【実施例】
【0063】
以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
【0064】
[各測定・評価方法]
始めに、実施例及び比較例の排気浄化触媒及び内燃機関の排気浄化装置における評価方法を示す。
(1)酸化物層の組成
触媒を含む多孔質層をハニカム基材ごと切り出し、X線光電子分析装置(XPS/ESCA)Sigma Probe(VG−Scientific社製)を用いて測定し、多孔質層を形成するSiC粒子表面の組成分析を行なった。
【0065】
(2)貴金属粒子の担持状態及び平均一次粒子径
触媒を含む多孔質層をハニカム基材ごと切り出し、電界放出型透過電子顕微鏡(FE−TEM)JEM−2100F(日本電子社製)により観察することにより、貴金属粒子の担持状態を評価した。
また、貴金属粒子の平均一次粒子径は、同様にして得られた観察画像中から無作為に選択した500個の貴金属粒子の一次粒子径を測定し、その平均値を貴金属粒子の平均一次粒子径とした。
【0066】
(3)比表面積
触媒を含む多孔質層をハニカム基材ごと切り出し、BET比表面積測定装置、BELSORP−mini(日本ベル社製)にて比表面積を測定し、別途測定した基材部分の重量に相当する比表面積を差し引いて触媒層の比表面積とした。
【0067】
(4)多孔質膜の平均気孔率
触媒を含む多孔質層をハニカム基材ごと切り出し、水銀ポロシメータ装置、Pore Master 60GT(Quantachrome社製)を用いて、触媒を含む多孔質層部分の平均気孔率を測定した。
【0068】
(5)CO浄化温度及びHC浄化温度
排気浄化装置(排気浄化触媒評価装置)に触媒を含む多孔質層を形成したハニカム基材(以下、「多孔質層形成ハニカム基材」とも表記する場合がある。)を取り付け、模擬排ガスを導入して流通させつつ多孔質層形成ハニカム基材の温度を上昇させ、排気浄化装置通過後の模擬排ガスの成分を測定することで、一酸化炭素(CO)及び炭化水素(HC)の浄化率を測定した。ここでは、模擬排ガス中のCOまたはHCの50%が浄化されるフィルタ基体の温度(T50)、すなわち、排気浄化装置通過後の模擬排ガス中のCOまたはHCの量が、導入させた模擬排ガス中の量の1/2となる温度をもって、その指標とした。
【0069】
図4は、本試験に用いた排気浄化装置の模式図である。この排気浄化装置11は、筒状の排気通路12の内部に試料となる多孔質層形成ハニカム基材13が配置され、この排気通路12の上流側には表1に示す模擬排ガスGを貯留するボンベ14が配置され、この排気通路12を囲むように円筒状の加熱炉15が設けられており、この加熱炉15は、制御装置(図示略)により排気通路12内を所望の温度に制御することができるようになっている。ここでは、多孔質層形成ハニカム基材13として、容積が29cm
3、SVが28000/毎時のものを使用した。
【0070】
表1に、本測定に使用した模擬排ガスの成分を示す。
測定時の温度条件は、500℃から17℃/分での降温条件とし、模擬排ガスGの流量(空間速度)は13.5L/分とした。
また、多孔質層形成ハニカム基材13の下流側10mmの位置で炉内温度を測定し、この温度を多孔質層形成ハニカム基材の温度とした。
【0071】
【表1】
【0072】
(6)耐熱性評価
触媒を含む多孔質層を形成したハニカム基材を、大気中で700℃で30時間熱処理を行った。
熱処理後の多孔質層形成ハニカム基材について、比表面積、CO浄化温度及びHC浄化温度を、前記方法により測定し、熱処理前の結果と比較することにより、耐熱性を評価した。
【0073】
[実施例1]
平均一次粒子径が0.035μmの炭化ケイ素粒子15gを、純水80gに界面活性剤としてポリカルボン酸アンモニウムおよび消泡剤を溶解した分散媒に添加し、この状態で、分散媒体としてジルコニアビーズを用いた分散処理を180分間施した。
得られたスラリーに、炭化ケイ素粒子1gに対して白金が0.01gとなるようにジニトロ白金酸塩水溶液を加え、再度分散媒体としてジルコニアビーズを用いた分散処理を30分間行い、その後蒸発乾固し、白金塩担持炭化ケイ素粒子を作製した。
【0074】
次いで、白金塩担持炭化ケイ素粒子の含有率が10.0体積%、水の含有率が87.5体積%、ゲル化剤として用いるゼラチンの含有率が2.5体積%となるように、それぞれを計量した。次いで、上記の白金塩担持炭化ケイ素粒子と水とを、鉄芯入り樹脂ボールを用いたボールミルにて220rpmの回転速度にて12時間混合して分散液とした後、得られた分散液に上記のゼラチンを添加して20分間混合し、実施例1の炭化ケイ素粒子分散液(塗布液)を得た。
【0075】
次いで、この炭化ケイ素粒子分散液にコーディエライト製ハニカム構造の基材を浸漬したのち引き上げ、100℃にて12時間乾燥させ、この基材上に白金塩担持炭化ケイ素粒子からなる塗布乾燥層を形成した。
次いで、この塗布乾燥層が形成された基材に、以下の条件で熱処理を施した。
第一段階:温度=980℃、保持時間=80分、 雰囲気=アルゴン
第二段階:温度=730℃、保持時間=360分、雰囲気=空気
この熱処理により、炭化ケイ素粒子の部分焼結による多孔質層の形成、炭化ケイ素粒子表面に担持されているジニトロ白金酸塩の還元・分解による白金(貴金属)微粒子の形成、及び炭化ケイ素粒子の表面酸化物層形成を行い、実施例1の触媒を含む多孔質層を形成したハニカム基材を作製した。
【0076】
得られた排気浄化触媒は、炭化ケイ素粒子表面に、平均一次粒子径3nmの白金微粒子が担持されていた。また、この炭化ケイ素粒子の表面には、ケイ素と酸素をともに含む非晶質の化合物(SiO
x、ただし、0<x≦3)と、ケイ素と酸素と炭素をともに含む非晶質の化合物(SiO
yC
z、ただし、0<y≦3、0<z≦3)とからなる酸化物層が形成されており、この酸化物層が白金微粒子を覆っていた。また、得られた排気浄化触媒の電界放射型透過電子顕微鏡像(FE−TEM像)においては、酸化物層に結晶格子像が認められなかった。これにより、この酸化物層は非晶質であることが分かった。
【0077】
この触媒を含む多孔質層の比表面積は39m
2/g、平均気孔率は75%であった。
また、排気浄化装置を用いて測定したCO浄化温度は173℃、HC浄化温度は186℃であった。
さらに、700℃熱処理後の比表面積は36m
2/g、CO浄化温度は183℃、HC浄化温度は199℃であった。
これらの結果をまとめて、表2に示す。
【0078】
[
参考例1]
平均一次粒子径が0.015μmの炭化ケイ素粒子15gを、純水80gに界面活性剤としてポリカルボン酸アンモニウムおよび消泡剤を溶解した分散媒に添加し、この状態で、分散媒体としてジルコニアビーズを用いた分散処理を180分間実施した。
得られたスラリーに、炭化ケイ素粒子1gに対して白金が0.05gとなるようにジニトロ白金酸塩水溶液を加え、再度分散媒体としてジルコニアビーズを用いた分散処理を30分間行い、その後蒸発乾固し、白金塩担持炭化ケイ素粒子を作製した。
【0079】
次いで、この白金塩担持炭化ケイ素粒子を以下の条件で熱処理を施した。なお、第一段階は乾燥工程に相当する。
第一段階:温度=120℃、保持時間=24時間、雰囲気=空気
第二段階:温度=600℃、保持時間=90分、 雰囲気=アルゴン
第三段階:温度=700℃、保持時間=60分、 雰囲気=空気
この熱処理により、炭化ケイ素粒子表面に担持されているジニトロ白金酸塩の還元・分解による白金(貴金属)微粒子の形成、及び炭化ケイ素粒子の表面酸化物層形成を行い、酸化物層形成・貴金属担持炭化ケイ素粒子を形成した。
【0080】
次いで、この酸化物層形成・貴金属担持炭化ケイ素粒子の含有率が6.0体積%、水の含有率が93.0体積%、ゲル化剤として用いるゼラチンの含有率が1.0体積%となるように、それぞれを計量した。次いで、上記の酸化物層形成・貴金属担持炭化ケイ素粒子と水とを、鉄芯入り樹脂ボールを用いたボールミルにて220rpmの回転速度にて48時間混合して分散液とした後、得られた分散液に上記のゼラチンを添加して20分間混合し、
参考例1の炭化ケイ素粒子分散液(塗布液)を得た。
【0081】
次いで、この炭化ケイ素粒子分散液にチタン酸アルミニウム製ハニカム構造の基材を浸漬したのち引き上げ、100℃にて12時間乾燥させ、この基材に酸化物層形成・貴金属担持炭化ケイ素粒子からなる塗布乾燥層を形成した。
次いで、この塗布乾燥層が形成された基材に、以下の条件で熱処理を施した。
第一段階:温度=1000℃、保持時間=30分、雰囲気=アルゴン
第二段階:温度=700℃、 保持時間=12時間、雰囲気=空気
この熱処理により、炭化ケイ素粒子の部分焼結による多孔質層の形成、及び炭化ケイ素粒子の表面酸化物層形成を行い、
参考例1の触媒を含む多孔質層を作製した。
【0082】
得られた排気浄化触媒は、炭化ケイ素粒子表面に、平均一次粒子径10nmの白金微粒子が担持されていた。また、この炭化ケイ素粒子の表面には、ケイ素と酸素をともに含む非晶質の化合物(SiO
x、ただし、0<x≦3)と、ケイ素と酸素と炭素をともに含む非晶質の化合物(SiO
yC
z、ただし、0<y≦3、0<z≦3)とからなる酸化物層が形成されており、この酸化物層が白金微粒子を覆っていた。また、この酸化物層が非晶質であることは、実施例1と同様、FE−TEM像により分かった。
【0083】
この触媒を含む多孔質層の比表面積は85m
2/g、平均気孔率は89%であった。
また、排気浄化装置を用いて測定したCO浄化温度は169℃、HC浄化温度は179℃であった。
さらに、700℃熱処理後の比表面積は81m
2/g、CO浄化温度は178℃、HC浄化温度は192℃であった。
これらの結果をまとめて、表2に示す。
【0084】
[実施例3]
平均一次粒子径が0.030μmの炭化ケイ素粒子15gを、純水80gに界面活性剤としてポリカルボン酸アンモニウムおよび消泡剤を溶解した分散媒に添加し、この状態で、分散媒体としてジルコニアビーズを用いた分散処理を180分間実施した。
得られたスラリーに、炭化ケイ素粒子1gに対して白金が0.1gとなるようにジニトロ白金酸塩水溶液を加え、再度分散媒体としてジルコニアビーズを用いた分散処理を30分間行い、スラリーとした。
【0085】
得られたスラリーに、平均一次粒子径が0.8μmの炭化ケイ素粒子を加え、スラリー中の炭化ケイ素粒子1gに対する白金量が0.01gとなるように調整した混合液を作製した。
この混合液に、炭化ケイ素粒子の含有率が25.5体積%、水の含有率が72.0体積%、ゲル化剤として用いるゼラチンの含有率が2.5体積%となるように水とゼラチンを加え、実施例3の炭化ケイ素粒子分散液を調整した。初めに、上記混合液に界面活性剤としてポリカルボン酸アンモニウムを添加した後、上記割合となるために必要な分量の水を加え、鉄芯入り樹脂ボールを用いたボールミルにて220rpmの回転速度にて48時間混合して、分散液とした。次に、この分散液に、上記割合となるために必要なゼラチンを添加して20分間混合することで、実施例3の炭化ケイ素粒子分散液(塗布液)を得た。
【0086】
次いで、この炭化ケイ素粒子分散液にコーディエライト製ハニカム構造の基材を浸漬したのち引き上げ、100℃にて12時間乾燥させ、この基材上に白金塩担持炭化ケイ素粒子からなる塗布乾燥層を形成した。
次いで、この塗布乾燥層が形成された基材に、以下の条件で熱処理を施した。
第一段階:温度=900℃、保持時間=120分、雰囲気=アルゴン
第二段階:温度=600℃、保持時間=480分、 雰囲気=空気
この熱処理により、炭化ケイ素粒子の部分焼結による多孔質層の形成、炭化ケイ素粒子表面に担持されているジニトロ白金酸塩の還元・分解による白金(貴金属)微粒子の形成、及び炭化ケイ素粒子の表面酸化物層形成を行い、実施例3の触媒を含む多孔質層を作製した。
【0087】
得られた排気浄化触媒は、炭化ケイ素粒子表面に、平均一次粒子径10nmの白金微粒子が担持されていた。また、この炭化ケイ素粒子の表面には、ケイ素と酸素をともに含む非晶質の化合物(SiO
x、ただし、0<x≦3)と、ケイ素と酸素と炭素をともに含む非晶質の化合物(SiO
yC
z、ただし、0<y≦3、0<z≦3)とからなる酸化物層が形成されており、この酸化物層が白金微粒子を覆っていた。
この触媒を含む多孔質層の比表面積は13m
2/g、平均気孔率は68%であった。
また、排気浄化装置を用いて測定したCO浄化温度は179℃、HC浄化温度は183℃であった。
さらに、700℃熱処理後の比表面積は11m
2/g、CO浄化温度は188℃、HC浄化温度は201℃であった。
これらの結果をまとめて、表2に示す。
【0088】
図5は、実施例3の排気浄化触媒の電界放射型透過電子顕微鏡像(FE−TEM像)であり、
図6は、
図5の排気浄化触媒の構造を説明するための説明図である。
これらの図によれば、炭化ケイ素粒子、その表面に形成されている酸化膜(酸化物層)、及び酸化膜(酸化物層)に覆われた白金微粒子(貴金属微粒子)が示されている。
このFE−TEM像においては、酸化物層に結晶格子像が認められなかった。これにより、この酸化物層は非晶質であることが分かった。
【0089】
[実施例4]
平均一次粒子径が0.06μmの炭化ケイ素粒子15gを、純水80gに界面活性剤としてポリカルボン酸アンモニウムおよび消泡剤を溶解した分散媒に添加し、この状態で、分散媒体としてジルコニアビーズを用いた分散処理を180分間実施した。
得られたスラリーに、炭化ケイ素粒子1gに対してパラジウムが0.1gとなるように硝酸パラジウム水溶液を加え、再度分散媒体としてジルコニアビーズを用いた分散処理を30分間行い、スラリーとした。
【0090】
得られたスラリーに、平均一次粒子径が5.0μmの炭化ケイ素粒子を加え、スラリー中の炭化ケイ素粒子1gに対するパラジウム量が0.01gとなるように調整した混合液を作製した。
この混合液に、炭化ケイ素粒子の含有率が35.0体積%、水の含有率が63.5体積%、ゲル化剤として用いるゼラチンの含有率が1.5体積%となるように水とゼラチンを加え、実施例4の炭化ケイ素粒子分散液を調整した。初めに、上記混合液に界面活性剤としてポリカルボン酸アンモニウムを添加した後、上記割合となるために必要な分量の水を加え、鉄芯入り樹脂ボールを用いたボールミルにて220rpmの回転速度にて48時間混合して、分散液とした。次に、この分散液に、上記割合となるために必要なゼラチンを添加して20分間混合することで、実施例4の炭化ケイ素粒子分散液(塗布液)を得た。
【0091】
次いで、この炭化ケイ素粒子分散液にコーディエライト製ハニカム構造の基材を浸漬したのち引き上げ、100℃にて12時間乾燥させ、この基材上にパラジウム塩担持炭化ケイ素粒子からなる塗布乾燥層を形成した。
次いで、この塗布乾燥層が形成された基材に、以下の条件で熱処理を施した。
第一段階:温度=850℃、保持時間=240分、雰囲気=アルゴン
第二段階:温度=800℃、保持時間=360分、雰囲気=空気
この熱処理により、炭化ケイ素粒子の部分焼結による多孔質層の形成、炭化ケイ素粒子表面に担持されている硝酸パラジウムの還元・分解によるパラジウム(貴金属)微粒子の形成、及び炭化ケイ素粒子の表面酸化物層形成を行い、実施例4の触媒を含む多孔質層を作製した。
【0092】
得られた排気浄化触媒は、炭化ケイ素粒子表面に、平均一次粒子径20nmのパラジウム微粒子が担持されていた。また、この炭化ケイ素粒子の表面には、ケイ素と酸素をともに含む非晶質の化合物(SiO
x、ただし、0<x≦3)と、ケイ素と酸素と炭素をともに含む非晶質の化合物(SiO
yC
z、ただし、0<y≦3、0<z≦3)とからなる酸化物層が形成されており、この酸化物層がパラジウム微粒子を覆っていた。また、この酸化物層が非晶質であることは、実施例1と同様、FE−TEM像により分かった。
【0093】
この触媒を含む多孔質層の比表面積は4m
2/g、平均気孔率は55%であった。
また、排気浄化装置を用いて測定したCO浄化温度は205℃、HC浄化温度は209℃であった。
さらに、700℃熱処理後の比表面積は3m
2/g、CO浄化温度は221℃、HC浄化温度は235℃であった。
これらの結果をまとめて、表2に示す。
【0094】
[実施例5]
平均一次粒子径が0.030μmの炭化ケイ素粒子15gを、純水80gに界面活性剤としてポリカルボン酸アンモニウムおよび消泡剤を溶解した分散媒に添加し、この状態で、分散媒体としてジルコニアビーズを用いた分散処理を180分間実施した。
得られたスラリーに、炭化ケイ素粒子1gに対して白金が0.1gとなるようにジニトロ白金酸塩水溶液を加え、再度分散媒体としてジルコニアビーズを用いた分散処理を30分間行い、スラリーとした。
【0095】
得られたスラリーに、平均一次粒子径が10.0μmの炭化ケイ素粒子を加え、スラリー中の炭化ケイ素粒子1gに対する白金量が0.005gとなるように調整した混合液を作製した。
この混合液に、炭化ケイ素粒子の含有率が30.0体積%、水の含有率が67.5体積%、ゲル化剤として用いるゼラチンの含有率が2.5体積%となるように水とゼラチンを加え、実施例7の炭化ケイ素粒子分散液を調整した。初めに、上記混合液に界面活性剤としてポリカルボン酸アンモニウムを添加した後、上記割合となるために必要な分の水を加え、鉄芯入り樹脂ボールを用いたボールミルにて220rpmの回転速度にて48時間混合して、分散液とした。次に、この分散液に、上記割合となるために必要なゼラチンを添加して20分間混合することで、実施例5の炭化ケイ素粒子分散液(塗布液)を得た。
【0096】
次いで、この炭化ケイ素粒子分散液にコーディエライト製ハニカム構造の基材を浸漬したのち引き上げ、100℃にて12時間乾燥させ、この基材上に白金塩担持炭化ケイ素粒子からなる塗布乾燥層を形成した。
次いで、この塗布乾燥層が形成された基材に、以下の条件で熱処理を施した。
第一段階:温度=1000℃、保持時間=120分、雰囲気=アルゴン
第二段階:温度=730℃、 保持時間=60分、 雰囲気=空気
この熱処理により、炭化ケイ素粒子の部分焼結による多孔質層の形成、炭化ケイ素粒子表面に担持されているジニトロ白金酸塩の還元・分解による白金(貴金属)微粒子の形成、及び炭化ケイ素粒子の表面酸化物層形成を行い、実施例5の触媒を含む多孔質層を作製した。
【0097】
得られた排気浄化触媒は、炭化ケイ素粒子表面に、平均一次粒子径1nmの白金微粒子が担持されていた。また、この炭化ケイ素粒子の表面には、ケイ素と酸素をともに含む非晶質の化合物(SiO
x、ただし、0<x≦3)と、ケイ素と酸素と炭素をともに含む非晶質の化合物(SiO
yC
z、ただし、0<y≦3、0<z≦3)とからなる酸化物層が形成されており、この酸化物層が白金微粒子を覆っていた。また、この酸化物層が非晶質であることは、実施例1と同様、FE−TEM像により分かった。
【0098】
この触媒を含む多孔質層の比表面積は1m
2/g、平均気孔率は51%であった。
また、排気浄化装置を用いて測定したCO浄化温度は220℃、HC浄化温度は227℃であった。
さらに、700℃熱処理後の比表面積は1m
2/g、CO浄化温度は241℃、HC浄化温度は248℃であった。
これらの結果をまとめて、表2に示す。
【0099】
[比較例1]
平均一次粒子径が0.035μmの炭化ケイ素粒子15gを、純水80gに界面活性剤としてポリカルボン酸アンモニウムおよび消泡剤を溶解した分散媒に添加し、この状態で、分散媒体としてジルコニアビーズを用いた分散処理を180分間施した。
得られたスラリーに、炭化ケイ素粒子1gに対して白金が0.01gとなるようにジニトロ白金酸塩水溶液を加え、再度分散媒体としてジルコニアビーズを用いた分散処理を30分間行い、その後蒸発乾固し、白金塩担持炭化ケイ素粒子を作製した。
【0100】
次いで、白金塩担持炭化ケイ素粒子の含有率が10.0体積%、水の含有率が87.5体積%、ゲル化剤として用いるゼラチンの含有率が2.5体積%となるように、それぞれを計量した。次いで、上記の白金塩担持炭化ケイ素粒子と水とを、鉄芯入り樹脂ボールを用いたボールミルにて220rpmの回転速度にて12時間混合して分散液とした後、得られた分散液に上記のゼラチンを添加して20分間混合し、比較例1の炭化ケイ素粒子分散液(塗布液)を得た。
【0101】
次いで、この炭化ケイ素粒子分散液にコーディエライト製ハニカム構造の基材を浸漬したのち引き上げ、100℃にて12時間乾燥させ、この基材上に白金塩担持炭化ケイ素粒子からなる塗布乾燥層を形成した。
次いで、この塗布乾燥層が形成された基材に、以下の条件で熱処理を施し、比較例1の触媒を含む多孔質層を作製した。
第一段階:温度=980℃、保持時間=70分、雰囲気=アルゴン
第二段階:温度=450℃、保持時間=30分、雰囲気=空気
【0102】
得られた排気浄化触媒は、炭化ケイ素粒子表面に、平均一次粒子径1nmの白金微粒子が担持されていた。また、炭化ケイ素粒子の表面には、酸化物層が形成されておらず、従って白金微粒子も酸化物層には覆われていなかった。
この触媒を含む多孔質層の比表面積は38m
2/g、平均気孔率は73%であった。
また、排気浄化装置を用いて測定したCO浄化温度は283℃、HC浄化温度は291℃であった。
さらに、700℃熱処理後の比表面積は36m
2/g、CO浄化温度は300℃、HC浄化温度は302℃であった。
これらの結果をまとめて、表2に示す。
【0103】
[比較例2]
平均一次粒子径が0.015μmの炭化ケイ素粒子15gを、純水80gに界面活性剤としてポリカルボン酸アンモニウムおよび消泡剤を溶解した分散媒に添加し、この状態で、分散媒体としてジルコニアビーズを用いた分散処理を180分間実施した。
得られたスラリーに、炭化ケイ素粒子1gに対して白金が0.05gとなるようにジニトロ白金酸塩水溶液を加え、再度分散媒体としてジルコニアビーズを用いた分散処理を30分間行い、その後蒸発乾固し、白金塩担持炭化ケイ素粒子を作製した。
【0104】
次いで、この白金塩担持炭化ケイ素粒子を以下の条件で熱処理を施し、炭化ケイ素粒子表面に担持されているジニトロ白金酸塩の還元・分解による白金(貴金属)微粒子の形成を行い、貴金属担持炭化ケイ素粒子を形成した。なお、第一段階は乾燥工程に相当する。
第一段階:温度=120℃、 保持時間=24時間、雰囲気=空気
第二段階:温度=1000℃、保持時間=30分、 雰囲気=アルゴン
第三段階:温度=450℃、 保持時間=240分、雰囲気=空気
【0105】
次いで、この貴金属担持炭化ケイ素粒子の含有率が26.0体積%、水の含有率が73.0体積%、ゲル化剤として用いるゼラチンの含有率が1.0体積%となるように、それぞれを計量した。次いで、上記の貴金属担持炭化ケイ素粒子と水とを、鉄芯入り樹脂ボールを用いたボールミルにて220rpmの回転速度にて48時間混合して分散液とした後、得られた分散液に上記のゼラチンを添加して20分間混合し、比較例2の炭化ケイ素粒子分散液(塗布液)を得た。
【0106】
次いで、この炭化ケイ素粒子分散液にチタン酸アルミニウム製ハニカム構造の基材を浸漬したのち引き上げ、100℃にて12時間乾燥させ、この基材に貴金属担持炭化ケイ素粒子からなる塗布乾燥層を形成した。
次いで、この塗布乾燥層が形成された基材に、以下の条件で熱処理を施し、比較例2の触媒を含む多孔質層を作製した。
第一段階:温度=1000℃、保持時間=30分、 雰囲気=アルゴン
第二段階:温度=550℃、 保持時間=120分、雰囲気=空気
【0107】
得られた排気浄化触媒は、炭化ケイ素粒子表面に、平均一次粒子径1.5nmの白金微粒子が担持されていた。炭化ケイ素粒子の表面には、酸化物層が形成されておらず、従って白金微粒子も酸化物層には覆われていなかった。
この触媒を含む多孔質層の比表面積は83m
2/g、平均気孔率は68%であった。
また、排気浄化装置を用いて測定したCO浄化温度は261℃、HC浄化温度は276℃であった。
さらに、700℃熱処理後の比表面積は80m
2/g、CO浄化温度は296℃、HC浄化温度は302℃であった。
これらの結果をまとめて、表2に示す。
【0108】
[比較例3]
平均一次粒子径が0.030μmの炭化ケイ素粒子15gを、純水80gに界面活性剤としてポリカルボン酸アンモニウムおよび消泡剤を溶解した分散媒に添加し、この状態で、分散媒体としてジルコニアビーズを用いた分散処理を180分間実施した。
得られたスラリーに、炭化ケイ素粒子1gに対して白金が0.1gとなるようにジニトロ白金酸塩水溶液を加え、再度分散媒体としてジルコニアビーズを用いた分散処理を30分間行い、スラリーとした。
【0109】
得られたスラリーに、平均一次粒子径が10.0μmの炭化ケイ素粒子を加え、スラリー中の炭化ケイ素粒子1gに対する白金量が0.005gとなるように調整した混合液を作製した。
この混合液に、炭化ケイ素粒子の含有率が30.0体積%、水の含有率が67.5体積%、ゲル化剤として用いるゼラチンの含有率が2.5体積%となるように水とゼラチンを加え、比較例3の炭化ケイ素粒子分散液を調整した。初めに、上記混合液に界面活性剤としてポリカルボン酸アンモニウムを添加した後、上記割合となるために必要な分量の水を加え、鉄芯入り樹脂ボールを用いたボールミルにて220rpmの回転速度にて48時間混合して、分散液とした。次に、この分散液に、上記割合となるために必要なゼラチンを添加して20分間混合することで、比較例3の炭化ケイ素粒子分散液(塗布液)を得た。
【0110】
次いで、この炭化ケイ素粒子分散液にコーディエライト製ハニカム構造の基材を浸漬したのち引き上げ、100℃にて12時間乾燥させ、この基材上に白金塩担持炭化ケイ素粒子からなる塗布乾燥層を形成した。
次いで、この塗布乾燥層が形成された基材に、以下の条件で熱処理を施し、比較例3の触媒を含む多孔質層を作製した。
第一段階:温度=1000℃、保持時間=360分、雰囲気=アルゴン
第二段階:温度=500℃、 保持時間=360分、雰囲気=空気
【0111】
得られた排気浄化触媒は、炭化ケイ素粒子表面に、平均一次粒子径3nmの白金微粒子が担持されていた。炭化ケイ素粒子の表面には、酸化物層が形成されておらず、従って白金微粒子も酸化物層には覆われていなかった。
この触媒を含む多孔質層の比表面積は1m
2/g、平均気孔率は51%であった。
また、排気浄化装置を用いて測定したCO浄化温度は255℃、HC浄化温度は264℃であった。
さらに、700℃熱処理後の比表面積は1m
2/g、CO浄化温度は277℃、HC浄化温度は295℃であった。
これらの結果をまとめて、表2に示す。
【0112】
【表2】
【0113】
実施例1〜5の排気浄化触媒では、炭化ケイ素粒子の表面にナノメートルサイズの貴金属微粒子が担持され、炭化ケイ素粒子の表面には酸化物層が形成されるとともに、この酸化物層が貴金属微粒子を覆っていた。
この内、実施例1〜4の排気浄化触媒を使用した排気浄化装置におけるCO浄化温度は169℃〜205℃と低く、またHC浄化温度も179℃〜209℃と低いこと、さらには、これら浄化温度は排気浄化触媒の比表面積に依存しないことから、CO及びHCに対して十分な浄化効果を有することが確認された。
さらに、700℃熱処理後のCO浄化温度は、処理前に比べて10〜15℃程度の上昇に止まり、またHCの浄化温度も10〜25℃程度の上昇に止まっており、700℃熱処理後においても、CO及びHCに対する十分な浄化効果を保持していることが確認された。
【0114】
次に、実施例5の排気浄化触媒を使用した排気浄化装置におけるCO浄化温度は220℃、HC浄化温度は227℃であり、比較例に比べて低いものの他の実施例よりは高かった。また、700℃熱処理後のCO浄化温度は241℃、HCの浄化温度は248℃であり、比較例と比べて低いものの、他の実施例と比べて温度上昇率が高かった。
これは、実施例5における炭化ケイ素粒子が平均一次粒子径10μmのものを多く含むために、多項質層の比表面積が1m
2と低く、その結果、触媒活性が他の実施例のものと比べて低いこと、さらに、700℃熱処理後においては、比表面積が小さいために、貴金属粒子同士のシンタリング(粒成長)が進行したことによると考えられる。
すなわち、実施例5においては、CO及びHCに対して十分な浄化効果を有することが確認されたものの、他の実施例と比べてその効果が多少低いことがわかった。
【0115】
一方、比較例1〜3の排気浄化触媒では、炭化ケイ素粒子の表面に、実施例と同様にナノメートルサイズの貴金属微粒子が担持されているものの、炭化ケイ素粒子の表面には酸化物層が形成されておらず、従って貴金属微粒子も酸化物層で覆われることなくむき出しの状態であった。
これら比較例1〜3におけるの排気浄化触媒を使用した排気浄化装置におけるCO浄化温度は255℃〜283℃、またHC浄化温度は264℃〜291℃であり、実施例と比べて50〜110℃程度高いことから、CO及びHCに対する十分な浄化効果は得られていないと判断された。