特許第5904309号(P5904309)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ DIC株式会社の特許一覧

特許5904309セルロースナノファイバー含有樹脂組成物の製造方法及び成形体
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5904309
(24)【登録日】2016年3月25日
(45)【発行日】2016年4月13日
(54)【発明の名称】セルロースナノファイバー含有樹脂組成物の製造方法及び成形体
(51)【国際特許分類】
   C08J 3/12 20060101AFI20160331BHJP
【FI】
   C08J3/12 ACEP
【請求項の数】4
【全頁数】24
(21)【出願番号】特願2015-532635(P2015-532635)
(86)(22)【出願日】2014年5月20日
(86)【国際出願番号】JP2014063304
(87)【国際公開番号】WO2015049894
(87)【国際公開日】20150409
【審査請求日】2015年7月1日
(31)【優先権主張番号】特願2013-207476(P2013-207476)
(32)【優先日】2013年10月2日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002886
【氏名又は名称】DIC株式会社
(74)【代理人】
【識別番号】100124970
【弁理士】
【氏名又は名称】河野 通洋
(72)【発明者】
【氏名】生熊 崇人
(72)【発明者】
【氏名】原田 哲哉
(72)【発明者】
【氏名】神崎 満幸
【審査官】 平井 裕彰
(56)【参考文献】
【文献】 国際公開第2013/031391(WO,A1)
【文献】 国際公開第2013/122209(WO,A1)
【文献】 特開2013−116928(JP,A)
【文献】 国際公開第2011/125801(WO,A1)
【文献】 国際公開第2012/043558(WO,A1)
【文献】 特開2013−129767(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B29B11/16
15/08〜 15/14
C08B 1/00〜 37/18
C08J 3/00〜 3/28
5/04〜 5/10
5/24
99/00
C08K 3/00〜 13/08
C08L 1/00〜101/14
D21B 1/00〜 1/38
D21C 1/00〜 11/14
D21D 1/00〜 99/00
D21F 1/00〜 13/12
D21G 1/00〜 9/00
D21H11/00〜 27/42
D21J 1/00〜 7/00
(57)【特許請求の範囲】
【請求項1】
セルロースナノファイバー含有樹脂組成物の製造方法であって、
反応性二重結合基を有し水酸基が10KOHmg/g以下の化合物と解繊樹脂とを必須成分とする混合物中でセルロースの微細化を行う際に、
前記セルロースの水分率を0%に換算したときのセルロース100質量部に対して、解繊樹脂が10質量部以上であり、かつ、反応性二重結合基を有し水酸基が10KOHmg/g以下の化合物と解繊樹脂とを必須成分とする混合物が40質量部以上250質量部以下であって、
該セルロースの水分率を0%に換算したときの該セルロース100質量部に対する水分量を4〜25質量部とすることを特徴とするセルロースナノファイバー含有樹脂組成物の製造方法。
【請求項2】
更に反応性二重結合基を有する化合物にて希釈する工程を含む請求項に記載のセルロースナノファイバー含有樹脂組成物の製造方法。
【請求項3】
更に重合開始剤を含有させる工程を含む請求項に記載のセルロースナノファイバー含有樹脂組成物の製造方法。
【請求項4】
請求項に記載のセルロースナノファイバー含有樹脂組成物を製造する工程と、さらにセルロースナノファイバー含有樹脂組成物を成形する工程を有することを特徴とする成形体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、反応性二重結合基を有し水酸基価が10KOHmg/g以下の化合物へ複合化することができる高機能フィラーとしてのセルロースナノファイバーの製造方法及びこの製造方法により得られた樹脂組成物を成形してなる成形体に関するものである。
【背景技術】
【0002】
近年開発されたセルロースナノファイバーは、植物由来の天然原料ナノフィラーであり、低比重かつ高強度な樹脂用複合材料として注目されている(特許文献1参照)。
しかしながら、水酸基を多く持つセルロースをナノレベルまで微細化するには、現在の技術では水中で解繊を行う必要がある。この水中解繊セルロースナノファイバーを各種樹脂へと複合化するには、製造されたセルロースナノファイバーの脱水工程及び溶剤置換工程が必須となっている。また、セルロースは分子間水素結合を形成しやすいため、セルロースナノファイバー脱水工程中に再凝集してしまい、樹脂中での分散が不良となっていた。
【0003】
これらの問題を解決する為、水中ではなく有機溶剤中でセルロースを微細化し、セルロースナノファイバーを製造する技術が報告されている(特許文献2参照)。この技術により、水を必要としないため乾燥のコストが削減されるとしているが、樹脂に複合化する際にはまず有機溶媒中で分散し、ナノ化した後に改めて有機溶剤を除去する工程が必要であり、ナノファイバーの煩雑な製造工程が改良されたとはいまだ言えない。
つまり、セルロースナノファイバーを、より安価でかつ簡単な工程で各種樹脂に複合化できるような技術の確立が求められている。
【0004】
また、溶剤を使用せず樹脂中でセルロースを微細化し、セルロースナノファイバーを製造する技術が報告されている(特許文献3及び4参照)。この技術により、樹脂中にセルロースナノファイバーを複合することは大変容易となる。特許文献3で使用されているポリエステル樹脂や特許文献4で使用されているアクリル樹脂は、セルロースを微細化するために、たくさんの量を必要とする。多量のポリエステル樹脂及びアクリル樹脂は、反応性二重結合基を有する樹脂を硬化させる際は反応することがなく、未硬化物として成形体中に残留することにより可塑剤として働き成形体の物性低下を引き起こす。また、反応性二重結合基を有する化合物の成形体では吸水性が低いことを望むことが多いことから、モノマ−として反応性二重結合基を有し水酸基価が10KOHmg/g以下の化合物が使用される。しかしながら、反応性二重結合基を有し水酸基価が10KOHmg/g以下の化合物では、特許文献3及び特許文献4の方法ではセルロースを微細化することはできない。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−042283号公報
【特許文献2】特開2009−261993号公報
【特許文献3】国際公開第2012/043558号
【特許文献4】特開2013−116928号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明では、溶剤置換工程や脱溶剤といった工程をまったく必要としない簡易な製造方法で、反応性二重結合基を有する化合物への複合化が容易かつ成形物中に可塑剤として働く未硬化物が少ないセルロースナノファイバー及び、該セルロースナノファイバーを用いた高強度な樹脂組成物及び成形体を提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明者らは鋭意検討を重ねた結果、水中や有機溶剤中で微細化を行うのではなく、反応性二重結合基を有し水酸基価が10KOHmg/g以下の化合物と解繊樹脂を必須成分とする混合物中でセルロースを微細化でき、この方法により得られたセルロースナノファイバー及びセルロースナノファイバー含有組成物は、セルロースの修飾等を必要とせずに、他の希釈用樹脂にそのまま複合化することが容易であり、従来の方法よりも成形後に可塑剤として働く解繊樹脂を非常に少なくできることを見出した。
【0008】
すなわち本発明は、セルロースナノファイバー含有樹脂組成物の製造方法であって、 反応性二重結合基を有し水酸基が10KOHmg/g以下の化合物と解繊樹脂とを必須成分とする混合物中でセルロースの微細化を行う際に、該セルロースの水分率を0%に換算した時の質量100質量部に対する水分量を4〜25質量部とすることを特徴とするセルロースナノファイバー含有樹脂組成物の製造方法を提供するものである。
【0009】
さらに、水分率を0%に換算したセルロース100質量部に対して、解繊樹脂が10質量部以上であり、かつ反応性二重結合基を有し水酸基が10KOHmg/g以下の化合物と解繊樹脂とを必須成分とする混合物が40質量部以上250質量部以下であるセルロースナノファイバー含有樹脂組成物の製造方法を提供するものである。
【0010】
さらに、反応性二重結合基を有する化合物にて希釈する工程を含むセルロースナノファイバー含有樹脂組成物の製造方法を提供するものである。
【0011】
さらに、重合開始剤を含有する工程を含むセルロースナノファイバー含有樹脂組成物の製造方法を提供するものである。
【0012】
さらに、前記製造方法により製造されたセルロースナノファイバー含有樹脂組成物の成形体を提供するものである。
【発明の効果】
【0013】
本発明によれば、反応性二重結合基を有し水酸基が10KOHmg/g以下の化合物と解繊樹脂とを必須成分とする混合物中でセルロースの微細化を行う際に、該セルロースの水分率を0%に換算した時の質量100質量部に対する水分量を4〜25質量部とすることを特徴とするセルロースナノファイバー含有樹脂組成物の製造方法により、セルロースを微細化することが可能である。
【0014】
さらに、この方法により得られたセルロースナノファイバー及びセルロースナノファイバー含有組成物は、溶剤置換や有機溶剤の除去操作を必要とせずに、他の希釈用樹脂にそのまま複合化することが可能であり、簡便かつ良好なセルロースナノファイバー複合化樹脂組成物を得ることができる。
【0015】
また、得られた樹脂組成物はそのまま成形体を製造することが可能であり、硬化時に可塑剤として働く非硬化物である解繊樹脂が非常に少ないため、物性低下を起こすことなく、セルロースナノファイバーの効果により、高強度な成形体を得ることが可能となる。
【発明を実施するための形態】
【0016】
以下において、本発明の実施の形態について詳細に説明する。なお、以下の記載は本発明の実施形態の一例であり、本記載に限定されるものではない。
【0017】
〔セルロースの種類〕
本発明におけるセルロースナノファイバーは、各種セルロースを微細化する事で得られる。本発明におけるセルロースは、微細化材料として利用可能なものであればよく、パルプ、綿、紙、レーヨン・キュプラ・ポリノジック・アセテートなどの再生セルロース繊維、バクテリア産生セルロース、ホヤなどの動物由来セルロースなどが利用可能である。また、これらのセルロースは必要に応じて表面を化学修飾処理したものであってもよい。
【0018】
パルプとしては、木材パルプ、非木材パルプ双方を好適に使用できる。木材パルプとしては、機械パルプと化学パルプとあり、リグニン含有量の少ない化学パルプのほうが好ましい。化学パルプにはサルファイドパルプ、クラフトパルプ、アルカリパルプなどがあるが、いずれも好適に使用できる。非木材パルプとしては、藁、バガス、ケナフ、竹、葦、楮、亜麻などいずれも利用可能である。
【0019】
綿は主に衣料用繊維に用いられる植物であり、綿花、綿繊維、綿布のいずれも利用可能である。
【0020】
紙はパルプから繊維を取り出し漉いたもので、新聞紙や廃牛乳パック、コピ−済み用紙などの古紙も好適に利用できる。
【0021】
また、微細化材料としてのセルロースとして、セルロースを破砕し一定の粒径分布を有したセルロース粉末を用いても良く、日本製紙ケミカル社製のKCフロック(登録商標)、旭化成ケミカルズ社製のセオラス(登録商標)、FMC社製のアビセル(登録商標)などが挙げられる。
【0022】
〔反応性二重結合基を有し水酸基価が10KOHmg/g以下の化合物及び解繊樹脂を必須成分とする混合物中でのセルロースの微細化〕
セルロースの微細化は、反応性二重結合基を有し水酸基価が10KOHmg/g以下の化合物及び解繊樹脂を必須成分とする混合物中にセルロースを添加し、機械的に箭断力を与えることにより行うことができる。箭断力を与える手段としては、ビ−ズミル、超音波ホモジナイザー、一軸押出機、二軸押出機等の押出機、バンバリーミキサー、グラインダー、加圧ニーダー。2本ロール等の公知の混練機等を用い剪断力を与えることができる。これらの中でも高粘度の樹脂中でも安定した剪断力を得られる観点から加圧ニーダーを用いることが好ましい。
【0023】
本発明において、前記混合物と前記セルロースの比率は、水分率を0%に換算したセルロース100質量部に対して40質量部以上250質量部以下であることが望ましい。前記混合物が多いと、せん断力がかからなくなり、解繊できない。前記混合物が少ないと、セルロースが濡れないため、解繊が進まない。
【0024】
〔水分率を0%に換算したセルロース質量の測定方法〕
株式会社ケット科学研究所製赤外線水分計FD−720を使用し、約5gのセルロースを110℃、自動停止モードの条件で加熱し、水分量の測定を行う。このときの水分量が5%であった場合、セルロース100質量部に対する、水分率を0%に換算したセルロースの質量は95質量部となる。以下、水分率を0%に換算したセルロースの質量はこの方法で測定を行う。
【0025】
〔反応性二重結合基を有し水酸基価が10KOHmg/g以下の化合物〕
本発明における反応性二重結合基を有し水酸基価が10KOHmg/g以下の化合物とは、反応性二重結合基を1個以上有し水酸基価が10KOHmg/g以下の化合物のことをいう。反応性二重結合基とは、アニオン重合、カチオン重合、ラジカル重合などによって重合が可能な二重結合基のことをいい、反応性二重結合基として、ビニル基、アクリル基、メタクリル基、などがあげられる。
【0026】
反応性二重結合基を有し水酸基価が10KOHmg/g以下の化合物としては、低分子量の化合物から高分子量の樹脂まで挙げられる。例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸t−ブチルシクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸t−オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸アセトキシエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸2−エトキシエチル、(メタ)アクリル酸2−(2−メトキシエトキシ)エチル、(メタ)アクリル酸−2−クロロエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸−3,4−エポキシシクロヘキシルメチル、(メタ)アクリル酸ビニル、(メタ)アクリル酸−2−フェニルビニル、(メタ)アクリル酸−1−プロペニル、(メタ)アクリル酸アリル、(メタ)アクリル酸−2−アリロキシエチル、(メタ)アクリル酸プロパルギル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジエチレングリコールモノメチルエーテル、(メタ)アクリル酸ジエチレングリコールモノエチルエーテル、(メタ)アクリル酸トリエチレングリコールモノメチルエーテル、(メタ)アクリル酸トリエチレングリコールモノエチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノメチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノエチルエーテル、(メタ)アクリル酸β−フェノキシエトキシエチル、(メタ)アクリル酸ノニルフェノキシポリエチレングリコール、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸トリフロロエチル、(メタ)アクリル酸オクタフロロペンチル、(メタ)アクリル酸パ−フロロオクチルエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸トリブロモフェニル、(メタ)アクリル酸トリブロモフェニルオキシエチル、(メタ)アクリル酸−γ−ブチロラクトン、トリメチロールプロパントリメタクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ポリテトラメチレングリコールジメタクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールペンタ及びヘキサアクリレート、フェノールEO変性アクリレート、トリメチロールプロパンEO変性トリアクリレート、トリメチロールプロパンPO変性トリアクリレート、ビスフェノールF EO変性(n ≒ 2)ジアクリレート、ビスフェノールF PO変性(n ≒ 2)ジアクリレート、ペンタエリスリトールトリ及びテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ビニルアセテート、ビニルクロロアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、および安息香酸ビニル、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチル、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチル、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチル、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ニトロフェニルアクリルアミド、N−エチル−N−フェニルアクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミド、N−メチロ−ルアクリルアミド、ビニル(メタ)アクリルアミド、N,N−ジアリル(メタ)アクリルアミド、N−アリル(メタ)アクリルアミド、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、α−メチルスチレン、メチルビニルエーテル、エチルビニルエーテル、2−クロロエチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、オクチルビニルエーテル、メトキシエチルビニルエーテル、フェニルビニルエーテル、メチルビニルケトン、エチルビニルケトン、プロピルビニルケトン、フェニルビニルケトン、エチレン、プロピレン、イソブチレン、ブタジエン、イソプレン、マレイミド、ブチルマレイミド、シクロヘキシルマレイミド、フェニルマレイミド、(メタ)アクリロニトリル、ビニルピリジン、N−ビニルピロリドン、ビニルカルバゾール、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトンなどがあげられる。
【0027】
反応性二重結合基を有する樹脂としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂などに反応性二重結合基を導入することにより得られる。反応性二重結合基の導入は公知・慣用の方法で行えばよく、特に限定されるものではない。
【0028】
例えば、ポリエステル樹脂に反応性二重結合基を導入する場合は、カルボキシル基を有するポリエステル樹脂と(メタ)アクリル酸グリシジルを反応させる方法などが挙げられる。
【0029】
アクリル樹脂の場合は、カルボキシル基を有するアクリル樹脂と(メタ)アクリル酸グリシジルを反応させる方法や、グリシジル基を有するアクリル樹脂と(メタ)アクリル酸を反応させる方法などが挙げられる。
【0030】
ウレタン樹脂の場合は、イソシアネート基を有するウレタン樹脂と(メタ)アクリル酸2−ヒドロキシエチルなどの水酸基を有しかつ反応性二重結合基を有する化合物を反応させる方法などが挙げられる。
【0031】
〔解繊樹脂〕
本発明にける解繊樹脂は、本発明の効果を損ねない範囲であれば公知慣用の樹脂を用いることができるが、具体的にはポリエステル系樹脂、ビニル樹脂、変性エポキシ樹脂などが挙げられる。
【0032】
〔ポリエステル系樹脂〕
本発明におけるポリエステル系樹脂とは、下記一般式(2)で表される1種若しくは2種以上のポリオールと、下記一般式(3)で表される1種若しくは2種以上のポリカルボン酸とを反応させて得られる、ポリエステル樹脂である。
【0033】
X−(OH)m・・・(2)
[式中、Xは酸素原子を含んでいても良い炭素数1〜20の脂肪族炭化水素基、置換基を有していてもよい芳香族基またはヘテロ環芳香族基を表す。mは2〜4の整数を表す。]
【0034】
Y−(COOH)n・・・(3)
[式中、Yは炭素数1〜20の脂肪族炭化水素基、置換基を有していてもよい芳香族基またはヘテロ環芳香族基を表す。nは2〜4の整数を表す。]
【0035】
一般式(2)で表されるポリオールとしては、エチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、ペンチルグリコール、ネオペンチルグリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール、2−メチル−1,3−プロパンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、2−メチル−1,4−ブタンジオール、2−エチル−1,4−ブタンジオール、2−メチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、3−メチル−1,5−ヘプタンジオール、水素化ビスフェノールA、ビスフェノールAとプロピレンオキシドまたはエチレンオキシドの付加物、1,2,3,4−テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、1,3−プロパンジオール、1,2−シクロヘキサングリコール、1,3−シクロヘキサングリコール、1,4−シクロヘキサングリコール、1,4−シクロヘキサンジメタノール、パラキシレングリコール、ビシクロヘキシル−4,4’−ジオール、2,6−デカリングリコール、2,7−デカリングリコール、エチレングリコールカーボネート、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。
【0036】
一般式(3)で表されるポリカルボン酸としては、不飽和二塩基酸およびその無水物があり、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロルマレイン酸及びこれらのエステル等があり、ハロゲン化無水マレイン酸等、アコニット酸などのα,β−不飽和二塩基酸やジヒドロムコン酸等のβ,γ−不飽和二塩基酸が挙げられる。また、飽和二塩基酸およびその無水物として、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、ニトロフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、ハロゲン化無水フタル酸及びこれらのエステル等があり、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、メチルヘキサヒドロフタル酸、ヘット酸、1,1−シクロブタンジカルボン酸、シュウ酸、コハク酸、コハク酸無水物、マロン酸、グルタル酸、アジピン酸、アゼライン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,12−ドデカン2酸,2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸無水物、4,4’−ビフェニルジカルボン酸、またこれらのジアルキルエステル等が挙げられる。
【0037】
なお、上記のポリオ−ルとポリカルボン酸に加えて、実質的にその特性を損なわない程度に1価アルコール、1価カルボン酸、およびヒドロキシカルボン酸を用いても良い。1価アルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、2−ブタノール、3−ブタノール、n−アミルアルコール、n−ヘキサノール、イソヘキサノール、n−ヘプタノール、イソヘプタノール、n−オクタノール、2−エチルヘキサノール、イソオクタノール、n−ノナノール、イソノナノール、n−デカノール、イソデカノール、イソウンデカノール、ラウリルアルコール、セチルアルコール、デシルアルコール、ウンデシルアルコール、トリデシルアルコール、ベンジルアルコールステアリルアルコール等が挙げられ、これらを1種または2種以上を用いても良い。1価カルボン酸としては、安息香酸、ヘプタン酸、ノナン酸、カプリル酸、ノナン酸、カプリン酸、ウンデシル酸、ラウリル酸等が挙げられ、これらを1種または2種以上を用いても良い。ヒドロキシカルボン酸としては、乳酸、グリコ−ル酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシカプロン酸、2−ヒドロキシ3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−ヒドロキシイソカプロン酸、p−ヒドロキシ安息香酸挙げられ、これらを1種または2種以上を用いても良い。
【0038】
また、本発明におけるポリエステル系樹脂としては、上記ポリエステル樹脂を変性して得られる変性ポリエステル樹脂を用いても良い。変性ポリエステル樹脂としては、ウレタン変性ポリエステル、アクリル変性ポリエステル、エポキシ変性ポリエステル、シリコーン変性ポリエステルなどが挙げられる。
【0039】
また、本発明におけるポリエステル系樹脂としては、直鎖状でもよく、多分岐状ポリエステルを用いてもかまわない。
【0040】
本発明におけるポリエステル系樹脂は、エステル基濃度が6.0mmol/g以上であることが好ましい。より好ましくは6.0〜14mmol/g、更に好ましくは6.0〜20mmol/g、特に好ましくは6.0〜30mmol/gである。また、エステル基濃度が6.0mmol/g以上かつ酸価が10KOHmg/g以上であると、好ましい。より好ましくは酸価10〜100KOHmg/g、更に好ましくは10〜200KOHmg/g、特に好ましくは10〜300KOHmg/gである。また、エステル基濃度が6.0mmol/g以上かつ水酸基価が10以上であると、好ましい。より好ましくは水酸基価10〜500KOHmg/g、更に好ましくは10〜800KOHmg/g、特に好ましくは10〜1000KOHmg/gである。また、本発明におけるポリエステル系樹脂は、エステル基濃度が6.0mmol/g以上で、酸価が10KOHmg/g以上かつ水酸基価が10KOHmg/g以上であると、特に好ましい。
【0041】
本発明において、前記ポリエステル系樹脂は単独で用いても良いが、複数を組み合わせて用いてもかまわない。
【0042】
〔ビニル樹脂〕
本発明におけるビニル樹脂とは、ビニルモノマーの重合体もしくは共重合体であり、ビニルモノマーとしては、特に制限されないが、例えば、(メタ)アクリル酸エステル誘導体、ビニルエステル誘導体、マレイン酸ジエステル誘導体、(メタ)アクリルアミド誘導体、スチレン誘導体、ビニルエーテル誘導体、ビニルケトン誘導体、オレフィン誘導体、マレイミド誘導体、(メタ)アクリロニトリルが好適に挙げられる。ビニル樹脂としては、その中でも特に(メタ)アクリル酸エステル誘導体を重合して得られる(メタ)アクリル樹脂が特に好ましい。
【0043】
以下、これらのビニルモノマーの好ましい例について説明する。(メタ)アクリル酸エステル誘導体の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸t−ブチルシクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸t−オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸アセトキシエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル、(メタ)アクリル酸−3−ヒドロキシプロピル、(メタ)アクリル酸−4−ヒドロキシブチル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸2−エトキシエチル、(メタ)アクリル酸2−(2−メトキシエトキシ)エチル、(メタ)アクリル酸3−フェノキシ−2−ヒドロキシプロピル、(メタ)アクリル酸−2−クロロエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸−3,4−エポキシシクロヘキシルメチル、(メタ)アクリル酸ビニル、(メタ)アクリル酸−2−フェニルビニル、(メタ)アクリル酸−1−プロペニル、(メタ)アクリル酸アリル、(メタ)アクリル酸−2−アリロキシエチル、(メタ)アクリル酸プロパルギル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジエチレングリコールモノメチルエーテル、(メタ)アクリル酸ジエチレングリコールモノエチルエーテル、(メタ)アクリル酸トリエチレングリコールモノメチルエーテル、(メタ)アクリル酸トリエチレングリコールモノエチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノメチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノエチルエーテル、(メタ)アクリル酸β−フェノキシエトキシエチル、(メタ)アクリル酸ノニルフェノキシポリエチレングリコール、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸トリフロロエチル、(メタ)アクリル酸オクタフロロペンチル、(メタ)アクリル酸パ−フロロオクチルエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸トリブロモフェニル、(メタ)アクリル酸トリブロモフェニルオキシエチル、(メタ)アクリル酸−γ−ブチロラクトンなどが挙げられる。
【0044】
ビニルエステル誘導体の例としては、ビニルアセテート、ビニルクロロアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、および安息香酸ビニルなどが挙げられる。
【0045】
マレイン酸ジエステル誘導体の例としては、マレイン酸ジメチル、マレイン酸ジエチル、およびマレイン酸ジブチルなどが挙げられる。
フマル酸ジエステル誘導体の例としては、フマル酸ジメチル、フマル酸ジエチル、およびフマル酸ジブチルなどが挙げられる。
イタコン酸ジエステル誘導体の例としては、イタコン酸ジメチル、イタコン酸ジエチル、およびイタコン酸ジブチルなどが挙げられる。
【0046】
(メタ)アクリルアミド誘導体の例としては、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ニトロフェニルアクリルアミド、N−エチル−N−フェニルアクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミド、N−メチロ−ルアクリルアミド、N−ヒドロキシエチルアクリルアミド、ビニル(メタ)アクリルアミド、N,N−ジアリル(メタ)アクリルアミド、N−アリル(メタ)アクリルアミドなどが挙げられる。
【0047】
スチレン誘導体の例としては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、およびα−メチルスチレンなどが挙げられる。
【0048】
ビニルエーテル誘導体の例としては、メチルビニルエーテル、エチルビニルエーテル、2−クロロエチルビニルエーテル、ヒドロキシエチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、オクチルビニルエーテル、メトキシエチルビニルエーテルおよびフェニルビニルエーテルなどが挙げられる。
【0049】
ビニルケトン誘導体の例としては、メチルビニルケトン、エチルビニルケトン、プロピルビニルケトン、フェニルビニルケトンなどが挙げられる。
【0050】
オレフィン誘導体の例としては、エチレン、プロピレン、イソブチレン、ブタジエン、イソプレンなどが挙げられる。
【0051】
マレイミド誘導体の例としては、マレイミド、ブチルマレイミド、シクロヘキシルマレイミド、フェニルマレイミドなどが挙げられる。
【0052】
そのほかにも、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、N−ビニルピロリドン、ビニルカルバゾールなど)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン等も使用できる。
【0053】
〔官能基〕
本発明におけるビニル樹脂は、官能基を有することがこのましい。これは、希釈樹脂との相互作用により機械特性など成形体の物性を向上させることが可能となるからである。官能基としては、具体的にはハロゲン基(フッ素、塩素)、水酸基、カルボキシル基、アミノ基、シラノール基、シアノ基等が挙げられ、これらを複数種有していてもかまわない。
【0054】
前記ビニル樹脂は、前記ビニルモノマーを重合開始剤の存在下、反応容器中で加熱、必要により熟成することにより得ることが出来る。反応条件としては例えば、重合開始剤及び溶媒によって異なるが、反応温度が30〜150℃、好ましくは60〜120℃である。重合は、非反応性溶剤の存在下で行っても差し支えない。
【0055】
前記重合開始剤としては、例えばt−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシド、クメンパーヒドロキシド、アセチルパーオキシド、ベンゾイルパーオキシド、ラウロイルパーオキシド等過酸化物;アゾビスイソブチルニトリル、アゾビス−2,4−ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル等アゾ化合物などが挙げられる。
【0056】
前記非反応性溶剤としては、例えばヘキサン、ミネラルスピリット等脂肪族炭化水素系溶剤;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶剤;酢酸ブチル等のエステル系溶剤;メタノール、ブタノール等のアルコール系溶剤;ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン等の非プロトン性極性溶剤などが挙げられる。これらの溶剤は、単独で使用しても、複数種類併用してもかまわない。
【0057】
本発明のビニル樹脂は、直鎖型ポリマーであっても分岐型ポリマーであってもよく、分岐型ポリマーの場合、くし型でも星型でもかまわない。
【0058】
〔分子量〕
本発明で使用するビニル樹脂の分子量は、重量平均分子量が6000以下であることが好ましい。詳細な理由は不明であるが、重量平均分子量が6000以下であれば、セルロース繊維への親和性が高まるためではないかと予想される。
【0059】
〔酸価〕
本発明におけるビニル樹脂の重量平均分子量が6000以下のとき、酸価が30KOHmg/g以上60KOHmg/g未満であるとより好ましい。
【0060】
〔水酸基価〕
本発明におけるビニル樹脂の重量平均分子量が6000以下のとき、水酸価が30KOHmg/g以上であると好ましく、50KOHmg/g以上であるとより好ましい。
【0061】
本発明におけるビニル樹脂の重量平均分子量が6000以下のとき、酸価が30KOHmg/g以上60KOHmg/g未満且つ水酸基価が30KOHmg/g以上であると特に好ましい。
【0062】
〔変性エポキシ樹脂〕
本発明における変性エポキシ樹脂とは、エポキシ基を有し、水酸基価が100mgKOH/g以上である変性エポキシ樹脂である。
該変性エポキシ樹脂は、エポキシ樹脂とカルボキシル基又はアミノ基を有する化合物とを反応させることで得ることができる。
【0063】
〔エポキシ樹脂〕
本発明で用いるエポキシ樹脂は、分子内にエポキシ基を有する化合物であって、後述するカルボキシル基又はアミノ基を有する化合物と反応して、水酸基価が100mgKOH/g以上である変性エポキシ樹脂を生成するものであればよく、その構造等に特に制限はない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、p−tert−ブチルフェノールノボラック型エポキシ樹脂、ノニルフェノールノボラック型エポキシ樹脂、t−ブチルカテコール型エポキシ樹脂等の多価エポキシ樹脂等が挙げられ、更に1価のエポキシ樹脂としては、ブタノール等の脂肪族アルコール、炭素数11〜12の脂肪族アルコール、フェノール、p−エチルフェノール、o−クレゾール、m−クレゾール、p−クレゾール、p−タ−シャリブチルフェノール、s−ブチルフェノール、ノニルフェノール、キシレノール等の1価フェノール類とエピハロヒドリンとの縮合物、ネオデカン酸等の1価カルボキシル基とエピハロヒドリンとの縮合物等が挙げられ、グリシジルアミンとしては、ジアミノジフェニルメタンとエピハロヒドリンとの縮合物等、多価脂肪族エポキシ樹脂としては、例えば、大豆油、ヒマシ油等の植物油のポリグリシジルエーテルが挙げられ、多価アルキレングリコール型エポキシ樹脂としては、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、グリセリン、エリスリトール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、トリメチロールプロパンとエピハロヒドリンとの縮合物等、更には特開2005−239928号公報記載の水性エポキシ樹脂等が挙げられ、これらは1種類で用いても、2種類以上を併用しても良い。
【0064】
前記エポキシ樹脂は、必要に応じて有機溶剤や非反応性希釈剤等を加えて液状化・低粘度化したものであってもよい。
【0065】
〔カルボキシル基又はアミノ基を有する化合物〕
本発明におけるカルボキシル基又はアミノ基を有する化合物は、上記エポキシ樹脂反応して水酸基価が100mgKOH/g以上である変性エポキシ樹脂を生成するものであればよく、カルボキシル基を有する化合物と、アミノ基を有する化合物と、カルボキシル基及びアミノ基を有する化合物のいずれか1種以上を用いることができる。
また、カルボキシル基又はアミノ基を有する化合物においてさらに水酸基を有するカルボキシル基又はアミノ基を有する化合物は、エポキシ化合物と反応した際に変性エポキシ樹脂に高い水酸基価を付与できるため、特に好ましい。
【0066】
〔カルボキシル基を有する化合物〕
本発明におけるカルボキシル基を有する化合物とは、カルボキシル基を一つ以上有する化合物である。カルボキシル基を一つ有する化合物として、具体的には、ギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、クロロ酢酸、トリフルオロ酢酸、イソプロピル酸、イソステアリン酸、ネオデカン酸、などの脂肪酸、安息香酸、メチル安息香酸、ジメチル安息香酸、トリメチル安息香酸、フェニル酢酸、4−イソプロピル安息香酸、2−フェニルプロパン酸、2−フェニルアクリル酸、3−フェニルプロパン酸、ケイ被酸などの芳香族カルボン酸等が挙げられる。カルボキシル基を二つ以上有する化合物として、具体的には、コハク酸、アジピン酸、テレフタレ−ト酸、イソフタル酸、ピロメリット酸などのカルボン酸類、及びこれらの無水物を挙げることができる。さらに、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロルマレイン酸及びこれらのエステル等があり、ハロゲン化無水マレイン酸等、アコニット酸などのα,β−不飽和二塩基酸やジヒドロムコン酸等のβ,γ−不飽和二塩基酸が挙げられる。また、飽和二塩基酸およびその無水物として、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、ニトロフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、ハロゲン化無水フタル酸及びこれらのエステル等があり、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、メチルヘキサヒドロフタル酸、ヘット酸、1,1−シクロブタンジカルボン酸、シュウ酸、コハク酸、コハク酸無水物、マロン酸、グルタル酸、アジピン酸、アゼライン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,12−ドデカン2酸,2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸無水物、4,4’−ビフェニルジカルボン酸等が挙げられる。
【0067】
〔アミノ基を有する化合物〕
本発明におけるアミノ基を有する化合物とは、アミノ基を一つ以上有する化合物である。具体的には、アミノ基を一つ有する化合物として、メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、プロピルアミン、ブチルアミン、N,N−ジメチル−2−プロパンアミン、アニリン、トルイジン、2−アミノアントラセンなどをあげることができる。2つ以上のアミノ基を有する化合物としては、エチレンジアミン、1,3−プロパンジアミン、1,4−ブタンジアミン、1,6−ヘキサメチレンジアミン、1,4−シクロヘキサンジアミン、3−アミノメチル−3,5,5−トリメチルシクロヘキシルアミン、ピペラジン、2,5−ジメチルピペラジン、イソホロンジアミン、4,4’−シクロヘキシルメタンジアミン、ノルボルナンジアミン、ヒドラジン、ジエチレントリアミン、トリエチレントリアミン、1,3−ビス(アミノメチル)シクロヘキサン、キシリレンジアミンなどをあげることができる。
【0068】
〔カルボキシル基及びアミノ基を有する化合物〕
本発明におけるカルボキシル基及びアミノ基を有する化合物とは、カルボキシル基とアミノ基を一つずつ以上有する化合物である。代表的にはアミノ酸が挙げられ、さらに水酸基を有しても構わない。具体的には、アラニン、アルギニン、アスパラギン、アスオアラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン、アミノラク酸、テアニン、トリコロミン酸、カイニン酸等が挙げられる。
【0069】
〔さらに水酸基を有する、カルボキシル基又はアミノ基を有する化合物〕
さらに水酸基を有する、カルボキシル基又はアミノ基を有する化合物とは、カルボキシル基またはアミノ基を有し、さらに水酸基を一つ以上有する化合物である。具体的には、グリコ−ル酸、グリセリン酸、ヒドロキシプロピオン酸、ヒドロキシラク酸、リンゴ酸、2,3−ジヒドロキシブタン二酸、クエン酸、イソクエン酸、メバロン酸、バントイン酸、リシノ−ル酸、ジメチロールプロピオン酸、ジメチロールブタン酸、ヒドロキシフェニルプロパン酸、マンデル酸、ベンジル酸、ヒドロキシメチルアミン、ヒドロキシエチルアミン、ヒドロキシプロピルアミンなどが挙げられる。
【0070】
〔変性エポキシ樹脂の製造〕
本発明における水酸基価が100mgKOH/g以上である変性エポキシ樹脂は、エポキシ樹脂のエポキシ基とカルボキシル基又はアミノ基を有する化合物のカルボキシル基又はアミノ基を反応させることで得ることができる。水酸基価が100mgKOH/gより少ない場合、セルロースとの親和性が低くなることから、セルロースナノファイバーへの解繊は進みにくいため、好ましくない。エポキシ基とカルボキシル基又はアミノ基の反応比は、水酸基価が100mgKOH/g以上生じ、かつ所望のエポキシ基量が残るように任意に設定すればよい。
【0071】
変性エポキシ樹脂中のエポキシ基量は一分子あたり0.3個以上が好ましく、0.5個以上がさらに好ましく、1個以上が最も好ましい。
【0072】
変性エポキシ樹脂の製造は、無溶媒もしくは溶媒中で行うことができる。好ましくは、脱溶剤が必要ない無溶媒での反応が好ましい。使用する重合溶媒は特に制限はない。例えば、メタノール、エタノール、イソプロパノール、1−ブタノール、第3級ブタノール、イソブタノール、ジアセトンアルコール、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジブチルエ−テル、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ブチルセロソルブ、トルエン、キシレン、酢酸エチル、酢酸イソブチル等が挙げられる。また、これらの溶媒は単独で使用しても良いし、混合して使用しても良い。
【0073】
また、反応触媒としてルイス酸触媒やルイス塩基触媒を使用しても良い。具体的には、三フッ化ホウ素、ベンジルトリメチルアンモニウムクロリド、ジメチルアミノピリジン、ピリジン、8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、トリフェニルホスフィンなどが挙げられる。
【0074】
反応温度は、室温〜200℃の間が好ましい。
【0075】
本発明において、前記解繊樹脂は単独で用いても良いが、複数を組み合わせて用いてもかまわない。
【0076】
本発明において、解繊樹脂とセルロースの比率は、水分率を0%に換算したセルロース100質量部に対して解繊樹脂が10質量部以上であることが望ましい。解繊樹脂が10質量部以上存在すると、反応性二重結合基を有し水酸基が10KOHmg/g以下の化合物と解繊樹脂とを必須成分とする混合物とセルロースとの濡れ性がよくなり、セルロースの微細化が進行しやすい。
【0077】
本発明において、反応性二重結合基を有し水酸基価が10KOHmg/g以下の化合物が解繊中に重合しないように重合禁止剤を添加することが望ましい。
【0078】
重合禁止剤としては特に限定はないが、メトキノン、ハイドロキノン、t−ブチルハイドロキノン、4−t−ブチルカテコール等が挙げられる
【0079】
本発明において、水分量は水分率を0%に換算したセルロース100質量部に対して4〜25質量部が望ましい。ここで言う水分量には、セルロースが元々含有していた水分量を含む。水分量が4質量部未満であるとセルロースが硬く凝集してしまい解繊できない。25質量部より多いときは、セルロースがすべての水分を吸収できないため、反応性二重結合基を有し水酸基が10KOHmg/g以下の化合物と解繊樹脂とを必須成分とする混合物が乳化してしまい、解繊できない。
【0080】
本発明の微細化方法により、セルロースはセルロースナノファイバー化する。本発明の微細化方法では、例えば、長軸方向に100nm〜1000000nm、短軸方向に5nm〜1000nmに微細化することが可能である。
【0081】
上記製造方法で得られたセルロースナノファイバー含有樹脂組成物を、反応性二重結合基を有する化合物にて希釈すると、成形に適した樹脂組成物が得られる。
【0082】
セルロースナノファイバー含有樹脂組成物を、反応性二重結合基を有する化合物にて希釈する際は、セルロースナノファイバー含有樹脂組成物をそのまま用いても良いが、乾燥して用いても良い。
【0083】
〔反応性二重結合基を有する化合物〕
本発明における反応性二重結合基を有する化合物とは反応性二重結合基を1個以上有する化合物のことをいう。反応性二重結合基とは、アニオン重合、カチオン重合、ラジカル重合などによって重合が可能な二重結合基のことをいい、反応性二重結合基として、ビニル基、アクリル基、メタクリル基、などがあげられる。
【0084】
反応性二重結合基を有する化合物は、低分子量の化合物から高分子量の樹脂まで挙げられる。例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸t−ブチルシクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸t−オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸アセトキシエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸―2−ヒドロキシプロピル、(メタ)アクリル酸―3−ヒドロキシプロピル、(メタ)アクリル酸―4−ヒドロキシブチル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸2−エトキシエチル、(メタ)アクリル酸2−(2−メトキシエトキシ)エチル、(メタ)アクリル酸3−フェノキシ−2−ヒドロキシプロピル、(メタ)アクリル酸−2−クロロエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸−3,4−エポキシシクロヘキシルメチル、(メタ)アクリル酸ビニル、(メタ)アクリル酸―2−フェニルビニル、(メタ)アクリル酸―1−プロペニル、(メタ)アクリル酸アリル、(メタ)アクリル酸―2−アリロキシエチル、(メタ)アクリル酸プロパルギル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジエチレングリコールモノメチルエーテル、(メタ)アクリル酸ジエチレングリコールモノエチルエーテル、(メタ)アクリル酸トリエチレングリコールモノメチルエーテル、(メタ)アクリル酸トリエチレングリコールモノエチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノメチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノエチルエーテル、(メタ)アクリル酸β−フェノキシエトキシエチル、(メタ)アクリル酸ノニルフェノキシポリエチレングリコール、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸トリフロロエチル、(メタ)アクリル酸オクタフロロペンチル、(メタ)アクリル酸パーフロロオクチルエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸トリブロモフェニル、(メタ)アクリル酸トリブロモフェニルオキシエチル、(メタ)アクリル酸−γ−ブチロラクトン、グリセリンモノメタクリレート、グリセリンジメタクリレート、トリメチロールプロパントリメタクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ポリテトラメチレングリコールジメタクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールペンタ及びヘキサアクリレート、フェノールEO 変性アクリレート、トリメチロールプロパンEO変性トリアクリレート、トリメチロールプロパンPO変性トリアクリレート、ビスフェノールF EO変性(n ≒ 2)ジアクリレート、ビスフェノールF PO変性(n ≒ 2)ジアクリレート、ペンタエリスリトールトリ及びテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ビニルアセテート、ビニルクロロアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、および安息香酸ビニル、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチル、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチル、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチル、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ニトロフェニルアクリルアミド、N−エチル−N−フェニルアクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミド、N−メチロールアクリルアミド、N−ヒドロキシエチルアクリルアミド、ビニル(メタ)アクリルアミド、N,N−ジアリル(メタ)アクリルアミド、N−アリル(メタ)アクリルアミド、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、α−メチルスチレン、メチルビニルエーテル、エチルビニルエーテル、2−クロロエチルビニルエーテル、ヒドロキシエチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、オクチルビニルエーテル、メトキシエチルビニルエーテル、フェニルビニルエーテル、メチルビニルケトン、エチルビニルケトン、プロピルビニルケトン、フェニルビニルケトン、エチレン、プロピレン、イソブチレン、ブタジエン、イソプレン、マレイミド、ブチルマレイミド、シクロヘキシルマレイミド、フェニルマレイミド、(メタ)アクリロニトリル、ビニルピリジン、N−ビニルピロリドン、ビニルカルバゾール、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトンなどがあげられる。
【0085】
反応性二重結合基を有する樹脂としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂などに反応性二重結合基を導入することにより得られる。反応性二重結合基の導入は公知・慣用の方法で行えばよく、特に限定されるものではない。
【0086】
例えば、ポリエステル樹脂に反応性二重結合基を導入する場合は、カルボキシル基を有するポリエステル樹脂と(メタ)アクリル酸グリシジルを反応させる方法などが挙げられる。
【0087】
アクリル樹脂の場合は、カルボキシル基を有するアクリル樹脂と(メタ)アクリル酸グリシジルを反応させる方法や、グリシジル基を有するアクリル樹脂と(メタ)アクリル酸を反応させる方法などが挙げられる。
【0088】
ウレタン樹脂の場合は、イソシアネート基を有するウレタン樹脂と(メタ)アクリル酸2−ヒドロキシエチルなどの水酸基を有しかつ反応性二重結合基を有する化合物を反応させる方法などが挙げられる。
【0089】
反応性二重結合基を有する化合物は一種類を用いてもよく、複数種を組み合わせて用いても良い。
【0090】
前記セルロースナノファイバー含有樹脂組成物と反応性二重結合基を有する化合物の比率は、本発明の効果を損なわない範囲であれば任意である。
【0091】
前記樹脂組成物を成形するには、重合開始剤を含有させる必要がある。重合開始剤を含有させるタイミングはいつでもよく、反応性二重結合基を有する化合物で希釈する時や、反応性二重結合基を有する化合物で希釈した後、成形直前などが挙げられる。
【0092】
重合開始剤としては、光重合開始剤、熱重合開始剤等が挙げられる。
【0093】
光重合開始剤としては、特に限定されないが、例えば、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ジエトキシアセトフェノン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、1−(4−ドデシルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)−フェニル(2−ヒドロキシ−2−プロピル)ケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパン−1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn−ブチルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、3,3’−ジメチル−4−メトキシベンゾフェノン、チオキサンソン、2−クロルチオキサンソン、2−メチルチオキサンソン、2,4−ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4−ジクロロチオキサンソン、2,4−ジエチルチオキサンソン、2,4−ジイソプロピルチオキサンソン、2,4,6−トリメチルベンゾイルジフェニルホスフインオキサイド、メチルフェニルグリオキシレ−ト、ベンジル、カンファーキノン等が挙げられる。
【0094】
熱重合開始剤としては、イソブチルパ−オキサイド、クミルパーオキシネオデカネート、ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ターシャリーブチルパーオキシネオデカネート、3,5,5−トリメチルヘキサノールパーオキサイド、ラウリルパーオキサイド、1,1,3,3,−テトラメチルブチルパーオキシ−2−エチルヘキサネート、t−へキシルパーオキシ−2−エチルヘキサネート、ベンゾイルパーオキサイド、t−ブチルパーオキシマレイン酸、t−ブチルパーオキシベンゾエート等の過酸化物や、アゾビスイソブチルニトリル、アゾビス−2,4−ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル等のアゾ化合物などが挙げられる。熱重合開始剤は単独で或いは2種類以上を併用しても良く、ナフテン酸コバルト,ジメチルアニリン等の分解促進剤を併用してもよい。
【0095】
〔その他の添加剤〕
前記樹脂組成物には、本発明の効果が損なわれない範囲であれば、その用途に応じて従来公知の各種添加剤を含有しても良く、例えば、加水分解防止剤、着色剤、難燃剤、酸化防止剤、重合禁止剤、紫外線吸収剤、帯電防止剤、滑剤、離型剤、消泡剤、レベリング剤、光安定剤(例えば、ヒンダードアミン等)、酸化防止剤、無機フィラー、有機フィラー等をあげることができる。
【0096】
その他の添加剤を混合するタイミングは、セルロースの解繊前、解繊後、反応性二重結合基を有する化合物で希釈する時や、反応性二重結合基を有する化合物で希釈した後等、発明の効果を損ねなければいつでもよい。
【0097】
〔成形方法〕
本発明の樹脂組成物に係る成形体を成形する方法については、特に限定されないがFRP製、樹脂製、ガラス製等の成形型に流し込んで作成する方法や、刷毛、ローラー、こて、スプレーなどで塗布する方法が好ましい。
【0098】
本発明における樹脂組成物は各種用途に好適に利用できる。例えば、床材、防水材、道路舗装材などに適用され、各々一般事務所、工場、クリーンルームなどの床や屋根、屋上、壁、高架橋床版などの防水やアスファルトおよびコンクリート道路面のカラーリング、遮熱塗装、滑り止め舗装などに用いられる。但しこれらに限定されるものではない。
【実施例】
【0099】
以下、本発明の態様を更に詳細に説明するが、本発明はこれに限定されるものではない。
【0100】
[合成例1] PPG系ウレタンメタクリレート樹脂の合成
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた1リットルの四つ口フラスコに数平均分子量1000のポリプロピレングリコール(以下PPGと略す)496gとトリレンジイソシアネート145gおよびイソホロンジイソシアネート33gを仕込み、窒素気流下80℃で4時間反応させた。NCO当量が600とほぼ理論当量値となったので、50℃まで冷却した。空気気流下、ハイドロキノン0.07gを加え、2−ヒドロキシエチルメタクリレート(以下HEMAと略す)134gを加え、90度で5時間反応させた。NCO%が0.1%以下となった時点で、ターシャリーブチルカテコール0.07g添加し、数平均分子量1666のウレタンメタクリレート樹脂組成物1を得た。この樹脂組成物の水酸基価を測定したところ、1KOHmg/g未満であった。
【0101】
〔水酸基価の測定〕
末端水酸基価、酸価は、13C−NMRスペクトルにおける、末端構造およびエステル結合に由来する各ピークの面積比から求めた。測定装置は、日本電子製JNM−LA300を用い、試料の10質量%の重クロロホルム溶液に緩和試薬としてCr(acac)3 10mgを加え、ゲートデカップリング法による13C−NMRの定量測定を行なった。積算は4000回行なった。
【0102】
[合成例2] ポリエステル系樹脂の合成
窒素ガス導入管、還流コンデンサ、攪拌機を備えた2Lのガラス製フラスコにジエチレングリコール758.2部(7.14mol、仕込みモル比0.53)、アジピン酸652.6部(4.47mol、仕込みモル比0.33)、無水マレイン酸183.9部(1.88mol、仕込みモル比0.14)を仕込み、窒素気流下に、加熱を開始した。内温200℃にて、常法にて脱水縮合反応を行った。酸価が13KOHmg/gになったところで、直ちに150℃まで冷却し、2,6−ジ−tert−ブチル−p−クレゾールを仕込み原料重量に対し100ppm添加した。さらに室温まで冷却しポリエステル系樹脂1を得た。合成例1と同様に、水酸基価を測定したところ78KOHmg/gであった。
【0103】
[実施例1] セルロース微細化方法
合成例1で合成したウレタンメタクリレート樹脂組成物1を300gと、合成例2で合成したポリエステル樹脂1を100gと、ターシャリーブチルカテコールを0.2gとを混合した後、森山製作所製加圧ニーダー(DS1−5GHH−H)に投入した。さらに、日本製紙株式会社製のセルロースパウダー製品「KCフロック(登録商標)W−50GK」625gを投入し、60rpmで300分間加圧混練を行った。このようにしてセルロースの微細化処理を行い、セルロースナノファイバー含有樹脂組成物1を得た。このとき使用したセルロースの水分量は、水分率を0%に換算したセルロース100質量部に対して4.2質量部であった。
【0104】
〔微細化状態の判定〕
得られたセルロースナノファイバー含有組成物1を、セルロースが0.5量%の濃度となるようにアセトンに懸濁し、特殊機械工業(株)製TKホモミキサーA型を用いて15000rpm20分間分散処理を行い、一滴をガラス上に広げてアセトンを乾燥し、走査型電子顕微鏡にて10000倍の写真を10枚撮影した。写真の対角線上に直線を引き、直線に交差したセルロース繊維の繊維径を測定した。10枚すべての写真について同様の測定を行い、数平均繊維径を測定した。数平均繊維径が500nm未満である場合は、セルロースの微細化状態を○と判定し、500nm以上1000nm未満である場合は△、1000nm以上のときは×とした。以下、実施例2〜5、比較例1〜7についても同様に判定した。
【0105】
〔セルロースの水分率測定〕
株式会社ケット科学研究所製赤外線水分計FD−720を使用し、約5gのセルロースを110℃、自動停止モ−ドの条件で測定を行った。
以下、実施例2〜5、比較例1〜7についても同様に測定を行った。
【0106】
[実施例2] セルロース微細化方法
東亞合成株式会社製アロニックス(登録商標)M−350(トリメチロールプロパンEO変性トリアクリレート:EO−TMPTAと略す)を300gと、合成例2で合成したポリエステル樹脂1を100gと、ターシャリーブチルカテコールを0.2gとを混合した後、森山製作所製加圧ニーダー(DS1−5GHH−H)に投入した。さらに、日本製紙株式会社製のセルロースパウダー製品「KCフロック(登録商標)W−50GK」630gを投入し、60rpmで300分間加圧混練を行った。このようにしてセルロースの微細化処理を行い、セルロースナノファイバー含有樹脂組成物2を得た。このとき使用したセルロースの水分量は、水分率を0%に換算したセルロース100質量部に対して5.0質量部であった。また、EO−TMPTAを合成例1に記載の水酸基価の測定法にて水酸基価を測定したところ、1KOHmg/g未満であった。
【0107】
[実施例3] セルロース微細化方法
合成例1で合成したウレタンメタクリレート樹脂組成物1を220gと、合成例2で合成したポリエステル樹脂1を80gと、ターシャリーブチルカテコール0.2gを混合した後、森山製作所製加圧ニーダー(DS1−5GHH−H)に投入した。さらに、日本製紙株式会社製のセルロースパウダー製品「KCフロック(登録商標)W−50GK」736gを投入し、60rpmで300分間加圧混練を行った。このようにしてセルロースの微細化処理を行い、セルロースナノファイバー含有樹脂組成物3を得た。このとき使用したセルロースの水分量は、水分率を0%に換算したセルロース100質量部に対して5.2質量部であった。
【0108】
[実施例4] セルロース微細化方法
合成例1で合成したウレタンメタクリレート樹脂組成物1を600gと、合成例2で合成したポリエステル樹脂1を100gと、ターシャリーブチルカテコールを0.2gとを混合した後、森山製作所製加圧ニーダー(DS1−5GHH−H)に投入した。さらに、日本製紙株式会社製のセルロースパウダー製品「KCフロック(登録商標)W−50GK」316gを投入し、60rpmで300分間加圧混練を行った。このようにしてセルロースの微細化処理を行い、セルロースナノファイバー含有樹脂組成物4を得た。このとき使用したセルロースの水分量は、水分率を0%に換算したセルロース100質量部に対して5.4質量部であった。
【0109】
[実施例5] セルロース微細化方法
合成例1で合成したウレタンメタクリレート樹脂組成物1を300gと、合成例2で合成したポリエステル樹脂1を100gと、ターシャリーブチルカテコール0.2gを混合した後、森山製作所製加圧ニーダー(DS1−5GHH−H)に投入した。その後、日本製紙株式会社製のセルロースパウダー製品「KCフロック(登録商標)W−50GK」630gを投入した。このとき使用したセルロースの水分量は、水分率を0%に換算したセルロース100質量部に対して5.0質量部であった。さらに、水分率を0%に換算したセルロース100質量部に対し、水分量が25.0質量部となるように水を120g投入し、60rpmで300分間加圧混練を行った。このようにしてセルロースの微細化処理を行い、セルロースナノファイバー含有樹脂組成物5を得た。
【0110】
[比較例1] セルロース微細化方法
合成例1で合成したウレタンメタクリレート樹脂組成物1を400gと、ターシャリーブチルカテコールを0.2gとを混合した後、森山製作所製加圧ニーダー(DS1−5GHH−H)に投入した。さらに、日本製紙株式会社製のセルロースパウダー製品「KCフロック(登録商標)W−50GK」630gを投入し、60rpmで300分間加圧混練を行ってセルロースの微細化処理を行った。このとき使用したセルロースの水分量は、水分率を0%に換算したセルロース100質量部に対して5.0質量部であった。
【0111】
[比較例2] セルロース微細化方法
EO−TMPTAを400gと、ターシャリーブチルカテコールを0.2gとを混合した後、森山製作所製加圧ニーダー(DS1−5GHH−H)に投入した。さらに、日本製紙株式会社製のセルロースパウダー製品「KCフロック(登録商標)W−50GK」629gを投入し、60rpmで300分間加圧混練を行ってセルロースの微細化処理を行った。このとき使用したセルロースの水分量は、水分率を0%に換算したセルロース100質量部に対して4.9質量部であった。
【0112】
[比較例3] セルロース微細化方法
日本製紙株式会社製のセルロースパウダー製品「KCフロック(登録商標)W−50GK」を130℃の乾燥機で一晩乾燥した。この際のセルロースの水分量は、水分率を0%に換算したセルロース100質量部に対して3.2質量部であった。合成例1で合成したウレタンメタクリレート樹脂組成物1を300gと、合成例2で合成したポリエステル樹脂1を100gと、ターシャリーブチルカテコールを0.2gとを混合した後、森山製作所製加圧ニーダー(DS1−5GHH−H)に投入した。さらに、乾燥した「KCフロック(登録商標)W−50GK」619gを投入し、60rpmで300分間加圧混練を行ってセルロースの微細化処理を行った。
【0113】
[比較例4] セルロース微細化方法
合成例1で合成したウレタンメタクリレート樹脂組成物1を300gと、合成例2で合成したポリエステル樹脂1を100gと、ターシャリーブチルカテコールを0.2gとを混合した後、森山製作所製加圧ニーダー(DS1−5GHH−H)に投入した。その後、日本製紙株式会社製のセルロースパウダー製品「KCフロック(登録商標)W−50GK」630gを投入した。このとき使用したセルロースの水分量は、水分率を0%に換算したセルロース100質量部に対して5.0質量部であった。さらに、水分率を0%に換算したセルロース100質量部に対し、水分量が30.0質量部となるように水を150g投入し、60rpmで300分間加圧混練を行ってセルロースの微細化処理を行った。
【0114】
[比較例5] セルロース微細化方法
合成例1で合成したウレタンメタクリレート樹脂組成物1を100gと、合成例2で合成したポリエステル樹脂1を100gと、ターシャリーブチルカテコールを0.1gとを混合した後、森山製作所製加圧ニーダー(DS1−5GHH−H)に投入した。さらに、日本製紙株式会社製のセルロースパウダー製品「KCフロック(登録商標)W−50GK」837gを投入し、60rpmで300分間加圧混練を行ってセルロースの微細化処理を行った。このとき使用したセルロースの水分量は、水分率を0%に換算したセルロース100質量部に対して4.6質量部であった。
【0115】
[比較例6] セルロース微細化方法
合成例1で合成したウレタンメタクリレート樹脂組成物1を500gと、合成例2で合成したポリエステル樹脂1を250gと、ターシャリーブチルカテコールを0.4gとを混合した後、森山製作所製加圧ニーダー(DS1−5GHH−H)に投入した。さらに、日本製紙株式会社製のセルロースパウダー製品「KCフロック(登録商標)W−50GK」263gを投入し、60rpmで300分間加圧混練を行ってセルロースの微細化処理を行った。このとき使用したセルロースの水分量は、水分率を0%に換算したセルロース100質量部に対して5.2質量部であった。
【0116】
[比較例7] セルロース微細化方法
合成例2で合成したポリエステル樹脂1を600gと、ターシャリーブチルカテコールを0.3gとを混合した後、森山製作所製加圧ニーダー(DS1−5GHH−H)に投入した。さらに、日本製紙株式会社製のセルロースパウダー製品「KCフロックW−50GK」420gを投入し、60rpmで300分間加圧混練を行ってセルロースの微細化処理を行った。このようにしてセルロースの微細化処理を行い、セルロースナノファイバー含有組成物6を得た。このとき使用したセルロースの水分量は、水分率を0%に換算したセルロース100質量部に対して5.1質量部であった。
【0117】
表1に実施1から5及び比較例1から7におけるセルロースの微細化状態の判定結果を示す。
【0118】
【表1】
【0119】
[実施例6] 成形体の製造方法
実施例1で得られたセルロースナノファイバー含有樹脂組成物1の水分量を測定したところ、水分率を0%としたセルロースナノファイバー100質量部に対して4.3質量部であった。セルロースナノファイバー含有樹脂組成物1を8.55gと、ディオバー(登録商標)HTP−460(DIC株式会社製メタクリル樹脂)100.00gとを混合し、特殊機械工業(株)製TKオートホモディスパーにて1000rpmで5分間分散処理を行った。次に、6%ナフテン酸コバルト 0.5部、促進剤RP−191(DHM株式会社製)1部、50%BPO2部を加えて混合し、真空デシケ−タ−で脱泡した。型に注いで80℃で6時間加熱した後、厚み3mmの成形板を得た。この成形板から、JISK6251に規定する引張試験用ダンベル状試験体を作成した。
【0120】
〔セルロースナノファイバー含有組成物の水分率測定〕
株式会社ケット科学研究所製赤外線水分計FD−720を使用し、約5gのサンプルを110℃、自動停止モ−ドの条件で測定を行った。
以下、実施例7及び8、比較例8についても同様に測定を行った。
【0121】
[実施例7] 成形体の製造方法
実施例5で得られたセルロースナノファイバー含有樹脂組成物5の水分量を測定したところ、水分率を0%としたセルロースナノファイバー100質量部に対して22.8質量部であった。このセルロースナノファイバー含有樹脂組成物5を50℃の乾燥機で一晩乾燥を行った。乾燥後、セルロースナノファイバー含有樹脂組成物5の水分量を測定したところ、水分率を0%としたセルロースナノファイバー100質量部に対して5.5質量部であった。この乾燥したセルロースナノファイバー含有樹脂組成物5を8.61gと、ディオバーHTP−460を100.00gとを混合し、特殊機械工業(株)製TKオートホモディスパーにて1000rpmで5分間分散処理を行った。次に、6%ナフテン酸コバルト 0.5部、促進剤RP−191(DHM株式会社製)1部、50%BPO2部を加えて混合し、真空デシケーターで脱泡した。型に注いで80℃で6時間加熱した後、厚み3mmの成形板を得た。この成形板から、JISK6251に規定する引張試験用ダンベル状試験体を作成した。
【0122】
[実施例8] 成形体の製造方法
実施例2で得られたセルロースナノファイバー含有樹脂組成物2の水分量を測定したところ、水分率を0%としたセルロースナノファイバー100質量部に対して4.8質量部であった。このセルロースナノファイバー含有樹脂組成物2を8.57gと、ディオバーHTP−460を100.00gとを混合し、特殊機械工業(株)製TKオートホモディスパーにて1000rpmで5分間分散処理を行った。次に、6%ナフテン酸コバルト 0.5部、促進剤RP−191 1部、50%BPO 2部を加えて混合し、真空デシケ−タ−で脱泡した。型に注いで80℃で6時間加熱した後、厚み3mmの成形板を得た。この成形板から、JISK6251に規定する引張試験用ダンベル状試験体を作成した。
【0123】
[比較例8] 成形体の製造方法
比較例7で得られたセルロースナノファイバー含有組樹脂成物6の水分量を測定したところ、水分率を0%としたセルロースナノファイバー100質量部に対して4.4質量部であった。このセルロースナノファイバー含有樹脂組成物2を12.72gと、ディオバーHTP−460を100.00gとを混合し、特殊機械工業(株)製TKオートホモディスパーにて1000rpmで5分間分散処理を行った。次に、6%ナフテン酸コバルト 0.5部、促進剤RP−191 1部、50%BPO 2部を加えて混合し、真空デシケ−タ−で脱泡した。型に注いで80℃で6時間加熱した後、厚み3mmの成形板を得た。この成形板から、JISK6251に規定する引張試験用ダンベル状試験体を作成した。
【0124】
[比較例9] 成形体の製造方法
ディオバーHTP−460を100.00gに、6%ナフテン酸コバルト 0.5部、促進剤RP−191 1部、50%BPO 2部を加えて混合し、真空デシケーターで脱泡した。型に注いで80℃で6時間加熱した後、厚み3mmの成形板を得た。この成形板から、JISK6251に規定する引張試験用ダンベル状試験体を作成した。
【0125】
[比較例10] 成形体の製造方法
ディオバーHTP−460を100.00gと、合成例1で合成したウレタンメタクリレ−ト樹脂組成物1を2.5gと、合成例2で合成したポリエステル樹脂1を0.83g混合し、特殊機械工業(株)製TKオートホモディスパーにて1000rpmで5分間分散処理を行った。次に、6%ナフテン酸コバルト 0.5部、促進剤RP−191 1部、50%BPO 2部を加えて混合し、真空デシケーターで脱泡した。型に注いで80℃で6時間加熱した後、厚み3mmの成形板を得た。この成形板から、JISK6251に規定する引張試験用ダンベル状試験体を作成した。
【0126】
[比較例11] 成形体の製造方法
ディオバーHTP−460を100.00gと、EO−TMPTAを2.5gと、合成例2で合成したポリエステル樹脂1を0.83gとを混合し、特殊機械工業(株)製TKオートホモディスパーにて1000rpmで5分間分散処理を行った。次に、6%ナフテン酸コバルト 0.5部、促進剤RP−191 1部、50%BPO 2部を加えて混合し、真空デシケーターで脱泡した。型に注いで80℃で6時間加熱した後、厚み3mmの成形板を得た。この成形板から、JISK6251に規定する引張試験用ダンベル状試験体を作成した。
【0127】
[比較例12] 成形体の製造方法
ディオバーHTP−460を100.00gと、合成例2で合成したポリエステル樹脂1を7.5gとを混合し、特殊機械工業(株)製TKオートホモディスパーにて1000rpmで5分間分散処理を行った。次に、6%ナフテン酸コバルト 0.5部、促進剤RP−191 1部、50%BPO 2部を加えて混合し、真空デシケーターで脱泡した。型に注いで80℃で6時間加熱した後、厚み3mmの成形板を得た。この成形板から、JISK6251に規定する引張試験用ダンベル状試験体を作成した。
【0128】
[引っ張り試験方法]
JISK6251に従い、試験速度50mm/minにて試験を行った。
【0129】
[表面のブリ−ド評価]
試験体の表面を肉眼で観察し、解繊樹脂のブリードがあるかどうか判断した。ブリードが観察されないものは○、観察されるものは×とした。
【0130】
実施例6から8及び比較例8から12の引張試験用ダンベル状試験体の試験結果及び表面のブリ−ド評価を表2に示す。
【0131】
【表2】
【産業上の利用可能性】
【0132】
本発明によれば、水中や有機溶媒中でセルロースを微細化するのではなく、反応性二重結合基を有し水酸基が10KOHmg/g以下の化合物と解繊樹脂とを必須成分とする混合物中でセルロースの微細化を行う際に、該セルロースの水分率を0%に換算した時の質量100質量部に対する水分量を4〜25質量部とすることを特徴とするセルロースナノファイバー含有樹脂組成物の製造方法によりセルロースを微細化することが可能である。この方法により得られたセルロースナノファイバー含有樹脂組成物は、反応性二重結合基を有し水酸基価が10KOHmg/g以下の化合物へ複合化が容易で、得られた樹脂組成物はそのまま成形体を製造することが可能であり、硬化時に可塑剤として働く非硬化物である解繊樹脂が非常に少ないため、物性低下を起こすことなく、セルロースナノファイバーの効果により、高強度な成形体を得ることが可能となる。したがって、本発明は産業上の利用可能性が高い。