【実施例】
【0042】
[合成例1]α−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンを水でエンドキャップして得たポリマー(以下、「TC3−WA−αCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥α-シクロデキストリン(以下、「α−CD」と称する。0.97 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)とを入れて、室温で15分間撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(0.61 g、3.0 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、蒸留水(0.11 g、6.0 mmol)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。1.28 gのTC3−WA−αCDが得られた。
IR 3445, 2979, 1716, 1268, 1096, 1044, 1016, 730 cm
-1
【0043】
[合成例2]α−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンを水でエンドキャップして得たポリマー(以下、「TC5−WA−αCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥α−CD(0.97 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(1.02 g、5.0 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、蒸留水(0.18 g、10 mmol)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。1.52 gのTC5−WA−αCDが得られた。
IR 3423, 2971, 1716, 1268, 1098, 1044, 1017, 729 cm
-1
【0044】
[合成例3]α−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンを水でエンドキャップして得たポリマー(以下、「TC10−WA−αCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥α−CD(0.97 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(2.03 g、10 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、蒸留水(0.36 g、20 mmol)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。2.14 gのTC10−WA−αCDが得られた。
IR 3480, 2985, 1717, 1268, 1097, 1045, 1017, 729 cm
-1
【0045】
[合成例4]β−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンを水でエンドキャップして得たポリマー(以下、「TC3−WA−βCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥β−シクロデキストリン(以下、「β−CD」と略す、1.13 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(0.61 g、3.0 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、蒸留水(0.11 g、6.0 mmol)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。1.41 gのTC3−WA−βCDが得られた。
IR 3384, 2923, 1716, 1272, 1127, 1079, 1049, 731 cm
-1
【0046】
[合成例5]β−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンを水でエンドキャップして得たポリマー(以下、「TC5−WA−βCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥β−CD(1.13 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(1.02 g、5.0 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、蒸留水(0.18 g、10 mmol)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。1.64 gのTC5−WA−βCDが得られた。
IR 3394, 2909, 1717, 1271, 1082, 1043, 1017, 730 cm
-1
【0047】
[合成例6]β−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンを水でエンドキャップして得たポリマー(以下、「TC10−WA−βCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥β−CD(1.13 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(2.03g、10 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、蒸留水(0.36 g、20 mmol)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。2.25 gのTC10−WA−βCDが得られた。
IR 3279, 2936, 1716, 1271, 1099, 1045, 1017, 729 cm
-1
【0048】
[合成例7]β−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンをイミノ二酢酸でエンドキャップして得たポリマー(以下、「TC10−IA−βCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥β−CD(1.13 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(2.03 g、10 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、イミノ二酢酸(2.66 g、20 mmol、東京化成工業)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。4.14 gのTC10−IA−βCDが得られた。
IR 3381, 2936, 1716, 1270, 1097, 1044, 1017, 730 cm
-1
【0049】
[合成例8]β−シクロデキストリンとイソフタロイルクロライドの縮合シクロデキストリンを水でエンドキャップして得たポリマー(以下、「IC10−WA−βCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥β−CD(1.13 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解したイソフタロイルクロライド(2.03 g、10 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、蒸留水(0.36 g、20 mmol)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。2.51 gのIC10−WA−βCDが得られた。
IR 3381, 2940, 1717, 1270, 1139, 1074, 1044, 728 cm
-1
【0050】
[合成例9]β−シクロデキストリンとジグリコリルクロライドの縮合シクロデキストリンを水でエンドキャップして得たポリマー(以下、「GC10−WA−βCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥β−CD(1.13 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解したジグリコリルクロリド(1.71 g、10 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、蒸留水(0.36 g、20 mmol)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。2.02 gのGC10−WA−βCDが得られた。
IR 3380, 2946, 1747, 1243, 1136, 1077, 998 cm
-1
【0051】
[合成例10]β−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンをトリエチレングリコールでエンドキャップして得たポリマー(以下、「TC10−TG−βCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥β−CD(1.13 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(2.03 g、10 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、トリエチレングリコール(1.50 g、10 mmol、ALDRICH)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。3.32 gのTC10−TG−βCDが得られた。
IR 3381, 2928, 1717, 1270, 1096, 1043, 1017, 729 cm
-1
【0052】
[合成例11]β−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンをヘキサエチレングリコールでエンドキャップして得たポリマー(以下、「TC10−HG−βCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥β−CD(1.13 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(2.03 g、10 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、ヘキサエチレングリコール(2.82 g、10 mmol、ALDRICH)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。4.26 gのTC10−HG−βCDが得られた。
IR 3610, 2941, 1717, 1270, 1098, 1045, 1017, 730 cm
-1
【0053】
[合成例12]β−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンを2,2’−ビスフェノールでエンドキャップして得たポリマー(以下、「TC10−BP−βCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥β−CD(1.13 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(2.03 g、10 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、2,2’-ビフェノール(1.86 g、10 mmol、ALDRICH)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。3.57 gのTC10−BP−βCDが得られた。
IR 3610, 2937, 1719, 1271, 1099, 1046, 1017, 729 cm
-1
【0054】
[合成例13]γ−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンを水でエンドキャップして得たポリマー(以下、「TC3−WA−γCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥γ−シクロデキストリン(以下、「γ−CD」と称する。1.30 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(0.61 g、3.0 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、蒸留水(0.11 g、6.0 mmol)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。1.55 gのTC3−WA−γCDが得られた。
IR 3385, 2922, 1715, 1271, 1149, 1080, 1018, 731 cm
-1
【0055】
[合成例14]γ−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンを水でエンドキャップして得たポリマー(以下、「TC5−WA−γCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥γ−CD(1.30 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(1.02 g、5.0 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、蒸留水(0.18 g、10 mmol)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。1.77 gのTC5−WA−γCDが得られた。
IR 3386, 2923, 1712, 1269, 1149, 1081, 1017, 730 cm
-1
【0056】
[合成例15]γ−シクロデキストリンと二塩化テレフタロイルの縮合シクロデキストリンを水でエンドキャップして得たポリマー(以下、「TC10−WA−γCD」と称する。)の合成
滴下ロート、風船付き三方コック、活栓の付いた200 mLの三つ口フラスコに、乾燥γ−CD(1.30 g、1.0 mmol、含水量1%以下、純正化学)と特級ピリジン(50 mL、和光純薬工業)を入れて室温で15分撹拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(40 mL、和光純薬工業)に溶解した二塩化テレフタロイル(2.03 g、10 mmol、東京化成工業)を30分かけて滴下した。滴下後、氷浴を外し、湯浴(80℃)で3時間撹拌した。反応終了後、蒸留水(0.36 g、20 mmol)を加え、1時間撹拌した。結晶を吸引濾過した後、得られた結晶を蒸留水(50 mL×3)、1級アセトン(50 mL×3、純正化学)の順で洗浄し、得られた固体を70℃で終夜真空乾燥した。2.37 gのTC10−WA−γCDが得られた。
IR 3386, 2941, 1716, 1269, 1097, 1043, 1017, 729 cm
-1
【0057】
[比較合成例1]β−シクロデキストリンとtert-ブチルジメチルシリルクロリドの縮合シクロデキストリンポリマー(以下、「TBDMS−β−CD」と称する。)の合成
滴下ロート、風船付き三方コック及びセプタムの付いた200mlの3つ口フラスコに、β-シクロデキストリン(5.0 g、4.4 mmol、和光純薬工業)と乾燥ピリジン(44 mL、和光純薬工業)とを入れた。フラスコを氷浴につけた後、乾燥ピリジン(26 mL)に溶解したtert-ブチルジメチルシリルクロリド(6.03 g、40 mmol、東京化成工業)を2時間かけて滴下した。滴下終了後、氷浴を外し、室温で11時間撹拌した。反応終了後、反応溶液を水(200 mL)に注ぎ、析出してきた白い結晶を濾取した。この白い結晶をジクロロメタンに溶かし、水で洗浄した。ジクロロメタン層を無水硫酸ナトリウムで乾燥した後、溶媒を留去した。得られた白い結晶をシリカゲルカラム精製とアセトンによる再結晶によりTBDMS−β−CD(2.3g、収率:27%)を単離した。
【0058】
[比較合成例2]
比較合成例1で得られたTBDMS−β−CDを乾燥させ(11.61 g、6.0 mmol)、水酸化ナトリウム(6.72 g、168 mmol)を乾燥テトラヒドロフラン(200 mL)中で2時間還流させた後、臭化ベンジル(29.62 g、168 mmol)を1時間かけて滴下した。一晩還流させた後、薄層クロマトグラフィ法(TLC法)にて原料の消失を確認し、溶媒を留去した。残渣をヘキサン(300 mL)-水(200 mL×2)抽出により脱塩し、ヘキサン相を無水硫酸マグネシウムで乾燥して溶媒留去した。得られた褐色粘性液体を少量のジクロロメタンに溶解させ、大量のメタノールを加え、析出した固体を濾取した。これをメタノール/アセトンからの再結晶により精製しTBDMS−Bn−β−CD(白色、15.49 g)を得た。収率81%。
次に、得られたTBDMS−Bn−β−CD(13.75 g、4.3 mmol)、テトラブチルアンモニウムフルオリド三水和物(14.25 g、45.15 mmol)をテトラヒドロフラン(150 mL)に溶解し、一晩還流させた。TLC法より、原料の消失を確認して、溶媒を留去した。残渣をクロロホルムに溶かし、飽和食塩水で洗浄後、クロロホルム相を無水硫酸マグネシウムで乾燥させ、溶媒を留去した。得られた黄色粘性液体をシリカゲルカラムクロマトグラフィー(CHCl
3 / MeOH = 19 / 1)により精製し、Bn−β−CD(白色、5.2 g)を得た。収率50%。
【0059】
[比較合成例3]α−シクロデキストリンとtert-ブチルジメチルシリルクロリドの縮合シクロデキストリンポリマー(以下、「TBDMS−α−CD」と称する。)の合成
滴下ロート、風船付き三方コック及びセプタムの付いた200mlの3つ口フラスコに、α-シクロデキストリン(4.28 g、4.4 mmol、和光純薬工業)と乾燥ピリジン(44 mL、和光純薬工業)とを入れた。フラスコを氷浴につけた後、乾燥ピリジン(26 mL)に溶解したtert-ブチルジメチルシリルクロリド(6.03 g、40 mmol、東京化成工業)を2時間かけて滴下した。滴下終了後、氷浴を外し、室温で11時間撹拌した。反応終了後、反応溶液を水(200 mL)に注ぎ、析出してきた白い結晶を濾取した。この白い結晶をジクロロメタンに溶かし、水で洗浄した。ジクロロメタン層を無水硫酸ナトリウムで乾燥した後、溶媒を留去した。得られた白い結晶をシリカゲルカラム精製とアセトンによる再結晶によりTBDMS−α−CD(1.26g、収率:26.4%)を単離した。
【0060】
[比較合成例4]γ−シクロデキストリンとtert-ブチルジメチルシリルクロリドの縮合シクロデキストリンポリマー(以下、「TBDMS−γ−CD」と称する。)の合成
滴下ロート、風船付き三方コック及びセプタムの付いた200mlの3つ口フラスコに、γ-シクロデキストリン(5.71 g、4.4 mmol、和光純薬工業)と乾燥ピリジン(44 mL、和光純薬工業)とを入れた。フラスコを氷浴につけた後、乾燥ピリジン(26 mL)に溶解したtert-ブチルジメチルシリルクロリド(6.03 g、40 mmol、東京化成工業)を2時間かけて滴下した。滴下終了後、氷浴を外し、室温で11時間撹拌した。反応終了後、反応溶液を水(200 mL)に注ぎ、析出してきた白い結晶を濾取した。この白い結晶をジクロロメタンに溶かし、水で洗浄した。ジクロロメタン層を無水硫酸ナトリウムで乾燥した後、溶媒を留去した。得られた白い結晶をシリカゲルカラム精製とアセトンによる再結晶によりTBDMS−γ−CD(1.98g、収率:31.9 %)を単離した。
【0061】
[比較合成例5]
比較合成例4で得られたTBDMS−γ−CDを乾燥させ(8.46g、6.0 mmol)、水酸化ナトリウム(6.72 g、168 mmol)を乾燥テトラヒドロフラン(200 mL)中で2時間還流させた後、臭化ベンジル(29.62 g、168 mmol)を1時間かけて滴下した。一晩還流させた後、薄層クロマトグラフィ法(TLC法)にて原料の消失を確認し、溶媒を留去した。残渣をヘキサン(300 mL)-水(200 mL×2)抽出により脱塩し、ヘキサン相を無水硫酸マグネシウムで乾燥して溶媒留去した。得られた褐色粘性液体を少量のジクロロメタンに溶解させ、大量のメタノールを加え、析出した固体を濾取した。これをメタノール/アセトンからの再結晶により精製しTBDMS−Bn−γ−CD(白色、7.16g)を得た。収率79.5%。
次に、得られたTBDMS−Bn−γ−CD(6.46g、4.3 mmol)、テトラブチルアンモニウムフルオリド三水和物(14.25 g、45.15 mmol)をテトラヒドロフラン(150 mL)に溶解し、一晩還流させた。TLC法より、原料の消失を確認して、溶媒を留去した。残渣をクロロホルムに溶かし、飽和食塩水で洗浄後、クロロホルム相を無水硫酸マグネシウムで乾燥させ、溶媒を留去した。得られた黄色粘性液体をシリカゲルカラムクロマトグラフィー(CHCl
3 / MeOH = 19 / 1)により精製し、Bn−γ−CD(白色、2.45g)を得た。収率41.0%。
【0062】
[合成例16]γ線を照射したポリマーの合成−照射線量:0.61 kGy、使用脱イオン水量:5 mL)
本発明の放射性物質除去材料に使用するポリマーが、放射線の照射に耐えうるものであるかを確かめるために、以下の合成例では、本発明に使用するポリマーに放射線を照射した試料を作成することとした。
ねじ口試験管に、合成例1、6、7、9、10及び比較合成例1で得られたポリマー350 mg、(TC3−WA−αCD、TC10−WA−βCD、TC10−IA−βCD、GC10−WA−βCD、TC10−TG−βCD、TBDMS−A―CD)を入れた後、5 mLの脱イオン水を入れた。準備した6本のねじ口試験管に0.61 kGyのγ線を照射した。γ線を照射したポリマーを吸引濾過した後、1級アセトン(50 mL、純正化学)で洗浄し、70℃で終夜真空乾燥した。約350 mgのγ線を照射したポリマー(TC3−WA−αCD−SS、TC10−WA−βCD−SS、TC10−IA−βCD−SS、GC10−WA−βCD−SS、TC10−TG−βCD−SS、およびTBDMS−β―CD−SS)が得られた。
【0063】
[合成例17」(γ線を照射したポリマーの合成−照射線量:0.61 kGy、使用脱イオン水量:15 mL)
ねじ口試験管に合成例1、6、7、9、10及び比較合成例1で得られたポリマー350 mg(TC3−WA−αCD、TC10−WA−βCD、TC10−IA−βCD、GC10−WA−βCD、TC10−TG−βCD、TBDMS−βCD)を入れた後、15 mLの脱イオン水を入れた。準備した6本のねじ口試験管に0.61 kGyのγ線を照射した。γ線を照射したポリマーを吸引濾過した後、1級アセトン(50 mL、純正化学)で洗浄し、70℃で終夜真空乾燥した。約350 mgのγ線を照射したポリマー(TC3−WA−αCD−SL、TC10−WA−βCD−SL、TC10−IA−βCD−SL、GC10−WA−βCD−SL、TC10−TG−βCD−SL、およびTMDMS−βCD−SL)が得られた。
【0064】
[合成例18](γ線を照射したポリマーの合成−照射線量:3.91kGy、使用脱イオン水量:5 mL)
ねじ口試験管に合成例1、6、7、9、10及び比較合成例1で得られたポリマー350 mg(TC3−WA−αCD、TC10−WA−βCD、TC10−IA−βCD、GC10−WA−βCD、TC10−TG−βCD、TBDMS−βCD)を入れた後、5 mLの脱イオン水を入れた。準備した6本のねじ口試験管に3.91 kGyのγ線を照射した。γ線を照射したポリマーを吸引濾過した後、1級アセトン(50 mL、純正化学)で洗浄し、70℃で終夜真空乾燥した。約350 mgのγ線を照射したポリマー(TC3−WA−αCD−LS、TC10−WA−βCD−LS、TC10−IA−βCD−LS、GC10−WA−βCD−LS、TC10−TG−βCD−LS、およびTBDMS−β―CD−LS)が得られた。
【0065】
[合成例19](γ線を照射したポリマー合成−照射線量:3.91 kGy、使用脱イオン水量:15 mL)
ねじ口試験管に合成例1、6、7、9、10及び比較合成例1で得られたポリマー350mg(TC3−WA−αCD、TC10−WA−βCD、TC10−IA−βCD、GC10−WA−βCD、TC10−TG−βCD、TBDMS−β―CD)を入れた後、15 mLの脱イオン水を入れた。準備した6本のねじ口試験管に3.91 kGyのγ線を照射した。γ線を照射したポリマーを吸引濾過した後、1級アセトン(50 mL、純正化学)で洗浄し、70℃で終夜真空乾燥した。約350 mgのγ線を照射したポリマー(TC3−WA−αCD−LL、TC10−WA−βCD−LL、TC10−IA−βCD−LL、GC10−WA−βCD−LL、TC10−TG−βCD−LL、およびTBDMS−βCD−LL)が得られた。
【0066】
[実施例1](合成したポリマーの放射性物質除去性能の評価(1))
本発明の放射性物質除去材料の放射性物質除去性能を、以下の方法に従い、評価した。
脱イオン水にヨウ素(東京化成工業)を溶解し、ヨウ素水溶液(脱イオン水)を作製した。25 gのヨウ素水溶液(脱イオン水)を50 mLのサンプル管に入れた後、5 gのヨウ素水溶液(脱イオン水)を採取した。サンプル管に、上記合成例にて作製した各ポリマー(20 mg)を入れ、500 rpmで30分撹拌した。撹拌終了後、ろ過を行い、水溶液を回収した。回収した水溶液中のヨウ素濃度をICP発光分析装置で測定し、ヨウ素の除去率を算出した。
図1には、本評価法を模式的に説明する図を示した。使用したポリマーの種類と、ヨウ素除去率の結果を表1に示した。
【0067】
【表1】
【0068】
実施例1の方法にて、比較合成例1〜5にて合成したポリマーならびに活性炭(キシダ化学株式会社)及びアミロース(東京化成工業株式会社)についてヨウ素除去率を測定した。結果を表1(比較)に示した。
【0069】
【表2】
【0070】
[実施例2](合成したポリマーの放射性物質除去性能の評価(2))
本発明に使用するポリマーが、長時間にわたり有効に機能することを確かめるために実施例2を行った。
脱イオン水にヨウ素(東京化成工業)を溶解し、ヨウ素水溶液(脱イオン水)を作製した。25 gのヨウ素水溶液(脱イオン水)を50 mLのサンプル管に入れた後、5 gのヨウ素水溶液(脱イオン水)を採取した。サンプル管に作製した各ポリマー(20 mg)を入れ、500 rpmで24時間撹拌した。撹拌終了後、ろ過を行い、水溶液を回収した。回収した水溶液中のヨウ素濃度をICP発光分析装置で測定し、ヨウ素の除去率を算出した。結果を表2に示した。
【0071】
【表3】
【0072】
実施例2の方法にて、活性炭(キシダ化学株式会社)及びアミロース(東京化成工業株式会社)についてヨウ素除去率を測定した。結果を表2(比較)に示した。
【0073】
【表4】
【0074】
[実施例3](合成したポリマーの放射性物質除去性能の評価(3))
本発明に使用するポリマーが、海水中の放射性物質を除去することができることを確かめるために、実施例3を行った。
100%人工海水にヨウ素(東京化成工業)を溶解し、ヨウ素水溶液(100%人工海水)を作製した。25 gのヨウ素水溶液(人工海水)を50 mLのサンプル管に入れた後、5 gのヨウ素水溶液(人工海水)を採取した。サンプル管に作製した各ポリマー(20 mg)を入れ、500 rpmで24時間撹拌した。撹拌終了後、ろ過を行い、水溶液を回収した。回収した水溶液中のヨウ素濃度をICP発光分析装置で測定し、ヨウ素の除去率を算出した。使用したポリマーの種類と、ヨウ素除去率の結果を表3に示した。
【0075】
【表5】
【0076】
実施例3の方法にて、比較合成例1および2にて合成したポリマーならびに活性炭(キシダ化学株式会社)及びアミロース(東京化成工業株式会社)についてヨウ素除去率を測定した。結果を表3(比較)に示した。
【0077】
【表6】
【0078】
[実施例4](合成したポリマーの放射性物質除去性能の評価(4))
本発明に使用するポリマーが、海水中においても長時間にわたり機能することを確かめるために、実施例4を行った。
人工海水(人工海水と脱イオン水との混合物。人工海水の濃度、各々10%、50%、ならびに100%のものを使用。)に、ヨウ素(東京化成工業)を溶解し、ヨウ素水溶液を作製した。25 gのヨウ素水溶液(人工海水)を50 mLのサンプル管に入れた後、5 gのヨウ素水溶液(人工海水)を採取した。サンプル管に作製した各ポリマー(20 mg)を入れ、500 rpmで24時間撹拌した。撹拌終了後、ろ過を行い、水溶液を回収した。回収した水溶液中のヨウ素濃度をICP発光分析装置で測定し、ヨウ素の除去率を算出した。使用したポリマーの種類と、ヨウ素除去率の結果を表4に示した。
【0079】
【表7】
【0080】
実施例4の方法にて、活性炭(キシダ化学株式会社)についてヨウ素除去率を測定した。結果を表4(比較)に示した。
【0081】
【表8】
【0082】
[実施例5](合成したポリマーの放射性物質除去性能の評価(5))
本発明に使用するポリマーをシリンジに充填し、ここに放射性物質を含有する水を流通させることにより、簡易に放射性物質を除去することができることを確かめるために、実施例5を行った。なお、本実施例は、本発明に使用するポリマーをカラムに充填し、ここに放射性物質を含有する水を流通させる方法による放射性物質除去方法のモデルとなるものである。
脱イオン水にヨウ素(東京化成工業)を溶解し、ヨウ素水溶液(脱イオン水)を作製した。シリンジに、作製した各ポリマー(200 mg)を充填した後、20 gのヨウ素水溶液(脱イオン水)を流した。ポリマーを充填したシリンジを通過した水溶液を回収した後、水溶液中のヨウ素濃度をICP発光分析装置で測定し、ヨウ素の除去率を算出した。
図2には、この評価法を模式的に説明した図を示した。使用したポリマーの種類と、ヨウ素除去率の結果を表5に示した。
【0083】
【表9】
【0084】
実施例5の方法にて、比較合成例1および2にて合成したポリマーならびに活性炭(キシダ化学株式会社)及びアミロース(東京化成工業株式会社)についてヨウ素除去率を測定した。結果を表5(比較)に示した。
【0085】
【表10】
【0086】
[実施例6](合成したポリマーの放射性物質除去性能の評価(6))
本発明に使用するポリマーが、海水中の放射性物質を、シリンジを用いた簡易な方法で除去することができることを確かめるために、実施例6を行った。
100%人工海水にヨウ素(東京化成工業)を溶解し、ヨウ素水溶液(100%人工海水)を作製した。シリンジに、作製した各ポリマー(200 mg)を充填した後、20 gのヨウ素水溶液(人工海水)を流した。ポリマーを充填したシリンジを通過した水溶液を回収した後、水溶液中のヨウ素濃度をICP発光分析装置で測定し、ヨウ素の除去率を算出した。使用したポリマーの種類とヨウ素除去率の結果を表6に示した。
【0087】
【表11】
【0088】
[実施例7〜10](合成したポリマーの放射性物質除去性能の評価(7))
脱イオン水にヨウ素(東京化成工業)を溶解し、ヨウ素水溶液(脱イオン水)を作製した。シリンジに、γ線を照射したポリマー(200 mg、合成例16〜19)を充填した後、20 gのヨウ素水溶液(脱イオン水)を流した。ポリマーを充填したシリンジを通過した水溶液を回収した後、水溶液中のヨウ素濃度をICP発光分析装置で測定し、ヨウ素の除去率を算出した。使用したポリマーの種類と、ヨウ素除去率の結果を表7〜10にそれぞれ示した。
【0089】
また、放射線を照射していない各ポリマーについても同様の実験を行った。結果を表11に示した。
【0090】
【表12】
【0091】
【表13】
【0092】
【表14】
【0093】
【表15】
【0094】
【表16】
【0095】
[補足説明]
なお、上記各実施例1〜7における分析方法は、以下の通りである:
合成した各ポリマーの性状は、Spectrum 100 FT-IR Spectrometer (PerkinElmer)で、赤外分光法により測定し、同定した。また、水溶液中のヨウ素濃度は、ICPS-7510(SHIMADZU)を使用し、IPC(誘導結合プラズマ)発光分析法により行った。