特許第5874359号(P5874359)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 栗田工業株式会社の特許一覧

<>
  • 特許5874359-凝集処理方法 図000003
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5874359
(24)【登録日】2016年1月29日
(45)【発行日】2016年3月2日
(54)【発明の名称】凝集処理方法
(51)【国際特許分類】
   C02F 1/56 20060101AFI20160218BHJP
   C02F 1/52 20060101ALI20160218BHJP
   H01L 21/306 20060101ALI20160218BHJP
   B24B 57/00 20060101ALI20160218BHJP
【FI】
   C02F1/56 K
   C02F1/52 K
   H01L21/306 M
   B24B57/00
【請求項の数】2
【全頁数】7
(21)【出願番号】特願2011-265814(P2011-265814)
(22)【出願日】2011年12月5日
(65)【公開番号】特開2013-116455(P2013-116455A)
(43)【公開日】2013年6月13日
【審査請求日】2014年12月2日
(73)【特許権者】
【識別番号】000001063
【氏名又は名称】栗田工業株式会社
(74)【代理人】
【識別番号】100086911
【弁理士】
【氏名又は名称】重野 剛
(72)【発明者】
【氏名】育野 望
(72)【発明者】
【氏名】黒部 洋
【審査官】 金 公彦
(56)【参考文献】
【文献】 特開2010−214248(JP,A)
【文献】 特開2003−245700(JP,A)
【文献】 特開平04−100591(JP,A)
【文献】 特開2009−195775(JP,A)
【文献】 特開2003−170174(JP,A)
【文献】 特開平11−057800(JP,A)
【文献】 特開2010−214360(JP,A)
【文献】 特開2000−051900(JP,A)
【文献】 特開平10−249400(JP,A)
【文献】 特開2008−080185(JP,A)
【文献】 特開2003−251399(JP,A)
【文献】 特開平07−256298(JP,A)
【文献】 特開平11−033560(JP,A)
【文献】 特開2007−185647(JP,A)
【文献】 国際公開第2001/085619(WO,A1)
【文献】 米国特許出願公開第2004/0065621(US,A1)
【文献】 米国特許出願公開第2005/0121394(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B01D 21/01
C02F 1/52− 1/56
DWPI(Thomson Innovation)
(57)【特許請求の範囲】
【請求項1】
原水に無機凝集剤を添加する第1添加工程と、次いで高分子凝集剤を添加する第2添加工程と、次いで固液分離する固液分離工程とを有する凝集処理方法において、
該原水がCMP排水であり、
該高分子凝集剤がアニオン系高分子凝集剤であり、
該固液分離工程が沈降分離によるものであり、
該第1添加工程においてさらに高分子凝集剤を添加し、第1添加工程での高分子凝集剤の添加量と第2添加工程での高分子凝集剤の添加量との合計量を予め設定した目標添加量とする凝集処理方法であって、第1添加工程において目標添加量の25〜35%の高分子凝集剤を添加し、第2添加工程において目標添加量の75〜65%の高分子凝集剤を添加することを特徴とする凝集処理方法。
【請求項2】
請求項1において、前記固液分離工程は、沈降分離及び濾過であることを特徴とする凝集処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無機凝集剤と高分子凝集剤とを併用した凝集処理方法に係り、特にCMP排水などの微細粒子含有排水の処理に好適な凝集処理方法に関する。
【背景技術】
【0002】
半導体基板またはその上に形成された被膜の研磨にCMP(Chemical
Mechanical Polishing)が行われている。例えば半導体ウエハはCMPにより研磨され、鏡面仕上が行われている。また半導体の高集積化に伴って多層配線構造が採用されるようになっているが、多層配線の高信頼性および高歩留を実現するには多層配線用層間絶縁層の平坦化が重要であり、このため層間絶縁層の研磨としてCMPが行われている。
【0003】
CMPは化学研磨と機械研磨とを複合した研磨であり、研磨剤としてアルカリ水溶液に砥粒を懸濁させたCMP液が用いられている。従来このようなCMP液としては、KOH水溶液にSiO2微粒子を懸濁させた、いわゆるコロイダルシリカからなるCMP液(以下、KOH系CMP液という場合がある)やアンモニア水溶液にSiO2微粒子を懸濁させた、いわゆるコロイダルシリカからなるCMP液(以下、NH4系CMP液という場合がある)、その他中性系CMP液などが用いられている。
【0004】
半導体製造工程の研磨工程から排出されるCMP排液中には、砥粒として懸濁させたSiO2粒子のほかに、ウエハや被膜および研磨パッドが削られて生成する研磨屑粒子などが含まれており、CMP排液の処理では凝集沈殿によりこれらの粒子の除去が行われている。一般的には、CMP液を用いる研磨工程から排出されるCMP排液に、アルミニウム塩または鉄塩などの無機系凝集剤を添加して急速攪拌したのち、高分子凝集剤を添加して緩速攪拌を行い、これによりSiO2等の懸濁粒子を凝集させてフロックを形成し、これを沈降分離し、分離汚泥は脱水機により脱水処理している(特許文献1)。
【0005】
CMP排水以外の排水の凝集処理方法としても、原水に無機凝集剤及び高分子凝集剤を添加し、次いで固液分離する方法は広く用いられている(例えば特許文献2〜4)。
【0006】
このように高分子凝集剤を添加した場合、処理水中に残留する高分子凝集剤(ポリマー成分)が、後段側の濾過層や濾過膜に目詰りを生じさせることがある(特許文献2)。特許文献2には、残留高分子凝集剤による目詰り防止のために、原水に無機凝集剤を添加し、次いで高分子凝集剤を添加し、その後凝集フロックを固液分離して処理水を得、この処理水に無機凝集剤を再度添加した後凝集フロックを分離して残留高分子凝集剤を除去し、その後濾過することが記載されている。
【0007】
しかしながら、このように無機凝集剤及び高分子凝集剤を添加して固液分離し、この固液分離処理水に再度無機凝集剤を添加して残留高分子凝集剤を除去してから濾過処理するのでは、工程数が多く、処理コストが嵩む。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平11−33560
【特許文献2】特開2007−253111
【特許文献3】特開平7−108278
【特許文献4】特開2009−66508
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、上記従来の問題点を解決し、無機凝集剤及び高分子凝集剤を添加した後、固液分離する凝集処理方法において、この固液分離処理水中の残留高分子凝集剤を簡易な手段によって低減することを目的とする。
【課題を解決するための手段】
【0010】
本発明の凝集処理方法は、原水に無機凝集剤を添加する第1添加工程と、次いで高分子凝集剤を添加する第2添加工程と、次いで固液分離する固液分離工程とを有する凝集処理方法において、該原水がCMP排水であり、該高分子凝集剤がアニオン系高分子凝集剤であり、該固液分離工程が沈降分離によるものであり、該第1添加工程においてさらに高分子凝集剤を添加し、第1添加工程での高分子凝集剤の添加量と第2添加工程での高分子凝集剤の添加量との合計量を予め設定した目標添加量とする凝集処理方法であって、第1添加工程において目標添加量の25〜35%の高分子凝集剤を添加し、第2添加工程において目標添加量の75〜65%の高分子凝集剤を添加することを特徴とするものである。
【発明の効果】
【0012】
本発明では、第1添加工程において原水に無機凝集剤及び目標添加量の25〜35%のの高分子凝集剤を添加する。これにより、無機凝集剤に起因したフロックが生成し、このフロックが高分子凝集剤の作用によって成長する。第2添加工程においてさらに目標添加量の75〜65%の高分子凝集剤が添加され、フロックが成長する。第2添加工程においては、第1添加工程からのフロックが既に存在した状態で高分子凝集剤が追加添加されるので、この追加添加された高分子凝集剤は既存のフロックと効率よく反応する。また、高分子凝集剤の全量を第2添加工程で添加する場合に比べて第2添加工程での高分子凝集剤の添加量が少ない。そのため、第2添加工程からの水中における未反応の高分子凝集剤濃度は著しく低くなり、固液分離手段の目詰り等が抑制される。
【図面の簡単な説明】
【0013】
図1】実施の形態に係る凝集処理方法の説明図である。
【発明を実施するための形態】
【0014】
以下、本発明についてさらに詳細に説明する。
【0015】
[原水]
原水としてはCMP排水などの微細粒子含有排水が好適であるが、それ以外の各種製造工程、洗浄工程、処理工程(例えば有機性排水の生物処理排水など)等であってもよい。
【0016】
[無機凝集剤]
本発明において用いられる無機凝集剤としては、PAC(ポリ塩化アルミニウム)、硫酸バンド等のアルミ系凝集剤や、塩化第二鉄、ポリ硫酸鉄等の鉄系凝集剤が挙げられる。なお、塩化第二鉄などの鉄系凝集剤を用いると、沈降性のよいフロックが生成する。無機凝集剤の添加量は特に制限されることはなく、対象となる原水に対し適量とされる量を添加すればよい。
【0017】
[高分子凝集剤]
無機凝集剤の添加により生成するフロックは正に帯電しているので、高分子凝集剤としてはアニオン系高分子凝集剤(ポリマー凝集剤)を用いるのが好ましい。
【0018】
本発明では、ジャーテストなどの予備試験によって予め無機凝集剤及び高分子凝集剤の好適添加量を求めておくのが好ましい。原水の水質が変動する場合には、各水質毎に無機凝集剤及び高分子凝集剤の好適添加量を求めておく。この高分子凝集剤の好適添加量を目標添加量とする。
【0019】
[第1添加工程]
第1添加工程では、上記の好適な添加量にて無機凝集剤を添加すると共に、目標添加量の25〜35%の高分子凝集剤を添加する。また、必要に応じ酸又はアルカリを添加し、pHを無機凝集剤の凝集処理に好適なpHに調整する。無機凝集剤が塩化第二鉄、ポリ硫酸鉄などの鉄系無機凝集剤の場合は、pHを4〜11特に5〜8程度とすることが好ましく、無機凝集剤がPACなどアルミ系無機凝集剤である場合には、pHを6〜8程度とすることが好ましい。pH調整剤としては塩酸、硫酸等の酸や、水酸化ナトリウム等のアルカリを用いることができるが、これに限定されない。図1のフローでは、原水を反応槽1に導入し、無機凝集剤及び所定量の高分子凝集剤を添加して第1添加工程を行っている。反応槽1には撹拌機(図示略)が設けられている。
【0020】
[第2添加工程]
第1添加工程後、高分子凝集剤の残部すなわち目標添加量から第1添加工程での添加分を差し引いた量の高分子凝集剤を添加する。図1のフローでは、反応槽1からの流出水を凝集槽2に導入し、この凝集槽2に対し第2添加工程として高分子凝集剤を添加する。凝集槽2にも撹拌機が設けられている(図示略)。
【0021】
第2添加工程においても、必要に応じpH調整剤を添加し、使用する高分子凝集剤に適したpH範囲に調整する。
【0022】
[高分子凝集剤の分配比]
本発明では、第1添加工程において目標添加量の25〜35%好ましくは27〜33%の高分子凝集剤を添加し、残りの75〜65%特に73〜67%の高分子凝集剤を第2添加工程で添加する。
【0023】
第1添加工程での高分子凝集剤の添加量が過少であると、固液分離処理水中にリークする未反応高分子凝集剤が多くなる。また、第1添加工程での生成フロックが凝集密度が低いまま疎大化しすぎることによりフロックはもろく壊れやすく上澄水水質は悪化する。
【0024】
第1添加工程での高分子凝集剤の添加量が多過ぎると、第1添加工程は撹拌速度が速いため、フロックは破壊され微細フロックとして流出し易くなる。
【0025】
[第1固液分離処理]
第2添加工程で高分子凝集剤を添加してフロックを成長させた後、好ましくは沈降分離、浮上分離、遠心分離などによってフロックを除去する。図1のフローでは、凝集槽2の流出水を沈降槽3に導入し、沈降分離を行い、上澄水を固液分離処理水としている。
【0026】
[第2固液分離]
上記第1固液分離を行った後、第1固液分離処理水を第2固液分離手段としての濾材層に通水する濾過を行うことが望ましい。濾材としては、砂、アンスラサイトなどを用いることができる。図1のフローでは、第1固液分離処理水を二層濾過器4で濾過している。この第2固液分離処理により、フロックが十分に除去され、良好な水質の処理水が得られる。
【0027】
第1固液分離処理水中の未反応高分子凝集剤濃度が著しく低いので、第2固液分離の濾過層の目詰りが防止される。
【0028】
なお、この濾過処理水をRO(逆浸透)処理してもよい。
【実施例】
【0029】
[実施例1(分配比2.5/7.5)]
CMP排水(SS100mg/L、SS主成分SiOコロイド、TOC50mg/L、pH7.2)を図1の通り反応槽1に導入し、塩化第二鉄を500mg/L、アニオン系高分子凝集剤(栗田工業(株)クリフロック PA331)を1.25mg/L添加し、NaOHを添加してpH=6.0に調整した。滞留時間は10minとした。これを凝集槽2に導入し、同一の高分子凝集剤3.75mg/Lを添加した。滞留時間は10minとした。これを沈降槽3に導入し、第1固液分離処理し、上澄水を第2固液分離手段としての二層濾過器4(濾材:砂、アンスラサイト)にてLV=8m/hrにて濾過した。沈降槽3から流出する上澄水の濁度と濾過器4の通水差圧の経時変化を表1に示す。なお、高分子凝集剤の目標添加量は5mg/Lであり、反応槽1への添加量と凝集槽2への添加量の比(分配比)は2.5/7.5(1.25(mg/L)/3.75(mg/L)=2.5/7.5)である。
【0030】
[実施例2]
高分子凝集剤の反応槽1への添加量を1.5mg/L、凝集槽2への添加量を3.5mg/Lとし、分配比を3/7としたこと以外は実施例1と同様にして処理を行った。沈降槽3から流出する上澄水の濁度と濾過器4の通水差圧の経時変化を表1に示す。
【0031】
[実施例3]
高分子凝集剤の反応槽1への添加量を1.75mg/L、凝集槽2への添加量を3.25mg/Lとし、分配比を3.5/6.5としたこと以外は実施例1と同様にして処理を行った。沈降槽3から流出する上澄水の濁度と濾過器4の通水差圧の経時変化を表1に示す。
【0032】
[比較例1]
高分子凝集剤の反応槽1への添加量を1mg/L、凝集槽2への添加量を4mg/Lとし、分配比を2/8としたこと以外は実施例1と同様にして処理を行った。沈降槽3から流出する上澄水の濁度と濾過器4の通水差圧の経時変化を表1に示す。
【0033】
[比較例2]
高分子凝集剤の反応槽1への添加量を2mg/L、凝集槽2への添加量を3mg/Lとし、分配比を4/6としたこと以外は実施例1と同様にして処理を行った。沈降槽3から流出する上澄水の濁度と濾過器4の通水差圧の経時変化を表1に示す。
【0034】
[比較例3]
実施例1において、高分子凝集剤の全量を凝集槽2に添加し、分配比を0/10としたこと以外は実施例1と同様にして処理を行った。沈降槽3から流出する上澄水の濁度と濾過器4の通水差圧の経時変化を表1に示す。
【0035】
【表1】
【0036】
表1の通り、高分子凝集剤の第1添加工程及び第2添加工程への分配比が2.5/7.5〜3.5/6.5であると、上澄水の濁度が低く、また濾過差圧の上昇が抑制される。
【符号の説明】
【0037】
1 反応槽
2 凝集槽
3 沈降槽
4 二層濾過器
図1