(58)【調査した分野】(Int.Cl.,DB名)
前記(A)成分におけるフェノキシ樹脂が、ビスフェノールA型フェノキシ樹脂又はビスフェノールF型フェノキシ樹脂であり、前記(B)成分のエポキシ樹脂が、液状ビスフェノールA型エポキシ樹脂又は液状ビスフェノールF型エポキシ樹脂であることを特徴とする請求項1に記載の半導体ウエハ用保護フィルム。
前記(E)成分における熱硬化性樹脂を10℃/minで昇温してDSCにより測定したピーク温度が250℃以上、前記接着層の硬化時における前記補強層の発熱量が20J/g以下であることを特徴とする請求項1又は請求項2に記載の半導体ウエハ用保護フィルム。
半導体ウエハをダイシングして半導体チップを製造する方法であって、請求項1乃至請求項3のいずれか一項に記載の半導体ウエハ用保護フィルムを前記半導体ウエハに貼りつけて、硬化させ、その後一括でダイシングを行うことにより、裏面に前記半導体チップと同一サイズの保護膜を有する半導体チップを製造することを特徴とする半導体チップの製造方法。
【発明を実施するための形態】
【0021】
本発明者らは、上記目的を達成するため鋭意検討を行った結果、
基材フィルムと、該基材フィルムの上側に形成された保護膜とを備える半導体ウエハ用保護フィルムであって、前記保護膜が接着層と補強層とからなり、前記接着層は下記(A)〜(D)成分を含有してなり、10℃/minで昇温してDSCにより測定したピーク温度が190℃以下となるものであり、前記補強層は下記(E)、(F)成分を含有してなり、硬化後のガラス転移温度以下の温度における線膨張係数が30ppm以下のものであれば、良好な半導体ウエハ用保護フィルムとなることを見出した。
(A)フェノキシ樹脂、ポリイミド樹脂、及び(メタ)アクリル樹脂からなる群より選ばれる少なくとも1種:100質量部、
(B)エポキシ樹脂:5〜200質量部、
(C)網目状無機充填材以外の充填材:100〜500質量部、
(D)エポキシ樹脂硬化触媒:触媒量、
(E)熱硬化性樹脂:300〜4000質量部、及び
(F)網目状無機充填材:300〜4000質量部。
【0022】
(A)フェノキシ樹脂、ポリイミド樹脂、及び(メタ)アクリル樹脂からなる群より選ばれる少なくとも1種
フェノキシ樹脂は、エピクロルヒドリンとビスフェノールAもしくはビスフェノールF等から誘導される樹脂である。好ましくは、GPCで測定されるポリスチレン換算の重量平均分子量が10,000〜200,000、より好ましくは20,000〜100,000、最も好ましくは30,000〜80,000である。重量平均分子量が10,000以上であれば、膜を形成することが容易であり、一方、200,000以下であれば、微細な回路パターンを有する基板表面の凹凸に沿う十分な柔らかさを得ることできるために好ましい。
【0023】
上記フェノキシ樹脂の例としては、商品名PKHC、PKHH、PKHJで市販されているもの(いずれも巴化学社製)、ビスフェノールA及びビスフェノールF混合タイプの商品名エピコート4250、エピコート4275、エピコート1255HX30で市販されているもの(いずれも日本化薬社製)、臭素化エポキシを用いたエピコート5580BPX40(いずれも日本化薬社製)、ビスフェノールAタイプの商品名YP−50、YP−50S、YP−55、YP−70で市販されているもの(いずれも東都化成社製)、商品名JER E1256、E4250、E4275、YX6954BH30、YL7290BH30で市販されているもの(いずれもジャパンエポキシレジン社製)などを挙げることができる。上述した重量平均分子量を有する点で、JER E1256が好ましく使用される。該フェノキシ樹脂は末端にエポキシ基を有し、これが後述する(B)成分と反応する。
【0024】
ポリイミド樹脂としては、下記繰返し単位を含むものを使用することができる。
【化1】
(式中、Xは芳香族環又は脂肪族環を含む四価の有機基、Yは二価の有機基、qは1〜300の整数である。)
【0025】
上記ポリイミド樹脂としては、好ましくは、GPCで測定されるポリスチレン換算の重量平均分子量が10,000〜200,000、より好ましくは20,000〜100,000、最も好ましくは30,000〜80,000である。重量平均分子量が10,000以上であれば、膜を形成することが容易であり、一方、200,000以下であれば、微細な回路パターンを有する基板表面の凹凸に沿う十分な柔らかさを得ることできるために好ましい。
【0026】
上記ポリイミド樹脂は、下記繰り返し単位を有するポリアミック酸樹脂を、常法により脱水、閉環することで得ることができる。
【化2】
(式中、X、Y、qは上記と同様である。)
【0027】
上式で表されるポリアミック酸樹脂は、下記構造式(3)
【化3】
(式中、Xは上記と同様である。)
で表されるテトラカルボン酸二無水物と、下記構造式(4)
H
2N−Y−NH
2 (4)
(式中、Yは上記と同様である。)
で表されるジアミンを、常法に従ってほぼ等モルで有機溶剤中で反応させることによって得ることができる。
【0028】
ここで、上記式(3)で表されるテトラカルボン酸二無水物の例としては、下記のものを挙げることができ、これらを組み合わせて使用してもよい。
【0030】
上記式(4)で表されるジアミンのうち、好ましくは1〜80モル%、更に好ましくは1〜60モル%が、下記構造式(5)で表されるジアミノシロキサン化合物であることが、有機溶剤への溶解性、基材フィルムに対する接着性、低弾性、柔軟性の点から好ましい。
【0031】
【化5】
(式中、R
1は互いに独立に炭素数3〜9の二価の有機基であり、R
2及びR
3は、それぞれ独立に、非置換もしくは置換の炭素原子数1〜8の一価炭化水素基であり、mは1〜200の整数である。)
【0032】
上記炭素原子数3〜9の二価の有機基であるR
1としては、例えば、−(CH
2)
3−、−(CH
2)
4−、−CH
2CH(CH
3)−、−(CH
2)
6−、−(CH
2)
8−等のアルキレン基、下記式
【0033】
【化6】
のいずれかで表されるアリーレン基、アルキレン・アリーレン基、−(CH
2)
3−O−、−(CH
2)
4−O−等のオキシアルキレン基、下記式
【0034】
【化7】
のいずれかで表されるオキシアリーレン基、下記式
【0035】
【化8】
で表されるオキシアルキレン・アリーレン基等のエーテル結合を含んでもよい二価炭化水素基を挙げることができる。
【0036】
上記式(5)中のR
2又はR
3としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基、シクロヘキシル基、2−エチルヘキシル基、オクチル基等のアルキル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基、キシリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基、これらの炭化水素基の炭素原子に結合した水素原子の一部又は全部がフッ素、臭素、塩素等のハロゲン原子等で置換された基、例えば、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基等のハロゲン置換アルキル基等を挙げることができ、中でもメチル基及びフェニル基が好ましい。2種以上のジアミノシロキサン化合物の組み合わせでも使用することができる。
【0037】
上記式(5)で表されるジアミノシロキサン化合物以外の上記式(4)で表されるジアミンとしては、例えば、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、2,2’−ビス(4−アミノフェニル)プロパン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルフィド、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(p−アミノフェニルスルホニル)ベンゼン、1,4−ビス(m−アミノフェニルスルホニル)ベンゼン、1,4−ビス(p−アミノフェニルチオエーテル)ベンゼン、1,4−ビス(m−アミノフェニルチオエーテル)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[3−メチル−4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[3−クロロ−4−(4−アミノフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[3−メチル−4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[3−クロロ−4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[3,5−ジメチル−4−(4−アミノフェノキシ)フェニル]エタン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、ビス[3−メチル−4−(4−アミノフェノキシ)フェニル]メタン、ビス[3−クロロ−4−(4−アミノフェノキシ)フェニル]メタン、ビス[3,5−ジメチル−4−(4−アミノフェノキシ)フェニル]メタン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]パーフルオロプロパン等の芳香族環含有ジアミン等を挙げることができ、好ましくはp−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[3−メチル−4−(4−アミノフェノキシ)フェニル]プロパン等である。
【0038】
上記ポリイミド樹脂は、接着性の点から、好ましくはフェノール性の水酸基を有する。該フェノール性の水酸基は、ジアミン化合物として、フェノール性の水酸基を有するものを用いることにより備えることができ、このようなジアミンとしては、例えば、下記構造のものを挙げることができる。
【化9】
式中、Aは下記のいずれかの基
【化10】
式中、Bは下記のいずれかの基
【化11】
(式中、R
4は、互いに独立に、水素原子又はフッ素、臭素、ヨウ素などのハロゲン原子、あるいはアルキル基、アルケニル基、アルキニル基、トリフルオロメチル基、フェニル基などの非置換又は置換の炭素原子数1〜8の一価炭化水素基であり、各芳香環に付いている置換基は同一であっても異なっていてもよく、nは0〜5の整数である。A、Bはおのおの1種単独でも、2種以上の組み合わせでもよい。Rは水素原子、ハロゲン原子又は非置換もしくは置換の一価炭化水素基である。)
【0039】
上記R
4の非置換又は置換の炭素原子数1〜8の一価炭化水素基としては、例えば、上記R
2及びR
3について例示したものと同様のもの、ならびにエチニル基、プロピニル基、ブチニル基、ヘキシニル基等のアルキニル基等を挙げることができる。
【0040】
また、他のフェノール性水酸基を有するジアミンとして、以下のものを挙げることができる。
【化12】
(式中、R’は水素原子、フッ素、臭素、ヨウ素などのハロゲン原子、又は炭素数1〜8の、アルキル基、アルケニル基、アルキニル基、トリフルオロメチル基、フェニル基などの非置換又はハロゲン置換の1価炭化水素基であり、各芳香族環に付いている置換基は同一であっても異なっていてもよく、Xは単結合、メチレン基、又はプロピレン基である。nは上記と同様である。)
【0041】
上記フェノール性水酸基を有するジアミン化合物の中でも、特に下記式(6)で表されるジアミン化合物が好ましい。
【0042】
【化13】
(式中、R
4は上記と同様である。)
【0043】
上記フェノール性の水酸基を有するジアミン化合物の配合量としては、ジアミン化合物全体の5〜60質量%、特に10〜40質量%であることが好ましい。該配合量がこの範囲内のポリイミドシリコーン樹脂を用いると、接着力が高く、かつ、柔軟な接着層を形成する組成物が得ることができる。
【0044】
尚、フェノール性水酸基の導入のためにフェノール性水酸基を有するモノアミンを用いることもでき、その例としては下記の構造を有するモノアミンを挙げることができる。
【0045】
【化14】
(式中、R
4は上記と同様であり、各芳香環に付いている置換基は同一であっても異なっていても構わない。Dは1種単独で用いても2種以上を併用してもよい。また、pは1〜3の整数である。)
【0046】
フェノール性水酸基を有するモノアミンを用いる場合、この配合量としては、ジアミン化合物全体に対して1〜10モル%が好ましい。
【0047】
上記ポリアミック酸樹脂は、上述の各出発原料を、不活性な雰囲気下で溶媒に溶かし、通常、80℃以下、好ましくは0〜40℃で反応させて合成することができる。得られたポリアミック酸樹脂を、通常、100〜200℃、好ましくは150〜200℃に昇温させることにより、ポリアミック酸樹脂の酸アミド部分を脱水閉環させ、目的とするポリイミド樹脂を合成することができる。
【0048】
上記溶媒としては、得られるポリアミック酸に不活性なものであれば、前記出発原料を完全に溶解できるものでなくともよい。例えば、テトラヒドロフラン、1,4−ジオキサン、シクロペンタノン、シクロヘキサノン、γ−ブチロラクトン、N−メチルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド及びジメチルスルホキシドを挙げることができ、好ましくは非プロトン性極性溶媒、特に好ましくはN−メチルピロリドン、シクロヘキサノン及びγ−ブチロラクトンである。これらの溶媒は、1種単独でも2種以上を組み合わせても用いることができる。
【0049】
上記の脱水閉環を容易にするためには、トルエン、キシレンなどの共沸脱水剤を用いることが好ましい。また、無水酢酸/ピリジン混合溶液を用いて低温で脱水閉環を行うこともできる。
【0050】
尚、ポリアミック酸及びポリイミド樹脂の分子量を調整するために、無水マレイン酸、無水フタル酸などのジカルボン酸無水物及び/又はアニリン、n−ブチルアミン、上記に挙げたフェノール性の水酸基を有するモノアミンを添加することもできる。但し、ジカルボン酸無水物の添加量は、テトラカルボン酸二無水物100質量部当たり、通常、0〜2質量部であり、モノアミンの添加量は、ジアミン100質量部当たり、通常、0〜2質量部である。
【0051】
(メタ)アクリル樹脂としては、例えば、(メタ)アクリル酸エステルモノマー及び(メタ)アクリル酸誘導体から導かれる構成単位とからなる(メタ)アクリル酸エステル共重合体を挙げることができる。ここで(メタ)アクリル酸エステルモノマーとしては、好ましくはアルキル基の炭素数が1〜18である(メタ)アクリル酸アルキルエステル、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が用いられる。また、(メタ)アクリル酸誘導体としては、例えば(メタ)アクリル酸、(メタ)アクリル酸グリシジル、(メタ)アクリル酸ヒドロキシエチル等を挙げることができる。
【0052】
メタクリル酸グリシジル等を共重合して(メタ)アクリル樹脂にグリシジル基を導入することにより、後述する熱硬化型接着成分としてのエポキシ樹脂との相溶性が向上し、また、硬化後のガラス転移温度(Tg)が高くなり耐熱性も向上する。また、ヒドロキシエチルアクリレート等でアクリル系ポリマーに水酸基を導入することにより、チップへの密着性や粘着物性のコントロールが容易になる。
【0053】
(メタ)アクリル樹脂の重量平均分子量は、100,000以上であることが好ましく、より好ましくは150,000〜1,000,000である。また、(メタ)アクリル樹脂のTgは、20℃以下であることが好ましく、より好ましくは−70〜0℃程度であって常温(23℃)においては粘着性を有する。
【0054】
(B)エポキシ樹脂
エポキシ樹脂は、前記(A)成分とは異なる樹脂であり、かつ、エポキシ当量が50〜5000g/eqのものであることが好ましく、より好ましくは100〜500g/eqである。
このようなエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂(特に、液状ビスフェノールA型エポキシ樹脂又は液状ビスフェノールF型エポキシ樹脂);レゾルシノール、フェニルノールノボラック、クレゾールノボラックなどのフェノール類のグリシジルエーテル;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコールなどのアルコール類のグリシジルエーテル;フタル酸、イソフタル酸、テトラヒドロフタル酸などのカルボン酸のグリシジルエーテル;アニリンイソシアヌレートなどの窒素原子に結合した活性水素をグリシジル基で置換したグリシジル型もしくはアルキルグリシジル型のエポキシ樹脂;ビニルシクロヘキサンジエポキシド、3,4−エポキシシクロヘキシルメチル−3,4−ジシクロヘキサンカルボキシレート、2−(3,4−エポキシ)シクロヘキシル−5,5−スピロ(3,4−エポキシ)シクロヘキサン−m−ジオキサンなどのように、分子内の炭素−炭素二重結合を例えば酸化することによりエポキシが導入された、いわゆる脂環型エポキシドを挙げることができる。その他、ビフェニル骨格、ジシクロヘキサジエン骨格、ナフタレン骨格を有するエポキシ樹脂を用いることができる。
【0055】
これらの中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂(特に、液状ビスフェノールA型エポキシ樹脂又は液状ビスフェノールF型エポキシ樹脂)、o−クレゾールノボラック型エポキシ樹脂及びフェノールノボラック型エポキシ樹脂が好ましく用いられる。これらエポキシ樹脂の2種以上を組み合わせて用いてもよい。
【0056】
(B)エポキシ樹脂は、(A)成分100質量部に対して5〜200質量部、好ましくは10〜200質量部、より好ましくは50〜150質量部配合される。このような割合で、(A)成分と(B)成分を配合すると、硬化前には適度なタックを示し、ウエハへの貼付作業を安定して行なうことができ、また、硬化後には、強度に優れた保護膜を得ることができる。
【0057】
(A)成分と(B)成分との組み合わせは、(A)成分におけるフェノキシ樹脂が、ビスフェノールA型フェノキシ樹脂又はビスフェノールF型フェノキシ樹脂であり、前記(B)成分のエポキシ樹脂が、液状ビスフェノールA型エポキシ樹脂又は液状ビスフェノールF型エポキシ樹脂であることが好ましい。
【0058】
(C)網目状無機充填材以外の充填材
(C)成分の充填材としては、網目状無機充填材以外の無機充填材(非網目状無機充填材)、例えばシリカ、アルミナ、酸化チタン、カーボンブラック、銀粒子等の導電性粒子及びシリコーン樹脂粉末、例えば、ジメチルポリシロキサンを架橋した構造を持つ架橋型球状ジメチルポリシロキサン微粉末(特開平3−93834号公報)、架橋型球状ポリメチルシルセスキオキサン微粉末(特開平3−47848号公報)、架橋型球状ポリシロキサンゴム表面をポリメチルシルセスキオキサン粒子で被覆してなる微粉末(特開平7−196815号公報、特開平9−20631号公報)を使用することができる。
【0059】
該充填材の配合量は、(A)成分100質量部に対して、100〜500質量部、好ましくは200〜400質量部である。該配合量が100質量部以上であれば、充填材の配合目的である低吸水性、低線膨張性等を十分に達成することができる。低吸水性が達成できない場合は、半導体デバイスが吸湿信頼性試験において不合格となり、低線膨張係数が達成できない場合は、半導体ウエハ用保護フィルムとシリコンウエハの複合体の硬化時に線膨張係数のミスマッチが発生して、大きな反りが発生し、その後のダイシングが不可能となる。一方、500質量部以下であれば、保護層形成用組成物の粘度を高めすぎる恐れがなく、基材フィルムに塗付する際の流動性が悪くなる恐れがなく、保護膜のシリコンウエハへの低温での貼りつけが困難となる恐れがなく、ウエハと半導体ウエハ用保護フィルムの複合体が大きく反ることを防止することができる。充填材の含有率は保護膜の30〜80質量%であることが好ましい。
【0060】
上記シリカとしては溶融シリカ、結晶シリカが使用される。シリカの平均粒径は、0.1〜10μmが好ましく、より好ましくは0.5〜7μmである。シリカの平均粒径がこの範囲内にあると、塗布された保護膜(接着層)の表面の良好な平滑性が得られる。また、近年、接着層の厚みとしては、15〜50μmが要求されることが多いが、シリカの平均粒径が前記範囲内にあると、2次凝集した粒子が存在しても、該要求を満たしやすい。
【0061】
上記の架橋型球状ポリシロキサンゴム表面をポリメチルシルセスキオキサン粒子で被覆してなる微粉末は、上述の公報(特開平7−196815号公報、特開平9−20631号公報)に記載された方法で作ることができ、又は、シリコーン複合パウダーKMP600シリーズ(信越化学工業(株)製)として市販されているものを使用することができる。好ましくは粒径の点から、KMP600が使用される。
【0062】
(C)成分の充填材としては、好ましくは無機充填材、より好ましくはシリカ、最も好ましくは爆燃法で製造されたシリカが使用される。該シリカは、樹脂分によって濡れ易くなり、定法に従い表面処理されている。表面処理剤としては、その汎用性とコストメリットなどからシラン系(シランカップリング剤)が好ましい。シランカップリング剤としては該アルコキシシランとしては、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α−グリシドキシエチルトリメトキシシラン、α−グリシドキシエチルトリエトキシシラン、β−グリシドキシエチルトリメトキシシラン、β−グリシドキシエチルトリエトキシシラン、α−グリシドキシプロピルトリメトキシシラン、α−グリシドキシプロピルトリエトキシシラン、β−グリシドキシプロピルトリメトキシシラン、β−グリシドキシプロピル−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、α−グリシドキシブチルトリメトキシシラン、α−グリシドキシブチルトリエトキシシラン、β−グリシドキシブチルトリメトキシシラン、β−グリシドキシブチルトリエトキシシラン、γ−グリシドキシブチルトリメトキシシラン、γ−グリシドキシブチルトリエトキシシラン、δ−グリシドキシブチルトリメトキシシラン、δ−グリシドキシブチルトリエトキシシラン、(3、4−エポキシシクロヘキシル)メチルトリメトキシシラン、(3、4−エポキシシクロヘキシル)メチルトリエトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリエトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリプロポキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリブトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリフェノキシシラン、γ−(3、4−エポキシシクロヘキシル)プロピルトリメトキシシラン、γ−(3、4−エポキシシクロヘキシル)プロピルトリエトキシシラン、δ−(3、4−エポキシシクロヘキシル)ブチルトリメトキシシラン、δ−(3、4−エポキシシクロヘキシル)ブチルトリエメトキシシランなどのトリアルコキシシラン、N−β−(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、トリメトキシシリルプロピルナジック酸無水物等、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシランが好ましく用いられる。
【0063】
(D)エポキシ樹脂硬化触媒
(D)成分のエポキシ樹脂硬化触媒としては、加熱されて硬化するタイプ、所謂熱活性型潜在性エポキシ樹脂硬化剤が好ましい。このようなエポキシ樹脂硬化触媒としては例えば、ジシアンジアミド、イミダゾール化合物、各種オニウム塩、二塩基酸ジヒドラジド化合物等を挙げることができ、これらの2種以上を組み合わせて用いてもよい。これらの具体例としては、イミダゾール系化合物として2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,3−ジヒドロ−1H−ピロロ[1,2−a]ベンズイミダゾール、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライドを挙げることができる。
【0064】
また、エポキシ樹脂硬化触媒としてリン系触媒を用いることもでき、例としてはトリフェニルホスフィン、トリフェニルホスホニウムトリフェニルボレート、テトラフェニルホスホニウムテトラフェニルボレート、及び下記に示すような化合物を挙げることができる。
【0065】
【化15】
(式中、R
8〜R
15は水素原子又はフッ素、臭素、ヨウ素などのハロゲン原子、あるいは炭素原子数1〜8のアルキル基、アルケニル基、アルキニル基、又は炭素原子数1〜8のアルコキシ基、トリフルオロメチル基、フェニル基などの非置換もしくは置換一価炭化水素基であり、総ての置換基が同一であっても互いに異なっていてもよい。)
【0066】
接着層を10℃/minで昇温してDSCにより測定したピーク温度が190℃以下とする点から、前記エポキシ樹脂硬化触媒として、イミダゾール化合物が好ましく用いられる。該エポキシ樹脂硬化触媒の量は、触媒として有効な量(触媒量)であればよいが、通常、エポキシ樹脂100質量部に対して、0.1〜20質量部で使用され、好ましくは1〜12質量部用いられる。
【0067】
上記(A)〜(D)成分を含有する接着層のDSCにより測定したピーク温度(DSCピーク温度)は190℃以下であり、好ましくは180℃以下である。190℃よりもDSCピーク温度が高いと、半導体ウエハ保護膜接着層の硬化時の硬化反りと半導体ウエハ保護膜接着層と補強層の硬化温度と室温との温度差に起因する熱反りが大きくなり、ウエハが大きく反ることにより、機械搬送が不可能となったり、半導体チップの抗折強度のバラツキが大きくなり、工業製品として不適となる。
【0068】
DSCピーク温度の下限は特には定めないが、接着層を作製する際に使用する希釈溶剤の揮発温度や、希釈溶剤の引火点、接着層自身や半導体ウエハ保護膜の室温使用時の保存安定性を考慮すると、100℃以上であることが好ましい。
【0069】
(E)熱硬化性樹脂
本発明に用いる熱硬化性樹脂は加熱により軟化し、かつフィルム形成能があり、さらに高温で熱硬化することにより耐熱性、電気特性など層間絶縁材に要求される特性を満たすものであり、熱硬化性樹脂層を硬化したものを10℃/minで昇温してDSCにより測定したピーク温度が250℃以上かつ、下記記載の補強層を作製した際に、発熱量が20J/g以下であれば好ましい。
【0070】
該熱硬化性樹脂のDSCピーク温度が250℃より高い場合は、半導体ウエハの保護膜の接着層の硬化時に同時に反応してしまうことがなく、接着層のゲル化時における補強層の発熱による膨張をより防ぐことができ、保護膜全体の硬化反りと熱反りを抑制し、半導体ウエハの反りと抗折強度のバラツキをより低減できるため好ましい。
【0071】
上記熱硬化性樹脂としては、例えば、エポキシ樹脂系、アクリル樹脂系、ポリイミド樹脂系、ポリアミドイミド樹脂系、ポリシアネート樹脂系、ポリエステル樹脂系、熱硬化型ポリフェニレンエーテル樹脂系等を挙げることができ、これらを2種以上組み合わせて用いたり、多層構造を有する接着フィルム層とすることも可能である。中でも、層間絶縁材として信頼性とコスト的に優れたエポキシ樹脂組成物が好ましい。
【0072】
上記熱硬化性樹脂は、(A)成分100質量部に対して、300から4000質量部が好ましい。より好ましくは500から3000質量部である。該配合量が300質量部以上であれば、保護膜が高線膨張係数となって大きく反る恐れがなく、ダイシング時にチッピングの原因となって抗折強度低下を招く恐れがないために好ましい。また、該配合量が4000質量部以下であれば、保護膜のシリコンウエハに対する接着面の平滑性が低下する恐れがなく、接着力の低下を引き起こす恐れがなく、抗折強度が高いものとなる。
【0073】
(F)網目状無機充填材
網目状無機充填材としては、ガラスクロス、ガラスペーパー、カーボンクロス、金属メッシュを好ましく用いることができる。特に、網目状無機充填材としては、長尺の繊維を網目状に編んだもの(日東紡社製 IPC規格1280 ガラスクロス、SUS304の金属メッシュ等)や、ランダムな網目状にしたものが好ましいが、特に限定されるものではない。保護膜の硬化後の応力低下を目的として、球状や鱗片状の無機充填剤を多量に添加し低線膨張率の補強層を作製可能であるが、引張り強度や曲げ強度に乏しいために、本発明の目的の一つである抗折強度の向上には適さない。
【0074】
網目状無機充填材は、(A)成分100質量部に対して、300から4000質量部が好ましい。より好ましくは500から3000質量部である。該配合量が4000質量部以下であれば、保護膜が高線膨張係数となって大きく反る恐れがなく、ダイシング時にチッピングの原因となって抗折強度低下を招く恐れがないために好ましい。また、該配合量が300質量部以上であれば、保護膜のシリコンウエハに対する接着面の平滑性が低下する恐れがなく、接着力の低下を引き起こす恐れがなく、抗折強度が高いものとなる。
【0075】
本発明の補強層は上記の網目状無機充填材を含有する熱硬化性樹脂組成物であり。硬化後のTg以下の温度における線膨張係数が30ppm以下である。
【0076】
本発明の補強層に網目状無機充填材以外の充填材では、抗折強度は向上せず、また、硬化後の線膨張係数が30ppm以上の場合は、シリコンウエハとの線膨張係数の乖離が大きくなり、大きな反りを発生して、機械搬送が不可能となり、また、反りによる内部応力が大きくなり、抗折強度のバラツキが大きくなり、工業製品として適さない。
【0077】
その他の成分
本発明の保護膜は、上述した成分に加えて、エポキシ樹脂の硬化剤、各種の添加剤を含むことができる。硬化剤としては、フェノール樹脂、例えば、アルキルフェノール、多価フェノール、ナフトール等のフェノール類とアルデヒド類との縮合物等が用いられ、好ましくはフェノールノボラック樹脂、o−クレゾールノボラック樹脂、p−クレゾールノボラック樹脂、t−ブチルフェノールノボラック樹脂、ジシクロペンタジエンクレゾール樹脂、ポリパラビニルフェノール樹脂、ビスフェノールA型ノボラック樹脂、ビスフェノールF型ノボラック樹脂、あるいはこれらの変性物等が用いられる。
【0078】
添加剤としては、顔料、染料等を挙げることができ、これらを配合して、本発明における保護膜を着色すると、レーザーマーク性能が向上する。さらに、保護膜とチップ裏面との接着性・密着性を向上させる目的で、シランカップリング剤を添加することもできる。その他、難燃剤、帯電防止剤等を配合してよい。
【0079】
本発明の半導体ウエハ用保護フィルムの硬化後の弾性率としては10〜100GPaが好ましい。硬化後の弾性率が10GPa以上であれば、抗折時の曲げ応力に対して半導体ウエハ用保護フィルムが十分に耐えることができ、抗折強度低下の原因となる恐れがない。また、弾性率が100GPa以下の場合には、半導体ウエハ用保護フィルムとシリコンウエハの複合硬化物が反った場合に、シリコンウエハ側に大きな応力が発生して、チッピングが多く発生する恐れがなく、抗折強度の低下につながる恐れがない。
【0080】
半導体ウエハ用保護フィルム
本発明の半導体ウエハ用保護フィルムの作製方法として、以下の方法が挙げられるが、これらの方法に制限されるものではない。
(E)熱硬化樹脂を含浸させた(F)網目状無機充填材からなるフィルム状の補強層と、下記の方法にて接着層組成物((A)〜(D)成分)から作製したフィルム状の接着層とを貼り合わせた2層構造の保護膜を有する半導体ウエハ用保護フィルムを作製する。
或いは、(E)熱硬化樹脂を含浸させた(F)網目状無機充填材からなるフィルム状の補強層の上に下記の方法にて作成した接着層組成物((A)〜(D)成分)を塗工して、2層構造の保護膜を有する半導体ウエハ用保護フィルムを作製する。
【0081】
接着層は、基材フィルム上に上記の(A)〜(D)成分を混合して得られる組成物を、厚み5〜100μm、好ましくは10〜60μmになるように、コンマコーター、グラビアコーター、ダイコーター等公知の方法で施与して得ることができる。尚、上記の組成物は、必要に応じ、溶剤、例えばシクロヘキサノンに分散させて塗布することができる。
【0082】
基材フィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム、ポリ塩化ビニルフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム等を用いることができる。保護膜を硬化した後に、基材フィルムを剥離する場合には、耐熱性に優れたポリエチレンテレフタレートフィルム、ポリイミドフィルムが好ましく用いられる。また、その際、該基材フィルムの表面にシリコーン樹脂等を塗布して離型処理を施し、又は、基材フィルムと保護膜の間に、剥離性の層を形成してもよい。
【0083】
基材フィルムの膜厚は好ましくは5〜200μm、更に好ましくは10〜150μm、特に好ましくは20〜100μm程度である。
【0084】
半導体ウエハ用保護フィルムは、例えば、以下の方法で使用する。
(1)表面に回路が形成された半導体ウエハの裏面に、本発明における半導体ウエハ用保護フィルムの保護膜を貼付する工程、
(2)半導体ウエハ用保護フィルムの基材フィルムを剥離する工程、
(3)加熱して保護膜を硬化する工程、
(4)半導体ウエハ及び保護膜をダイシングする工程。
ここで、(2)と(3)の工程は、逆の順であってもよい。
【0085】
上記(4)のダイシング工程は、ダイシングシートを用いて、定法に従い行うことができる。ダイシングにより、裏面に保護膜を有する半導体チップが得られる。該チップを、コレット等の汎用手段によりピックアップして、基板上に配置する。本発明の半導体ウエハ用保護フィルムを用いることによって、チップ切断面に微小な損傷が発生し難くなり、半導体装置を高い歩留まりで製造することができる。
【実施例】
【0086】
以下、実施例により本発明を説明するが、本発明は下記の実施例に制限されるものではない。
【0087】
保護層形成用組成物の調製
約50質量部のシクロヘキサンノンに、表1に示す質量部の(A)成分を溶解した。得られた溶液と、表1に示す量の他の成分を混合して、固形分約70質量%の組成物を得た。
【0088】
表1、表2に示す各成分及び以下で用いる成分は以下のとおりである。
(A)成分
フェノキシ樹脂:Mw約60,000、JER 1256(ジャパンエポキシレジン社製)
ポリイミド樹脂1:合成法を後述する。
アクリル樹脂1:アクリル酸ブチル55質量部、メタクリル酸メチル15質量部、メタクリル酸グリシジル20質量部、及びアクリル酸2−ヒドロキシエチル15質量部の共重合体(重量平均分子量90万、ガラス転移温度−28℃)
(B)成分
エポキシ樹脂:RE310S(日本化薬社製)、25℃の粘度15Pa.s
(C)成分
シリカ:SE2050、平均粒径0.5μm、最大粒径5μm、KBM−403処理品、(株)アドマテックス社製
(D)成分
2P4MHZ−PW(2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール):四国化成社製
2PHZ−PW(2−フェニル−4,5−ジヒドロキシメチルイミダゾール):四国化成社製
DICY−7(ジシアンジアミド):ジャパンエポキシレジン社製
(E)+(F)成分
エポキシ含浸ガラスクロス タイプ1:下記に製造方法記述
エポキシ含浸ガラスクロス タイプ1’:下記に製造方法記述
エポキシ含浸ガラスクロス タイプ2:下記に製造方法記述
エポキシ含浸ナイロンクロス:下記に製造方法を記述
【0089】
ポリイミド樹脂1の合成
還流冷却器を連結したコック付きの25ml水分定量受器、温度計、攪拌器を備えた1リットルのセパラブルフラスコに、下記構造式で表わされるジアミノシロキサン(KF−8010、信越化学社製)49.01質量部、反応溶媒として2−メチルピロリドン100質量部を仕込み、80℃で攪拌し、ジアミンを分散させた。これに酸無水物として6FDA(2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン)42.68質量部と2−メチルピロリドン100質量部との溶液を滴下して室温で2時間攪拌反応を行うことにより、酸無水物リッチのアミック酸オリゴマーを合成した。
【化16】
次に、下記式:
【化17】
で示されるフェノール性水酸基を有するジアミン(HAB、和歌山精化製)8.31質量部と100質量部の2−メチルピロリドンを、還流冷却器が連結されたコック付きの25ml水分定量受器、温度計、攪拌器を備えた1リットルのセパラブルフラスコに仕込み、分散させ、前出の酸無水物リッチのアミック酸オリゴマーを滴下した後、室温で16時間攪拌し、ポリアミック酸溶液を合成した。その後、キシレン25mlを投入してから温度を上げ、約180℃で2時間還流させた。水分定量受器に所定量の水がたまっていること、水の流出が見られなくなっていることを確認し、水分定量受器にたまっている流出液を除去しながら、180℃でキシレンを除去した。反応終了後、大過剰のメタノール中に得られた反応液を滴下し、ポリマーを析出させ、減圧乾燥して、骨格中にフェノール性の水酸基を有するポリイミド樹脂を得た。
得られたポリイミド樹脂の赤外吸光スペクトルを測定したところ、未反応の官能基があることを示すポリアミック酸に基づく吸収は現れず、1780cm−1及び1720cm−1にイミド基に基づく吸収を確認し、3500cm−1にフェノール性水酸基に基づく吸収を確認した。得られた樹脂のポリスチレン換算の重量平均分子量は55,000であり、官能基当量は760g/eqであった。
【0090】
接着層ワニス調整
表1に記載の配合で(A)フェノキシ樹脂、ポリイミド樹脂、アクリル樹脂、(B)エポキシ樹脂、(C)シリカフィラー、(D)硬化触媒、希釈溶剤より固形分が60質量%の接着層樹脂ワニスを調整した。希釈溶剤としては、メチルエチルケトンを用い、(A)〜(D)の組成物を80℃で溶解又は分散し、室温に戻したのちに#400金網にてろ過を行い、接着層ワニスとした。
【0091】
接着層作製
表1のように調製した接着層ワニスを、基材フィルムである剥離処理をしたPETフィルムの剥離剤層側片面にブレードコーターにて2m/分で塗工後、110℃で10分間加熱乾燥して、厚さ20μmの接着層を形成し、基材フィルム上全面に塗工した接着層用シートを作製した。
【0092】
補強層樹脂ワニス調整
表2に記載の配合で(E)熱硬化性樹脂と希釈溶剤より固形分が50質量%の補強層樹脂ワニスを調整した。希釈溶剤としては、メチルエチルケトンを用い、(E)熱硬化性樹脂の組成物を80℃で溶解又は分散し、室温に戻したのちに#400金網にてろ過を行い、補強層用樹脂ワニスとした。
【0093】
補強層作製
表2に記載の補強層樹脂ワニスのそれぞれをバスに溜め、厚さ50umのガラスクロス(IPC規格:#1280、使用糸:ECD450 1/0、織密度:縦横 60本/25mm)、厚さ50umのナイロンクロス(材質 ナイロン66、目開き36um、糸径33um、目開き率 28%)を浸漬させながら連続的に通過させ、120ミクロン幅のスリットで余剰の樹脂ワニスを掻き落とした後、165℃に調整した連続乾燥炉で2分間乾燥させた。その後、補強層タイプ1とナイロンプリプレグに関しては、再度150℃に調整した連続乾燥炉で30分間乾燥し、補強層タイプ1’に関しては150℃で60分間乾燥して、表2に記載の80umの補強層を作製した。補強層タイプ1’’は、補強層1を5枚積層して、180kg/cm2、70℃、60秒で加圧貼付を行い400um厚さの補強層を作製した。
【0094】
半導体ウェハ用保護フィルムの作製
(実施例1〜7と比較例1〜5)
表1に示す接着層(塗工液1〜5)、表2に示す補強層を、表3の実施例1〜7と表4の比較例1〜5に示す組み合わせで、熱ロールにて貼り合せて半導体ウエハ用保護膜を形成した。熱ロール条件は、ロール速度:0.6m/min、ロール圧力:0.15MPa、50℃で熱圧着後に、再度100℃で熱圧着した。
【0095】
DSC測定
下記の装置及び測定条件にて、DSCカーブの取得を行い、150℃から300℃の発熱ピークをDSCピーク温度、そのピークの積算熱量をDSC発熱量とした。
リガク社製示差走査熱量計:Thermo Plus
サンプル重量:10mg
リファレンス:アルミナ
昇温速度:10℃/min
サンプリング:1.0s
雰囲気:窒素
温度範囲:25〜400℃
【0096】
TMA測定
下記の装置及び測定条件にて、TMAカーブの取得を行い、Tg温度−60℃からTg温度−10℃の区間の平均線膨張係数をTg以下の線膨張係数とした。
リガク社製熱機械分析測定装置:Thermo Plus
サンプル形状:50um厚、4.85mm幅、15mm長さ
昇温速度:10℃/min
サンプリング:1.0s
雰囲気:大気
温度範囲:25〜300℃
測定モード;引張荷重法
【0097】
ダイシング試験
得られた保護フィルムを、テクノビジョン FM−114を用いて、50℃で、厚み75μmのシリコンウエハ(8インチ(200mm)の未研磨ウエハを、ディスコ(株)社製、DAG−810を用いてポリグラインド研磨して、75μm厚としたウエハ)に貼り付けた。保護フィルム付シリコンウエハを乾燥機で実施例1から5と比較例1から4は150℃/2時間硬化させて、実施例6、7と比較例5は175℃/4時間硬化させて、半導体ウエハ用保護フィルムを硬化した。該保護フィルム付シリコンウエハを下記条件で10mm×10mm角のチップにダイシングした。
装置:DISCO ダイサー DAD−341
カット方法:シングル
ダイシング刃:ZH05−SD3500−N1−70EE
刃回転数:30000rpm
刃速度:30mm/sec
ダイシングフィルムの厚み110μm、ダイシングフィルムへの切り込み:50μm
【0098】
抗折強度、抗折強度標準偏差測定試験
先のダイシング試験で得られた10mm×10mm角のチップ40個の抗折強度を下記条件で測定し、平均値を抗折強度、標準偏差を抗折強度標準偏差とし測定結果とした。結果を表3と4に示す。
装置:島津社 オートグラフ
抗折治具: 4mm幅 楔形
支点間距離: 6mm
楔形治具速度:0.01m/min
【0099】
ウエハ反り試験
得られた保護フィルムを、テクノビジョン FM−114を用いて、50℃で、厚み75μmのシリコンウエハ(8インチ(200mm)の未研磨ウエハを、ディスコ(株)社製、DAG−810を用いてポリグラインド研磨して、75μm厚としたウエハ)に貼り付けた。保護フィルム付シリコンウエハを乾燥機で実施例1から5と比較例1から4は150℃/2時間硬化させて、実施例6、7と比較例5は175℃/4時間硬化させて、半導体保護フィルムを硬化した。該保護フィルム付シリコンウエハを下に凸になるように平面に配置して、平面からウエハ端部の最も離れている点を測定し、ウエハ反りとした。
【0100】
【表1】
【0101】
【表2】
【0102】
【表3】
【0103】
【表4】
【0104】
実施例1〜7の保護膜が低線膨張率の補強層と低温硬化型の接着層との2層からなる半導体用保護フィルムは、抗折強度が高い上にバラツキも小さく、ウエハの反りも小さいため、半導体チップの高い生産性を実現することができる。一方で、比較例1〜3の低線膨張率ではない補強層を含む半導体用保護フィルムは、抗折強度が劣り、ウエハの反りも大きかった。また、比較例4、5の低温硬化型ではない接着層を含む半導体用保護フィルムは、抗折強度のバラツキが大きく、ウエハの反りも大きかった。
【0105】
尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。