフレームコンピュータシステム、ワークステーション、ネットワーク機器、インターネット機器、パーソナルデジタルアシスタント(「PDA」)、テレビジョンシステムまたは他のデバイスを含む、各種の形態を取ってよい。一般に、術語「コンピュータシステム」は、一つまたはそれ以上のプロセッサ(これは、メモリ媒体からの命令を実行する)を有する任意のデバイスを包含するよう広く定義されてよい。
【0057】
該システムはまた、ユーザインタフェース48も含んでおり、これは、ユーザに欠陥グループについての情報を表示し、かつ、ユーザが、欠陥グループのそれぞれに分類を割り付けることを可能にするよう構成されている。ユーザに表示される情報は、ここで述べる情報のうちの任意の情報を含んでいてよい。ユーザが、分類を割り付けることを可能にする工程は、一実施形態では、プログラム命令によって欠陥グループのそれぞれに割り付けられた分類を、ユーザが、確認または拒否することを可能にする工程を含んでいてよい。別の実施形態では、ユーザが、分類を割り付けることを可能にする工程は、プログラム命令によって欠陥グループのそれぞれに割り付けられた分類を、ユーザが、変更することを可能にする工程を含んでいてよい。ユーザインタフェースは、ここで述べる追加の工程(例えば、ユーザが、欠陥を一つの欠陥グループから別のそれに移動させることを可能にする工程)を行なうよう構成されていてよい。適当なユーザインタフェースの、例スクリーンショットを、以下にさらに説明する。ユーザインタフェースは、ここで述べる機能を行なうのに適した任意のやり方で実行されてよい。
【0058】
該システムは、スタンドアロン・ワークステーションとして構成されていてよい。言い換えれば、該システムは、プロセッサ42、キャリア媒体44、プログラム命令46、ユーザインタフェース48、および任意の他のコンピュータ関連構成要素(例えば、ネットワーキングハードウェア、など)を含んでいてよいが、いかなる検査または欠陥レビュー関連のハードウェア(例えば、光学サブシステム)も含んでいない。別法として、該システムは、検査および(または)レビューツール50を含んでいてよい。ツール50は、試験体40上の欠陥をレビューし、かつ、試験体上の欠陥についての情報を含む、試験体についてのレビューデータを生成するよう構成されていてよい。いくつかの実施形態では、ツール50は、試験体40を検査し、かつ、試験体に対する検査データを生成するよう構成されていてよい。
【0059】
ツール50は、プロセッサ42に結合されていてよい。例えば、ツール50の一つまたはそれ以上の構成要素は、伝送媒体(図示せず)によって、プロセッサ42に結合されていてよい。伝送媒体は、「有線」および「無線」部分を含んでいてよい。別の例では、ツール50の検出器52は、出力54を生成するよう構成されていてよい。この出力は、伝送媒体を越えて、検出器52からプロセッサ42に伝送されてよい。いくつかの実施形態では、この出力は、検出器とプロセッサとの間に結合された一つまたはそれ以上の電子構成要素を介して伝送されてもよい。したがって、出力54は、ツールからプロセッサに伝送され、また、プログラム命令46は、試験体上の欠陥を、出力54に含まれるレビューデータを用いて分類するために、プロセッサ上で実行可能であってよい。
【0060】
検査および(または)レビューツール50は、技術上既知の任意の技法を用いて欠陥レビューを行なうよう構成されていてよい。例えば、このツールは、試験体の高解像度画像を形成するよう構成されていてよい。また、このツールは、欠陥レビュー中、その上に試験体40を配設してよいステージ56を含んでいる。このステージは、技術上既知の任意の適当な機械的またはロボチックアセンブリを含んでいてよい。このツールは、光源58も含んでいる。光源58は、技術上既知の任意の適当な光源を含んでいてよい。また、このツールは、ビームスプリッタ60を含んでいてよく、これは、光源58からの光を、試験体40の上面に略垂直な角度で、試験体40に向けるよう構成されている。このビームスプリッタは、技術上既知の任意の適当なビームスプリッタを含んでいてよい。このツールは、さらに、検出器52を含んでおり、これは、ビームスプリッタ60によって伝送される光を検出するよう構成されている。この検出器はまた、出力52を生成するよう構成されている。この検出器は、技術上既知の任意の適当な検出器を含んでいてよい。
【0061】
図4は、検査および(または)レビューツールの一つの一般的な構成を示すが、このツールは、技術上既知の任意の適当な構成を有していてよいことを理解すべきである。例えば、検査および(または)レビューツール50を、2360ツール、AITファミリーのツールのうちの一つ、またはeV300 SEMレビューツールなどの非光学欠陥レビューツール(これらは全て、KLA-Tencorから市販されている)の測定ヘッドで置き換えてよい。また、この検査および(または)レビューツールは、エリプソメーターベースのシステム、スキャタロメーターベースのシステムなどの他の光学システム、および(または)、CD SEM並びにeS25およびeS30システム(これらはKLA-Tencorから市販されている)などの電子ビームシステムを含んでいてよい。
【0062】
図5は、上記の機能のうちの一つまたはそれ以上を行なうのに使用できるユーザインタフェースの一例を示すスクリーンショットである。ユーザインタフェースの右上側70は、個々の欠陥が割り付けられた欠陥グループおよび各グループに割り付けられた欠陥の数を表示する。この例では、欠陥が割り付けられた欠陥グループの数は、ユーザによって選択されたグループの数に基づいている。このような欠陥グループは、特に、分類レシピが、コンピュータに実装された方法によって利用できない場合に、適当である場合がある。
【0063】
ユーザインタフェースの左側72は、代表的な欠陥のサンプルのみを示すことによって欠陥のグループ化を表示する。言い換えれば、このスクリーンショットでは、特徴スペースの代表的な例が示してあり、この例では、外れ値欠陥は、表示されていない。図5のスクリーンショットでは、有り得るクラス1および有り得るクラス2の代表的な欠陥が、ユーザインタフェースの左側に示されており、かつ、他の有り得るクラスにおける代表的な欠陥は、ユーザインタフェースの左側72の右のスクロールバーを用いて表示できる。この例では、個々の欠陥は、欠陥画像を用いて表示されているが、個々の欠陥は、技術上既知の任意の他の欠陥データ、および特にユーザにとって有意味な任意の他の欠陥データと共に、ユーザに表示することが可能であることを理解すべきである。また、図5のユーザインタフェースでは、1種類の欠陥画像しか示していないが、ユーザインタフェースは、2種類以上の欠陥データをユーザに表示することが可能であることを理解すべきである。
【0064】
図5に示すように、ユーザは、ユーザインタフェースの左側に示されている欠陥グループ(例えば、クラス1および2)に割り付けられた欠陥を選択することができ、かつ、選択された欠陥を、ユーザインタフェースの右下側74の、他の欠陥グループ(例えば、クラス3)に移動することができる。欠陥のこのような移動は、個々の欠陥画像をクリックし、かつ、ドラグすることによって容易に成し遂げることができる。同様のやり方で、ユーザは、ユーザインタフェースの右側で、一つまたはそれ以上の追加の欠陥グループを作成することができる。また、ユーザは、上記のように、個々の欠陥を追加の欠陥グループ(複数も可)に割り付けることができる。このやり方で、ユーザは、カスタマイズされたギャラリーで操作して、欠陥をグループ化から分類「ビン」に移動させることができる。さらに、分類プロセス全体を通して、該システムによって、ユーザの努力なしに、追加の欠陥をユーザインタフェースに移動および(または)ビンニングすることができる。ユーザは、任意の欠陥グループに含まれている個々の欠陥を手動で編集した後、ユーザインタフェースに表示されている「アクセプトオール(Accept All)」などのオプションを選択して、個々の欠陥を欠陥グループに受け入れることができる。このやり方で、ユーザは、欠陥分類が正確であることを確認することができる。ユーザインタフェースは、さらに、図5に示すように構成することができる。また、ユーザインタフェースは、さらに、ここで述べるように構成することができる。
【0065】
図6は、上記の機能のうちの一つまたはそれ以上を行なうのに使用できるユーザインタフェースの異なる例を示す別のスクリーンショットである。ユーザインタフェースの右上側80は、個々の欠陥が割り付けられた欠陥グループおよび各グループに割り付けられた欠陥の数を表示する。上記の例と同様、欠陥が割り付けられた欠陥グループの数は、ユーザによって選択されたグループの数に基づいている。このような欠陥グループは、特に、分類レシピが、コンピュータに実装された方法によって利用できない場合に、適当である場合がある。
【0066】
ユーザインタフェースの左側82は、欠陥グループのそれぞれに割り付けられた個々の欠陥の全てを示すことによって欠陥のグループ化を表示する。言い換えれば、このスクリーンショットでは、特徴スペースの代表的な例、並びに、外れ値欠陥が、表示されている。図6のスクリーンショットでは、有り得るクラス1および有り得るクラス2の欠陥が、ユーザインタフェースの左側に示されており、かつ、他の有り得るクラスにおける欠陥は、ユーザインタフェースの左側の右のスクロールバーを用いて表示できる。
【0067】
図6に示すように、ユーザは、ユーザインタフェースの左側に示されている欠陥グループ(例えば、クラス1および2)に割り付けられた欠陥を選択することができ、かつ、選択された欠陥を、ユーザインタフェースの右下側84の、他の欠陥グループ(例えば、クラス3)に移動することができる。欠陥のこのような移動は、個々の欠陥画像をクリックし、かつ、ドラグすることによって容易に成し遂げることができる。同様のやり方で、ユーザは、ユーザインタフェースの右側で、一つまたはそれ以上の追加の欠陥グループを作成することができる。また、ユーザは、上記のように、個々の欠陥を追加の欠陥グループ(複数も可)に割り付けることができる。ユーザインタフェースは、さらに、図6に示すように構成することができる。また、ユーザインタフェースは、ここで述べるように、さらに構成することができる。
【0068】
コンピュータに実装された方法によって検出された任意の新しい欠陥は、別の欠陥グループに割り付けることができ、これは、「有り得る新しい欠陥タイプ」などの名称を用いて識別でき、かつ、他の欠陥グループの全てと共に、ユーザインタフェースの左側に示すこともできる。このやり方で、レシピから操作する時に、以前に分類されたいずれの欠陥にもマッチしない欠陥が存在する場合は、ユーザに、これらの欠陥を別個に取り扱うようプロンプトを与えることができる。また、ユーザインタフェースに示されている欠陥グループは、レビュー中に検出されなかった欠陥に対する欠陥グループを含んでいてもよい。このような欠陥は、ノー・デフェクト・ファウンドまたは「NDF」のフラグを付けてよく、かつ、SEMベースレビューの場合は、例えば、「SEMノンビジュアル」の名称を付けたグループで示すことができる。ユーザインタフェースは、ユーザがこれらの欠陥を別個に取り扱うよう、プロンプトしてよい。ユーザインタフェースに表示されるこれらの欠陥についての情報は、欠陥が検出される間に光学検査によって生成された欠陥の低倍率画像を含んでいてよい。
【0069】
図7は、上記の機能のうちの一つまたはそれ以上を行なうのに使用できるユーザインタフェースの異なる例を示す追加のスクリーンショットである。このユーザインタフェースは、コンピュータに実装された方法が行われた後で、ユーザに表示することができる結果を示す。例えば、ユーザインタフェースは、分類の結果を示すチャート90を表示する。また、ユーザインタフェースは、ウェーハマップ92を表示し、これは、欠陥の異なるクラスおよびウェーハ上の欠陥の場所を示すものである。ユーザインタフェースはまた、欠陥ギャラリー94も表示し、これは、欠陥グループに配置された欠陥、および、ユーザによって欠陥グループに割り付けられた任意の分類を示すものである。図7には、手動クラス5および手動クラス7の欠陥のみが示されているが、他のクラスの欠陥を、例えば、欠陥ギャラリーの右のスクロールバーを用いて、示すことができることを理解すべきである。
【0070】
ユーザインタフェースは、さらに、図7に示すように構成することができる。また、ユーザインタフェースは、ここで述べる追加の機能、または、技術上既知の任意の他の機能を行なうよう構成することができる。例えば、ユーザインタフェースは、ユーザが、どの欠陥を移動したいのかを示すため、ユーザが、欠陥にタグを付けることができるよう、構成することができる。ひとつのそのような例においては、分類(および分類中にオプショナルに選択された画像)は、さらなる分析のため、KLARFまたは他の標準ファイルを用いて送信することができる。また、ユーザインタフェースは、ユーザが、ファブデータベースなどのデータベースに結果を送信できるよう構成することができる。
【0071】
さらに、この説明を考察すれば、本発明の各種の形態の変更態様および代わりの実施形態が、当業者には明らかであろう。例えば、試験体上の欠陥を分類するための、コンピュータに実装された方法が得られる。したがって、この説明は、単に説明的なものと解釈すべきであり、また、本発明を実施するための一般的なやり方を当業者に教示するのが目的である。ここで図示し、説明した本発明の形態は、現在好適な実施形態である、と取るべきであることを理解されたい。ここで図示し、説明した要素および材料の代わりに、他の要素および材料を用いてよく、部分およびプロセスを逆にしてよく、また、本発明のある形体を独立的に利用してよく、これらのことはすべて、本発明のこの説明を読んだ当業者には明らかであろう。ここで説明した要素は、以下のクレームに記述する本発明の精神および範囲を逸脱しない限り、変更してよい。
【図面の簡単な説明】
【0072】
図1】試験体上の欠陥を分類するための、コンピュータに実装された方法の一実施形態を示すフローチャートである。
図2】方法の実施形態対手動分類について、予想できる分類までの例時間を示すプロットである。
図3】方法の実施形態について、予想できる例成功率を示すプロットである。
図4】試験体上の欠陥を分類するよう構成されたシステムの一実施形態の側面図を示す概略図である。
図5】システムの実施形態に含ませることができるユーザインタフェースの例を示すスクリーンショットである。
図6】システムの実施形態に含ませることができるユーザインタフェースの例を示すスクリーンショットである。
図7】システムの実施形態に含ませることができるユーザインタフェースの例を示すスクリーンショットである。
図1
図2
図3
図4
図5
図6
図7