(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
従来、シリコンウエハ等の基板の製造プロセスにおいて、半導体デバイスの欠陥の原因となる有機物、金属不純物、パーティクル(微粒子)及び自然酸化膜等を当該基板から除去することを目的として、浸漬式や枚葉式などの基板の洗浄プロセスが行われている。
【0003】
基板の洗浄プロセスでは、その目的に応じて様々な種類の洗浄方法が使用されている。特に、浸漬式の洗浄方法によりパーティクル等の異物を除去する場合には、洗浄槽内に収容された洗浄液中に基板を浸漬し、基板を浸漬した洗浄液にメガソニックと呼ばれる周波数が1MHz付近の超音波を照射する方法が用いられている。一般に、周波数が1MHz付近の超音波を使用すると、基板へのダメージを減少しつつ、基板表面上のサブミクロンサイズの微小パーティクルに対する洗浄効果を増大することができると考えられている。
【0004】
ここで、洗浄液中の溶存気体の濃度がパーティクルなどの異物の除去効率に影響を与えることが知られている。たとえば、洗浄液として超純水を用い、当該超純水にメガソニックを照射して基板からパーティクルを除去する場合、基板からのパーティクル除去率は洗浄液中の溶存窒素濃度に影響を受けることが分かっている。より具体的には、洗浄液中の溶存気体濃度が所定範囲内であると、基板からのパーティクル除去率が相対的に高くなる(特許文献1および2)。したがって、洗浄プロセスにおいて洗浄液中の溶存窒素濃度などの溶存気体濃度をモニタリングし、洗浄液中の溶存気体濃度を一定の範囲内となるように制御すれば、理論的にはパーティクルを効果的に除去することが可能となる。
【0005】
一方、洗浄液に超音波を照射した際に発生する微弱な発光挙動(ソノルミネッセンス)と基板のパーティクル除去挙動には何らかの関係があるとの報告がある(非特許文献1および2)。
【発明の概要】
【発明が解決しようとする課題】
【0008】
発明者のこれまでの基板の超音波洗浄に関する研究により、同一の溶存気体濃度、同一の超音波照射条件であってもパーティクル除去率が高い場合と低い場合があることが判明した。このため、単に溶存気体濃度や超音波照射条件を調整しただけでは、安定的に高いパーティクル除去率を有する状態を実現することは困難であった。
【0009】
本発明は、上記のような課題に鑑みてなされたものであり、安定して高いパーティクル除去率が得られる超音波洗浄方法および超音波洗浄装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
発明者らは、溶存気体濃度とパーティクル除去率との関係について鋭意研究した結果、以下のような知見を得た。つまり、本発明者らは、ある範囲の溶存気体濃度を有する液体に超音波を照射しながら液体中に気体を導入することにより、液体のパーティクル除去率を向上させることができることを見出し本発明を想到した。
【0011】
本発明に係る超音波洗浄方法は、気体が溶存された液体に超音波を照射することにより液体中の洗浄対象物を洗浄するための超音波洗浄方法であって以下の工程を有している。気体が溶存された液体が準備される。液体に超音波を照射しながら液体中で気泡を発生させて、液体に溶存した気体を含む気泡が発生し続ける状態が実現する。気体を含む気泡が発生し続ける状態において洗浄対象物が洗浄される。
【0012】
本発明に係る超音波洗浄方法によれば、液体に超音波を照射しながら液体中で気泡を実現させているので、液体に溶存した気体を含む気泡が連続的に発生しやすい状態を実現することができる。この状態で洗浄を行うことにより、安定的に高いパーティクル除去率を得ることができる。
【0013】
上記の超音波洗浄方法において好ましくは、気体を含む気泡が発生し続ける状態を実現する工程は、液体に外部から導入された気泡が超音波により分散することをきっかけとして行われる。外部から気泡が導入することにより、簡易な方法でパーティクル除去率を向上することができる。また、気泡が超音波により分散することで、核となる気泡が生成されやすくなる。それゆえ、気泡が連続的に発生しやすい状態を実現することができる。
【0014】
上記の超音波洗浄方法において好ましくは、洗浄対象物を洗浄する工程は、ソノルミネッセンスが発生する工程を含む。これにより、より安定的に高いパーティクル除去率が得られる。
【0015】
上記の超音波洗浄方法において好ましくは、気体は窒素であり、液体の溶存気体濃度は5ppm以上11ppm未満である。
【0016】
本発明に係る超音波洗浄装置は、気体が溶存された液体に超音波を照射することにより液体中の洗浄対象物を洗浄するための超音波洗浄装置であって、液体に超音波を照射するための照射手段と、液体を収容するための容器と、液体中に気体を導入するための機構とを有している。液体中に気体を導入するための機構により、液体中において核となる気泡が発生しやすい状態を実現することができる。これにより、洗浄効果を高めることができ、安定的に高いパーティクル除去率が得られる。
【発明の効果】
【0017】
本発明によれば、安定して高いパーティクル除去率が得られる超音波洗浄方法および超音波洗浄装置を提供することができる。
【発明を実施するための形態】
【0019】
以下、図面に基づいて本発明の実施の形態を説明する。なお以下の図面において同一または相当する部分には同一の参照符号を付しその説明については繰り返さない。
【0020】
まず、本発明の一実施の形態に係る超音波洗浄装置の構成について説明する。
本実施の形態に係る超音波洗浄装置100は、
図1に示すように、超純水などの洗浄液を内部に保持する洗浄槽20と、この洗浄槽20に洗浄液を供給する供給手段10と、洗浄槽20を貯蔵する間接水槽21と、間接水槽21の底部に設置され、超音波を照射するための照射手段30と、洗浄槽20の内部に供給された洗浄液中の溶存窒素濃度をモニタリングするためのモニタリング手段40と、液体中に気体を導入するための機構としての気泡導入チューブ4とを有している。供給手段10は、窒素ガスを溶存させた超純水を洗浄槽20に供給するための第1供給弁11と、脱気された超純水を当該洗浄槽20に供給するための第2供給弁12とを有する。
【0021】
第1供給弁11は、図示しない第1タンクに接続されている。第1タンクには窒素ガスを溶存させた超純水が貯留されている。また、第2供給弁12は、図示しない脱気水製造装置に接続されている。脱気水製造装置には超純水が供給され、脱気膜を介して超純水中の溶存気体を取り除くことができる。窒素ガスを溶存させた超純水と脱気された超純水とは、第1供給弁11および第2供給弁12の下流側において第1供給弁11および第2供給弁12に接続された配管が合流して1本の配管となることにより混合される。なお、第1供給弁11および第2供給弁12の下流側に混合槽(図示せず)を設置してもよい。この場合、当該混合槽において窒素ガスを溶存させた超純水および脱気された超純水を完全に混合することができる。
【0022】
そして、混合された超純水は、上述した第1供給弁11および第2供給弁12の下流側に接続され、洗浄槽20内に配置された配管を介して液導入管23に供給される。液導入管23は洗浄槽20の底面の外周端部近傍に配置されている。なお、第1供給弁11と第2供給弁12との開度を調節することにより、洗浄槽20の内部に導入される超純水の溶存窒素濃度および供給量を制御することができる。
【0023】
液導入管23には、図示しないノズルが複数個配置されている。当該ノズルを介して、液導入管23から洗浄槽20の内部へと洗浄液である超純水が供給される。ノズルは、液導入管23の延在方向に沿って複数個、互いに間隔を隔てて配置されている。また、当該ノズルは、洗浄液を洗浄槽20のほぼ中央部(洗浄対象であるウエハWが保持されている領域)に向けて洗浄液を噴射するように設置されている。
【0024】
洗浄槽20は、洗浄液を収容するための容器であって、その内部にウエハWを保持するための保持部22が配置されている。ウエハWとしては、たとえば半導体ウエハを用いることができる。洗浄槽20の内部において、保持部22によりウエハWを保持した状態で、上述した混合超純水からなる洗浄液が液導入管23から洗浄槽20内部に供給される。
【0025】
液導入管23は、上述したように、洗浄槽20の下部(底壁近傍あるいは底壁と側壁との接続である底壁の外周部に位置する領域)に配置されている。液導入管23からは、所定量の洗浄液(混合超純水)が洗浄槽20の内部へと供給される。洗浄槽20の内部は当該洗浄液により満たされ、また所定量の洗浄液が洗浄槽20の上部からオーバーフローするように、洗浄液の供給量は調整されている。これにより、
図1に示すようにウエハWが洗浄槽20内の洗浄液に浸漬された状態になる。
【0026】
間接水槽21には、上述した供給手段10とは異なる媒体の供給ライン(図示せず)が接続されている。当該供給ラインから媒体としての水が間接水槽21の内部に供給される。そして、間接水槽21に貯留された水に、上述した洗浄槽20の少なくとも底壁が接触した状態となっている。なお、間接水槽21に対しても供給ラインから所定量の水が供給され続けることにより、間接水槽21から水が一定量オーバーフローしている状態となる。
【0027】
照射手段30は、間接水槽21の底壁に接続された状態で設置されている。照射手段30は、超音波を間接水槽21内の水に照射する。照射された超音波は、間接水槽21内の水、洗浄槽20の当該水と接触した部分(たとえば底壁)を介して、洗浄槽20内の洗浄液およびウエハWへと照射される。
【0028】
ここで、照射手段30は、たとえば周波数20kHz以上2MHz以下、ワット密度0.05W/cm
2以上7.0W/cm
2以下の超音波を発振することができる。このように超音波を洗浄液およびウエハWに照射することにより、当該洗浄液に浸漬されたウエハWを効率的に洗浄することができる。なお、照射手段30から照射される超音波としては、好ましくは周波数範囲が400kHz以上1MHz以下である超音波を用いる。
【0029】
モニタリング手段40は、洗浄槽20の内部から所定量の洗浄液を抽出する抽出管41と、抽出管41に接続され、溶存窒素濃度計43に洗浄液を導入するためのポンプ42と、ポンプ42の下流側に接続された溶存窒素濃度計43とを含む。溶存窒素濃度計43からは洗浄液における溶存窒素濃度の測定データが溶存窒素濃度計43に含まれる表示部分へ出力される。溶存窒素濃度計43としては、任意の構成の装置を用いることができるが、たとえば洗浄液に含まれる溶存気体成分を高分子膜を介して受容器に導入し、この受容器内の熱伝導度の変化に基づいて当該気体成分の濃度を計算する測定装置を用いることができる。
【0030】
洗浄槽20は、たとえば厚みが3.0mmの石英ガラスにより構成される。洗浄槽20は任意の形状とすることができるが、たとえば洗浄槽20として、内寸が幅270mm×奥行き69mm×高さ270mmの角型水槽を用いる。洗浄槽20の容量は5リットルである。
【0031】
なお、洗浄槽20の底壁を構成する石英ガラスの板材の厚さは、照射手段30から出射される超音波の周波数に応じて適宜調整することが好ましい。たとえば、照射手段30から出射される超音波の周波数が950kHzである場合には、底壁を構成する板材の厚みは3.0mmであることが好ましい。また、照射手段30から出射される超音波の周波数が750kHzである場合には、底壁を構成する板材の厚みはたとえば4.0mmであることが好ましい。
【0032】
洗浄槽20に供給手段10から供給される洗浄液(混合超純水)の量は5リットル/分であってもよい。また、照射手段30から照射される超音波の周波数は上述の950kHzと750kHzであってもよく、出力は1200W(ワット密度5.6W/cm
2)であってもよい。また、照射手段30における振動板の輻射面のサイズは80mm×270mmであってもよい。
【0033】
液体中に気体を導入するための機構は、たとえば気泡導入チューブ4を有している。気泡導入チューブの一端は洗浄槽20の底面に近い位置に配置されており液体に浸漬されている。気泡導入チューブの他端は、たとえばガス供給部(図示せず)と接続されている。ガス供給部は、気泡導入チューブを通して液体に気体Gを供給可能に構成されている。気泡導入チューブの一端の開口の大きさはたとえば5mm程度である。ガス供給部は、たとえば1mLから10mL程度の気体を供給可能である。
【0034】
図2を参照して、ソノルミネッセンス(発光現象)を観測する装置構成について説明する。まず、超音波洗浄装置100と発光検出装置60とを暗室50の内部に配置する。発光検出装置60は画像処理装置61に接続されている。ここで、発光検出装置60として用いるイメージインテンシファイアユニット(極微弱光検知増倍ユニット)とは、極微弱な光を検知・増倍して、コントラストのついた像を得るための装置である。当該ユニットとして、具体的には、浜松ホトニクス製イメージインテンシファイア(V4435U−03)を使用したユニットを用いることができる。当該ユニットは、光電面の材質がCs−Teであり、感度波長範囲が160〜320nmであり、また、最高感度波長が250nmである。なお、超音波を水に照射した際の発光は、水の分解により発生するヒドロキシラジカル(OHラジカル)によるものと考えられており、当該発光の波長は309nm付近の紫外領域であるとされる。したがって、ここでは上記波長を感度波長範囲に持つ光電面材質(Cs−Te)を有するイメージインテンシファイアユニットを使用した。なお、発光検出装置60として光電子増倍管を用いてもよい。なお、装置の条件については、たとえば超音波周波数、超音波強度、溶液を保持する水槽デザイン、溶液の供給量などの条件が挙げられる。
【0035】
次に、本実施の形態に係る超音波洗浄方法について説明する。
図5を参照して、本実施の形態の超音波洗浄方法について説明する。本実施の形態の超音波洗浄方法は、窒素などの気体が溶存された液体に超音波を照射することにより液体中に浸漬されているウエハW(洗浄対象物)を洗浄するための方法であって、主に以下の工程を有している。
【0036】
まず、液体準備工程(S10)が実施される。たとえば、
図1に示した洗浄装置を用いて、窒素ガスが溶存された超純水と脱気された超純水とを混合して、所望の溶存窒素濃度を有する液体(洗浄液)が準備される。好ましくは、液体の溶存窒素濃度は5ppm以上11ppm未満である。
【0037】
次に、気泡導入工程(S20)が実施される。具体的には、上記工程(S10)で準備された液体に超音波が照射される。この状態ではまだソノルミネッセンスは発生していない。液体に超音波を照射しながら液体中に気体を導入する。たとえば、
図1に示した気泡導入チューブ4を使って外部から液体に気体が導入されることにより、液体中で気泡が発生する。液体に導入される気体Gは、たとえば窒素であるがこれに限定されない。液体に導入される気体は、たとえばアルゴン(Ar)、ヘリウム(He)、空気などであってもよい。液体中で気泡を発生させるという観点からは、液体である水に対する溶解度が小さい気体であることが望ましい。
【0038】
液体に導入される気体Gの体積はたとえば10mLである。好ましくは、液体に導入される気体Gの体積は1mL以上である。また、気体Gの圧力は、液体の圧力に勝って気泡を形成することができる圧力であればよい。
【0039】
液体に気体Gが導入された後、液体中に大きな気泡が観測される。その後、当該気泡は超音波により破壊され分散される。その後、たとえば液体に気泡を導入してから約4秒後に、液体中に霧状の気泡(foggy bubbles)が発生する。当該霧状の気泡は、液体に溶存していた気体(本実施の形態では窒素)を含む気泡である。このようにして、窒素を含む気泡が発生し続ける状態が実現する。なお、溶存気体による微細な泡が発生し続ける状態はキャビテーション現象と呼ばれている。
【0040】
本実施の形態の超音波洗浄方法において、液体に気体Gを導入した後に、ソノルミネッセンスが発生する。ソノルミネッセンスは、
図2で示したようなイメージインテンシファイアや光電子倍増管により検知することができる。
【0041】
次に、洗浄工程(S30)が実施される。洗浄工程では、窒素を含む気泡が発生し続ける状態において洗浄対象物であるウエハWが洗浄される。洗浄工程ではソノルミネッセンスが発生していることが好ましい。
【0042】
次に、液体中に気体を導入することによりキャビテーション現象の連鎖反応が発生するメカニズムの仮説を
図3(a)〜(e)を参照して説明する。
【0043】
図3(a)を参照して、窒素2が溶存された液体1に対して照射手段30により超音波が照射される。当該液体は窒素2が過飽和の状態である。
図3(b)を参照して、外部から液体中に気体が導入されることにより、液体中において気泡3aが発生する。気泡3aが核となって近くの溶存気体が当該気泡3aに集まってくる。
図3(c)および
図3(d)を参照して、成長した気泡3bは次々と近くの溶存気体を集めながら液体中を移動し、超音波と共振するサイズの気泡3cになる。
図3(e)を参照して、超音波と共振するサイズにまで成長した気泡3dは破裂して、複数の小さい気泡3aを生み出す。当該気泡3dの破裂によって液体中に衝撃波が生じ、洗浄対象物に付着したパーティクルが除去されると考えられる。また複数の小さい気泡3aは核となって近くの溶存気体を集めはじめる。このように、溶存気体を含む気泡が継続的に発生する。
図3(b)から
図3(e)までの気泡の変化を1つのループとすると、当該ループが1秒間に1000回程度以上繰り返される。液体中において気泡を発生させることは、気泡の発生の連鎖反応をスタートさせるきっかけとなる最初の気泡を供給することであると考えられる。
【0044】
次に、本実施の形態の作用効果について説明する。
本実施の形態に係る超音波洗浄方法は、液体に超音波を照射しながら液体中で気泡を発生させて、液体に溶存した気体を含む気泡が発生し続ける状態を実現することができる。この状態で洗浄することにより、安定的に高いパーティクル除去率を得ることができる。
【0045】
また本実施の形態に係る超音波洗浄方法は、気体を含む気泡が発生し続ける状態を実現する工程は、液体に外部から導入された気泡が超音波により分散することをきっかけとして行われる。外部から気泡が導入することにより、簡易な方法でパーティクル除去率を向上することができる。また、気泡が超音波により分散することで、核となる気泡が生成されやすくなる。それゆえ、気泡が連続的に発生しやすい状態を実現することができる。
【0046】
さらに本実施の形態に係る超音波洗浄方法は、洗浄対象物であるウエハWを洗浄する工程は、ソノルミネッセンスが発生する工程を含む。これにより、安定的に高いパーティクル除去率が得られる。
【0047】
本実施の形態に係る超音波洗浄装置は、気泡導入チューブ4を有している。気泡導入チューブを用いて液体中に気体を導入することにより、液体中において核となる気泡が発生しやすい状態を実現することができる。これにより、洗浄効果を高めることができ、安定的に高いパーティクル除去率が得られる。
【実施例1】
【0048】
本実験の目的は、本発明に係る洗浄方法と比較例に係る洗浄方法とを用いてウエハWを洗浄し、ウエハWに付着しているパーティクルの除去率の違いを検証することである。
【0049】
まず、本実験に用いられる洗浄装置について
図1を用いて説明する。実験に用いられる洗浄槽20として、厚みが3.0mmの石英ガラスにより構成された角型水槽を使用した。水槽の、内寸を幅270mm×奥行き69mm×高さ285mmとした。底壁を構成する板材の厚みを4.0mmとした。洗浄槽20の容量を5リットルとした。
【0050】
洗浄槽20に供給手段10から供給される洗浄液(混合超純水)の量を5リットル/分とした。また、照射手段30から照射される超音波の周波数を750kHzとし、出力を1200W(ワット密度5.6W/cm
2)とした。また、照射手段30における振動板の輻射面のサイズを80mm×270mmとした。照射手段30から出射される超音波は洗浄槽20の底面全体に照射される。
【0051】
窒素ガスを溶存させた超純水の供給量を調節する第1供給弁11と脱気水の供給量を調節する第2供給弁12を操作することにより、窒素が溶存された超純水を5リットル/分で洗浄槽20に供給した。溶存窒素濃度はモニタリング手段40により水槽内の超純水をサンプリングして測定した。
【0052】
次に、パーティクル除去率の測定に用いられる洗浄対象物について説明する。
洗浄対象物としては、直径200mmのP型シリコンウエハが用いられた。P型シリコンウエハのミラー面に二酸化ケイ素粒子をスピンコートにより付着させた。付着量は、110nm以上の粒子で2000〜3000個であった。
【0053】
次に、パーティクル除去率の測定方法について説明する。
二酸化ケイ素粒子が付着されたウエハを水槽内に浸漬し10分間洗浄した。その後、ウエハをスピンドライヤーで2分間乾燥した。パーティクル除去率は、洗浄後に減少したパーティクルの個数を洗浄前のウエハに付着していたパーティクルの個数で除した値をパーセント表示したものとして求められる。なお、パーティクル付着量測定には、日立ハイテクノロジー製LS6500を使用した。
【0054】
(本発明例)
本発明例に係る洗浄方法について説明する。まず、溶存窒素濃度が6ppmに調整された洗浄液が準備された。当該洗浄液に照射手段30から超音波が照射された。照射される超音波の周波数を750kHzとし、出力を1200Wとした。超音波は洗浄液に継続的に照射された。超音波を洗浄液に照射しながら、気泡導入チューブ4を用いて洗浄液に窒素ガスを導入した。導入した窒素ガスの体積は10mL程度であった。液体に窒素ガスを導入して4秒経過後、洗浄液に霧状の気泡が発生した。この時点でイメージインテンシファイアユニットによる観察をしたところ、ソノルミネッセンスの発生が確認された。当該霧状の気泡が発生した液体に洗浄対象物である二酸化ケイ素粒子が付着したウエハWを浸漬し、10分間の洗浄を実施し、その後ウエハWをスピンドライヤーで2分間乾燥した。
【0055】
(比較例)
次に、比較例に係る洗浄方法について説明する。まず、溶存窒素濃度が6ppmに調整された洗浄液が準備された。当該洗浄液に照射手段30から超音波が照射された。照射される超音波の周波数を750kHzとし、出力を1200Wとした。超音波は洗浄液に継続的に照射された。比較例の洗浄方法は、本発明例の洗浄方法とは異なり、洗浄液に窒素ガスは導入されなかった。イメージインテンシファイアユニットによる観察をしたところ、ソノルミネッセンスが発生していないことが確認された。当該液体に洗浄対象物である二酸化ケイ素粒子が付着したウエハWを浸漬し、10分間の洗浄を実施し、その後ウエハWをスピンドライヤーで2分間乾燥した。
【0056】
(パーティクル除去率)
次に、パーティクル除去率の結果を説明する。比較例の洗浄方法によるパーティクル除去率は18.8%であった。一方、本発明例の洗浄方法によるパーティクル除去率は30.5%であった。この実験により、洗浄液に超音波を照射しながら洗浄液中で気泡を発生させることにより、パーティクル除去率が向上することを確認した。
【実施例2】
【0057】
本実験の目的は、洗浄液に霧状の気泡が発生するための溶存窒素濃度の範囲を調べることである。
【0058】
まず、溶存窒素濃度が1.9ppm、4.9ppm、6.0ppm、7.8ppm、9.6ppm、11.0ppm、15.7ppmの7種類の洗浄液を準備した。当該7種類の洗浄液の各々に対して超音波を照射しながら気泡導入チューブ4を用いて洗浄液に窒素ガスを導入した。照射される超音波の周波数を750kHzとし、出力を1200Wとした。導入した窒素ガスの体積は10mL程度であった。洗浄液に窒素ガスを導入した後、洗浄液に霧状の気泡が発生するかどうかを観察した。
【0059】
本実験の結果を、
図4を参照して説明する。なお、本明細書において洗浄液に霧状の気泡が発生している状態をMode−Aと呼び、洗浄液に霧状の気泡が発生していない状態をMode−Bと呼ぶ。またMode−Aはパーティクル除去率が30.5%程度と高い状態のことであり、Mode−Bはパーティクル除去率が18.8%程度と低い状態のことである。
【0060】
溶存窒素濃度が4.9ppm以下の場合、洗浄液には霧状の気泡が観測されなかった(Mode−B)。また、溶存窒素濃度が6.0ppm以上9.6ppm以下の場合、気泡導入チューブ4で洗浄液に窒素ガスを導入する前は洗浄液に霧状の気泡が発生しなかった(Mode−B)が、気泡導入チューブ4で洗浄液に窒素ガスを導入した後は洗浄液に霧状の気泡が発生した(Mode−A)。さらに、溶存窒素濃度が11.0ppm以上15.7ppm以下の場合、気泡導入チューブ4で洗浄液に窒素ガスを導入する前後において洗浄液に霧状の気泡が発生していた(Mode−A)。以上の実験により、洗浄液の溶存窒素濃度が、5ppm以上11ppm未満の場合において、洗浄液に窒素ガスを導入することによって、洗浄液の状態をMode−BからMode−Aに変化することができると考えられる。
【0061】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。