【実施例1】
【0042】
(逆浸透膜の作製)
まず、無機多孔質基材として多孔性α−アルミナ管(長さ:100mm,外径:10mm,平均細孔径:1μm,空効率:50%)を準備し、以下に記すように、α−アルミナ管の外表面の均質化を行った後に、順次、中間層、無機有機ハイブリッド逆浸透膜を形成した。
【0043】
(多孔質基材の均質化)
まず、α−アルミナ管の外表面にアルミナ微粒子を担持することで、α−アルミナ管の外表面を均質化した。アルミナ微粒子の担持は、以下のように、用いるアルミナ微粒子の平均粒径を異ならせ(1.9μm、0.2μm)、2段階の工程により行った。
【0044】
シリカ−ジルコニアコロイドゾル(平均粒径約50nm、濃度2.0wt%)を蒸留水で4倍に希釈したものに、平均粒径1.9μmのアルミナ微粒子(住友化学工業(株))を約10wt%程度となるように分散させた(以下、これをシリカ−ジルコニアコロイドゾルAと記す)。また、シリカ−ジルコニアコロイドゾル(平均粒径約50nm、濃度2.0wt%)を蒸留水で4倍に希釈したものに、平均粒径0.2μmのアルミナ微粒子(住友化学工業(株))を約10wt%程度となるように分散させた(以下、これをシリカ−ジルコニアコロイドゾルBと記す)。
【0045】
シリカ−ジルコニアコロイドゾルAを不織布(ベンコット(登録商標),旭化成(株))を用いてアルミナ管の外表面に塗布した。そして、20分間の室温乾燥、10分間180℃で乾燥した後、電気管状炉(EKR−29K,いすゞ製作所(株))で550℃,空気中で15分間焼成した。この操作を計2回行った。
【0046】
続いて、シリカ−ジルコニアコロイドゾルBを、不織布を用いてアルミナ管の外表面に塗布した。そして、20分間の室温乾燥、10分間180℃で乾燥した後、電気管状炉(EKR−29K,いすゞ製作所(株))で550℃,空気中で15分間焼成した。この操作を計3回行った。以上のようにして、α−アルミナ管の外表面を均質化した。
【0047】
(中間層の形成)
次に、外表面を均質化したα−アルミナ管を予め高温(170〜180℃)に加熱し、不織布を用いて、α−アルミナ管の外表面にシリカ−ジルコニアコロイドゾル(平均粒径約50nm、濃度2.0wt%)を蒸留水で4倍に希釈したものを塗布し(ホットコーティング法)、空気中で550℃の温度で15分間焼成した。この操作を数回繰り返し、分離膜支持体の外表面に細孔径が数nm程度の中間層(シリカ−ジルコニア)を形成した。
【0048】
(逆浸透膜の形成)
次に、BTESEを水に加えてBTESEゾルを調製した。なお、BTESEゾルの分子量は、Zetasizer Nano(Malverm社製)により測定したところ、5000〜20000wt/mol程度であった。
【0049】
このBTESEゾルを中間層上に被覆した。そして、乾燥した後、窒素雰囲気下、300℃で30分間焼成し、無機有機ハイブリッド逆浸透膜を形成した。このようにして、逆浸透膜フィルタを作製した。以下、この逆浸透膜フィルタをBTESE300(M1)と記す。
【0050】
また、100℃で焼成した以外、上記と同様の条件で無機有機ハイブリッド逆浸透膜を形成し、逆浸透膜フィルタを作製した。以下、この逆浸透膜フィルタをBTESE100と記す。
【0051】
BTESE300(M1)及びBTESE100をSEM写真で観察したところ、ひび割れは確認できなかった。また、無機有機ハイブリッド逆浸透膜の厚みは100nm以下であった。
【0052】
以上のようにして作製したBTESE300(M1)及びBTESE100を用い、以下の実験を行った。
【0053】
(実験条件)
電解質水溶液として、NaCl水溶液(2000ppm)、及び、MgSO
4水溶液(2000ppm)、中性溶質水溶液として、メタノール水溶液(500ppm)、エタノール水溶液(500ppm)、IPA(イソプロピルアルコール)水溶液(500ppm)、n−ブタノール水溶液(500ppm)、及び、グルコース水溶液(500ppm)を用意した。
【0054】
各水溶液をBTESE300(M1)及びBTESE100に供給し、クロスフロー濾過を行った。各水溶液の供給圧力は1.15MPa、各水溶液の温度は25℃で行った。そして、BTESE300(M1)及びBTESE100の各水溶液に対する水透過率(Water permeability)及び各溶質の阻止率(Rejection)を求め、特性を評価した。
【0055】
水透過率L
p(m
3/(m
2・s・Pa))は、下式(1)により求めた。
Lp=J
v/(ΔP−σΔπ) ・・・(1)
J
vは、フィルタを通す水溶液の流量(L/(m
2・h))、ΔP−σΔπは、有効膜透過圧である。
また、Δπ(浸透圧差)は、ファントホフ式(下式(2))から求めた。
Δπ=2RT(C
f−C
p)・・・(2)
Rは気体定数、Tは絶対温度、C
pは透過液体の濃度、C
fは供給水溶液の濃度である。C
p及びC
fは、電気伝導率計(ES−51,HORIBA Ltd.)及び全有機炭素計(TOC−VE、島津製作所)にてそれぞれ測定した。
【0056】
阻止率R(%)は、下式(3)から求めた。
R(%)=(1−C
p/C
f)×100・・・(3)
【0057】
(各種水溶液の水透過性及び阻止率の検証)
図2に、BTESE300(M1)の各水溶液に対する水透過率及び阻止率を示している。NaCl水溶液、MgSO
4水溶液、イソプロパノール水溶液、グルコース水溶液について、95%以上の阻止率を示した。一方、エタノール水溶液では、阻止率が76%以下であった。これは、エタノールのストークス径が0.4nmと、他の中性溶質(IPA:0.48nm、グルコース:0.73nm)よりも小さいためと考えられる。この結果から、BTESE300(M1)の分離プロセスでは、分子ふるい効果が主要な要因であると考えられる。
【0058】
(分画分子量の検証)
続いて、
図3に、BTESE300(M1)及びBTESE100における各溶液の溶質の分子量と阻止率との関係を示す。なお、
図3中、SW30HR及びES10は、実用化されているポリアミド製の逆浸透膜のデータであり、「E. S. Hatakeyama, C. J. Gabriel, B. R. Wiesenauer, J. L. Lohr, M. J. Zhou, R. D. Noble, D. L. Gin, J. Membr. Sci. 2011, 366, 62-72.」、「Y. Kiso, K. Muroshige, T. Oguchi, M. Hirose, T. Ohara, T. Shintani, J. Membr. Sci. 2011, 369, 290-298.」からそれぞれ引用している。
【0059】
図3中、破線で示す90%の阻止率が所謂分画分子量(MWCO:molecular weight cut−off)であるが、BTESE100では約84g/molと、実用化されている浸透膜とほぼ同等であり、BTESE300(M1)では約55g/molであった。したがって、実用化されている浸透膜と同等、若しくはそれ以上の良好な分子ふるい特性を有することがわかる。
【0060】
(経時的安定性の検証)
NaCl水溶液、MgSO
4水溶液、IPA水溶液、Glucose水溶液を継続して供給し、BTESE300(M1)及びBTESE100の経時的安定性を検証した。
【0061】
図4にNaCl水溶液を供給した際の水透過率及び阻止率の経時変化(
図4(A)がBTESE300(M1)、
図4(B)がBTESE100)を示す。また、
図5にMgSO
4水溶液を供給した際の水透過率及び阻止率の経時変化(
図5(A)がBTESE300(M1)、
図5(B)がBTESE100)を示す。また、
図6にIPA水溶液を供給した際の水透過率及び阻止率の経時変化(BTESE300(M1))を示す。また、
図7にGlucose水溶液を供給した際の水透過率及び阻止率の経時変化(BTESE300(M1))を示す。
【0062】
いずれにおいても、時間経過に伴う水透過率及び阻止率の変化はほとんどないことがわかる。したがって、BTESE300(M1)及びBTESE100は、長時間の連続使用でもその分離性能が低下することなく用い得ることがわかる。
【0063】
(熱安定性の検証)
NaCl水溶液の供給圧力は一定(1.15Pa)のまま、NaCl水溶液の温度を25℃から90℃に昇温させた後、90℃から25℃へと降温させ、熱安定性を検証した。
【0064】
図8に、BTESE300(M1)における供給したNaCl水溶液の温度変化に対する水透過率及び阻止率の変化を示している。
図8を見ると、NaCl水溶液の温度が高くなると水透過率も向上した。また、阻止率についても、25℃では97.3%であったが、90℃では98.2%とこちらも向上した。
【0065】
一般的なポリアミド製の浸透膜では、温度が高くなると阻止率が低下する傾向にある。その理由は以下のように考えられる。高温では、膜の細孔径が大きくなり大きな分子でも通りやすくなること、また、Naイオン及びClイオンがエネルギーを得て膜を通りやすくなることから、相対的に水の透過率が低下し、その結果阻止率が低下するものと考えられる。
【0066】
しかしながら、BTESE300(M1)では、上述のように水透過率及び阻止率は温度が高いほど高い。BTESE300(M1)では、上記温度範囲では膜の細孔径が変化せず、水の粘度の低下により水がNaイオン及びClイオンよりも相対的に通過しやすくなったためと考えられる。このように、BTESE300(M1)は熱安定性が高いとともに、適応温度範囲が広いことがわかる。また、熱安定性が高いことから、高温膜洗浄も可能である。
【0067】
(圧力依存性の検証)
NaCl水溶液を用い、供給圧力を0.7MPa〜1.5MPaの範囲で変化させ、BTESE300(M1)及びBTESE100の圧力依存性を検証した。
【0068】
図9にNaCl水溶液の供給圧力の変化に対する水透過率及び阻止率の変化(
図9(A)がBTESE300(M1)、
図9(B)がBTESE100)を示している。
【0069】
供給圧力を上げると、阻止率はやや向上するものの、水透過率はほぼ一定の特性を維持している。
【0070】
(耐薬品性の検証)
市販の次亜塩素酸ナトリウム溶液(NaClO,活性塩素:10%)を用い、BTESE300(M1)の耐薬品安定性を検証した。
【0071】
次亜塩素酸ナトリウム溶液は、塩素濃度100ppm,500ppm,1000ppmに調製して用いた。また、次亜塩素酸ナトリウム溶液のpHは、0.2M KH
2PO
4緩衝液を用いて7に調整した。
【0072】
調整した次亜塩素酸ナトリウム溶液中にBTESE300(M1)を所定時間浸し種々の塩素負荷を与えた。その後、BTESE300(M1)を取り出して洗浄し、次亜塩素酸ナトリウム溶液を除去した後に、上記同様にNaCl溶液(2000ppm,1.15MPa)を供給して、水透過率及び阻止率を求めた。
【0073】
図10に、塩素負荷(Chlorine exposure)と水透過率及び阻止率との関係を示す。また、
図11に、参考例として、実用化されているポリアミド製逆浸透膜(SW30HR,Dow FilmTec)の塩素負荷と阻止率との関係を示している。なお、
図11に示すグラフは、「Ho Bum Park, Benny D. Freeman, Zhong-Bio Zhang, Mehmet Sankir, and James E. McGrath; Angew. Chem. 2008, 120, 6108-6113」から引用した。
【0074】
図11を見ると、ポリアミド製逆浸透膜では、5000ppmhを超えた後では、塩素負荷が大きくなるにつれて大幅に阻止率が低下している。塩素によってアミド結合が切断・分解されてしまい、耐薬品性がないことがわかる。
【0075】
一方、
図10を見ると、BTESE300(M1)では、塩素負荷35000ppmh(1ppmの塩素溶液に4年間さらされていた状態に相当)であっても、水透過率及び阻止率はほとんど変わらず、安定した性能を維持している。したがって、BTESE300(M1)は耐薬品性に優れ、ポリアミド製浸透膜では不可能な次亜塩素酸等の殺菌剤の使用が可能である。
【実施例2】
【0076】
BTESEtyを用いて無機有機ハイブリッド逆浸透膜を作製した。まず、実施例1と同様にして、α−アルミナ管の外表面を均質化した。
【0077】
外表面を均質化したα−アルミナ管を予め高温(170〜180℃)に加熱し、不織布を用いて、α−アルミナ管の外表面にシリカ−ジルコニアコロイドゾル(平均粒径約50nm、濃度2.0wt%)を蒸留水で4倍に希釈したものを塗布し(ホットコーティング法)、空気中で550℃の温度で15分間焼成した。この操作を12回繰り返し、均質化したα−アルミナ管の外表面に中間層(シリカ−ジルコニア)を形成した。
【0078】
(逆浸透膜の形成)
次に、BTESEthy、水、エタノール及び触媒として塩酸を混合し、40℃で1.5時間攪拌してBTESEthyゾルを調製した。なお、BTESEthy、水、エタノール、塩酸の混合比は、モル比で1:60:122:0.2とした。
【0079】
このBTESEthyゾルを中間層上に被覆した。そして、乾燥した後、窒素雰囲気下、300℃で20分間焼成した。この操作を2回行い、無機有機ハイブリッド逆浸透膜を形成した。このようにして、逆浸透膜フィルタを作製した。以下、この逆浸透膜フィルタをBTESEthy(M1)と記す。
【0080】
また、再現性を確認するため、上記と全く同様にして逆浸透膜フィルタを作成した。以下、この逆浸透膜フィルタをBTESEthy(M2)と記す。
【0081】
また、BTESEthyをBTESEに代える以外、上記と同様にして逆浸透膜フィルタを作成した。以下、この逆浸透膜フィルタをBTESE300(M2)と記す。
【0082】
以上のようにして作製したBTESEthy(M1)、BTESEthy(M2)及びBTESE300(M2)を用い、以下の実験を行った。
【0083】
(分画分子量の検証)
メタノール水溶液(500ppm)、エタノール水溶液(500ppm)、IPA(イソプロピルアルコール)水溶液(500ppm)、及び、グルコース水溶液(500ppm)を用意した。各水溶液をBTESEthy(M1)、BTESEthy(M2)及びBTESE300(M2)に供給し、クロスフロー濾過を行った。各水溶液の供給圧力は1.15MPa、各水溶液の温度は25℃で行った。そして、BTESEthy(M1)、BTESEthy(M2)及びBTESE300(M2)の各水溶液に対する各溶質の阻止率を求めた。阻止率は実施例1と同様の手法で求めた。
【0084】
図12に、BTESEthy(M1)、BTESEthy(M2)及びBTESE300(M2)における各溶液の溶質の分子量と阻止率との関係を示す。なお、
図12中、SW30HRは、実用化されているポリアミド製の逆浸透膜のデータであり、「E. S. Hatakeyama, C. J. Gabriel, B. R. Wiesenauer, J. L. Lohr, M. J. Zhou, R. D. Noble, D. L. Gin, J. Membr. Sci. 2011, 366, 62-72.」、「Y. Kiso, K. Muroshige, T. Oguchi, M. Hirose, T. Ohara, T. Shintani, J. Membr. Sci. 2011, 369, 290-298.」から引用している。
【0085】
BTESEthy(M1)、BTESEthy(M2)及びBTESE300(M2)の分画分子量(
図12中、破線で示す阻止率90%の分子量)は、いずれも60g/mol程度であり、実用化されている浸透膜(SW30HR)よりも良好な分子ふるい特性を有することがわかる。
【0086】
(経時的安定性の検証)
BTESEthy(M1)にNaCl水溶液(2000ppm、25℃)を継続して供給し(供給圧力1.15MPa)、水透過率及び阻止率を経時的に測定し、BTESEthy(M1)の経時的安定性を検証した。なお、水透過率及び阻止率は、それぞれ実施例1と同様の手法で求めた。
【0087】
その結果を
図13に示す。時間経過に伴う水透過率及び阻止率はほぼ一定で変化がないことがわかる。したがって、BTESEthyの分離機能は損なわれることがないので、長時間の連続使用にも用い得ることがわかる。