特許第5938512号(P5938512)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友化学株式会社の特許一覧

特許5938512非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池
<>
  • 特許5938512-非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池 図000003
  • 特許5938512-非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】5938512
(24)【登録日】2016年5月20日
(45)【発行日】2016年6月22日
(54)【発明の名称】非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池
(51)【国際特許分類】
   H01M 2/16 20060101AFI20160609BHJP
   H01M 10/0566 20100101ALI20160609BHJP
【FI】
   H01M2/16 P
   H01M2/16 L
   H01M10/0566
【請求項の数】4
【全頁数】17
(21)【出願番号】特願2015-233929(P2015-233929)
(22)【出願日】2015年11月30日
【審査請求日】2016年2月1日
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002093
【氏名又は名称】住友化学株式会社
(74)【代理人】
【識別番号】100127498
【弁理士】
【氏名又は名称】長谷川 和哉
(74)【代理人】
【識別番号】100146329
【弁理士】
【氏名又は名称】鶴田 健太郎
(72)【発明者】
【氏名】松尾 隆宏
【審査官】 結城 佐織
(56)【参考文献】
【文献】 特開2015−26609(JP,A)
【文献】 特許第5743032(JP,B1)
【文献】 特開2015−140439(JP,A)
【文献】 特開2013−194153(JP,A)
【文献】 特開平7−188440(JP,A)
【文献】 特開2007−238822(JP,A)
【文献】 特開2012−92288(JP,A)
【文献】 特開2012−92287(JP,A)
【文献】 特開2012−82286(JP,A)
【文献】 特開2011−246659(JP,A)
【文献】 国際公開第2012/090632(WO,A1)
【文献】 特許第5167435(JP,B2)
【文献】 特許第5164296(JP,B2)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 2/14−2/18
H01M 10/05−10/0568
H01M 4/00−4/62
C08J 9/00−9/42
(57)【特許請求の範囲】
【請求項1】
ポリオレフィンを主成分とする多孔質フィルムであって、
エタノールを含浸した状態における、波長590nmの光に対する位相差が80nm以下であり、かつ、空隙率が30〜60%であることを特徴とする非水電解液二次電池用セパレータ。
【請求項2】
請求項1に記載の非水電解液二次電池用セパレータと多孔質層とを備えることを特徴とする非水電解液二次電池用積層セパレータ。
【請求項3】
正極と、請求項1に記載の非水電解液二次電池用セパレータ、又は、請求項2に記載の非水電解液二次電池用積層セパレータと、負極とがこの順で配置されてなることを特徴とする、非水電解液二次電池用部材。
【請求項4】
請求項1に記載の非水電解液二次電池用セパレータ、又は、請求項2に記載の非水電解液二次電池用積層セパレータを備えることを特徴とする非水電解液二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池に関する。
【背景技術】
【0002】
リチウムイオン二次電池等の非水電解液二次電池は、エネルギー密度が高いので、パーソナルコンピュータ、携帯電話、携帯情報端末等の機器に用いる電池として広く使用され、また最近では車載用の電池として開発が進められている。
【0003】
リチウムイオン二次電池などの非水電解液二次電池におけるセパレータとして、ポリオレフィンを主成分とする微多孔フィルムが用いられている(特許文献1)。このようなセパレータを用いることにより、良好な安全性とサイクル特性とを兼ね備えた非水電解液二次電池を得ることができる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第5164296号(2013年3月21日発行)
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来のセパレータを用いた場合、非水電解液二次電池を組み立てた直後の電池の内部抵抗が高いという問題がある。
【0006】
本発明は、このような問題点に鑑みなされたものであって、その目的は、非水電解液二次電池を組み立てた直後の電池の内部抵抗に優れた非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池を提供することにある。
【課題を解決するための手段】
【0007】
本発明者は、光学部品ではない非水電解液二次電池用セパレータにおいて、波長590nmの光に対する位相差が小さいほど非水電解液二次電池を組み立てた直後の電池の内部抵抗が低いことを初めて見出し、本発明を完成するに至った。
【0008】
本発明に係る非水電解液二次電池用セパレータは、ポリオレフィンを主成分とする多孔質フィルムであって、エタノールを含浸した状態における、波長590nmの光に対する位相差が80nm以下であり、かつ、空隙率が30〜60%であることを特徴とする。
【0009】
また、本発明に係る非水電解液二次電池用積層セパレータは、上記の非水電解液二次電池用セパレータと多孔質層とを備える。
【0010】
また、本発明に係る非水電解液二次電池用部材は、正極と、上記非水電解液二次電池用セパレータ又は上記非水電化液二次電池用積層セパレータと、負極とがこの順で配置されてなることを特徴とする。
【0011】
また、本発明に係る非水電解液二次電池は、上記の非水電解液二次電池用セパレータ又は上記非水電化液二次電池用積層セパレータを含むことを特徴とする。
【発明の効果】
【0012】
本発明によれば、非水電解液二次電池を組み立てた直後の電池の内部抵抗に優れるという効果を奏する。
【図面の簡単な説明】
【0013】
図1】多孔質フィルムを構成する樹脂の分子鎖および細孔と位相差との関係を示す図である。
図2】実施例および比較例における、位相差と10Hz抵抗値との測定結果を示すグラフである。
【発明を実施するための形態】
【0014】
本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。なお、本明細書において特記しない限り、数値範囲を表す「A〜B」は、「A以上B以下」を意味する。
【0015】
〔1.セパレータ〕
(1−1)非水電解液二次電池用セパレータ
本発明の一実施形態に係る非水電解液二次電池用セパレータは、非水電解液二次電池において正極と負極との間に配置される膜状の多孔質フィルムである。
【0016】
多孔質フィルムは、ポリオレフィン系樹脂を主成分とする多孔質かつ膜状の基材(ポリオレフィン系多孔質基材)であればよく、その内部に連結した細孔を有す構造を有し、一方の面から他方の面に気体や液体が透過可能であるフィルムである。
【0017】
多孔質フィルムは、電池が発熱したときに溶融して、非水電解液二次電池用セパレータを無孔化することにより、該非水電解液二次電池用セパレータにシャットダウン機能を付与するものである。多孔質フィルムは、1つ層からなるものであってもよいし、複数の層から形成されるものであってもよい。
【0018】
多孔質フィルムの膜厚は、非水電解液二次電池を構成する非水電解液二次電池用部材の膜厚を考慮して適宜決定すればよく、4〜40μmであることが好ましく、5〜30μmであることがより好ましく、6〜15μmであることがさらに好ましい。
【0019】
多孔質フィルムの体積基準の空隙率は、電解液の保持量を高めると共に、過大電流が流れることをより低温で確実に阻止(シャットダウン)する機能を得ることができるように、30〜60%であり、40〜60%であることが好ましい。また、多孔質フィルムが有する細孔の平均径(平均細孔径)は、セパレータとして用いたときに、充分なイオン透過性を得ることができ、かつ、正極や負極への粒子の入り込みを防止することができるように、0.3μm以下であることが好ましく、0.14μm以下であることがより好ましい。
【0020】
また、多孔質フィルムは、エタノールを含浸した状態における、波長590nmの光に対する位相差が80nm以下である。好ましくは5nm以上80nm以下であり、より好ましくは20nm以上80nm以下である。なお、多孔質フィルムの複屈折率は、0.004以下であることが好ましく、0.001以上0.004以下であることがより好ましく、0.002以上0.004以下であることがさらに好ましい。
【0021】
多孔質フィルム面内の互いに直交するx軸方向とy軸方向とで光の屈折率が異なる(複屈折)と、フィルム面の法線方向から入射し、フィルムを透過した光は、当該複屈折により、x軸方向とy軸方向とで位相差が生じる。このような位相差は、フィルムを光学部品として用いる場合に着目される物性である。しかしながら、本発明者らは、光学部品ではない非水電解液二次電池用セパレータにおいて、位相差が小さいほど非水電解液二次電池を組み立てた直後の電池の内部抵抗が低いことを初めて見出し、本発明を完成させた。
【0022】
すなわち、上記のように、電解液の保持量を高めるために、多孔質フィルムの体積基準の空隙率を30〜60%としても、多孔質フィルムを非水電解液二次電池用セパレータとして用いた非水電解液二次電池を組み立て、電解液を注液した際に、セパレータへの電解液の浸透速度によって電池の内部抵抗が異なることに本発明者らは着目した。そして、上記のように、多孔質フィルムにおける波長590nmの光に対する位相差を80nm以下とすることにより、非水電解液二次電池を組み立てた際にセパレータへの電解液の浸透速度が速くなり、電池の内部抵抗を低くすることができることを見出した。
【0023】
多孔質フィルムにおける位相差は、多孔質フィルムを構成している樹脂の分子鎖および細孔の構造に依存する。図1は、位相差と多孔質フィルムの構造との関係を示す模式図であり、(a)は位相差が相対的に小さい多孔質フィルムの構造を、(b)は位相差が相対的に大きい多孔質フィルムの構造を示している。図1の(a)に示されるように、位相差が小さい多孔質フィルムでは、フィルムを構成する樹脂の分子鎖および細孔がランダムに配置されており、異方性がほとんどない。一方、図1の(b)に示されるように、位相差が大きい多孔質フィルムでは、分子鎖が特定の方向に配向しており、細孔も同じ方向に伸びた形状を有している。
【0024】
非水電解液二次電池を組み立てる際、非水電解液二次電池用セパレータは、正極シートと負極シートとの間に挟まれ状態で電解液に浸漬される。そのため、非水電解液二次電池用セパレータは、その端面から電解液を吸収することになる。このとき、図1の(b)に示される多孔質フィルムの場合、分子鎖の配向方向に沿って電解液が吸収されやすくなり、当該配向方向に垂直な方向には電解液が吸収されにくい。そのため、主に分子鎖の配向方向に垂直な端面から電解液が吸収され、吸収された電解液が配向方向に沿って浸透する。その結果、電解液が非水電解液二次電池用セパレータ全体に浸透するまで時間がかかる。
【0025】
一方、図1の(a)に示される多孔質フィルムの場合、細孔がランダムに配置されているため、いずれの端面からも電解液を吸収することができ、電解液が非水電解液二次電池用セパレータ全体に短時間で浸透することができる。
【0026】
これにより、位相差が小さい多孔質フィルムほど、当該多孔質フィルムを非水電解液二次電池用セパレータとして非水電解液二次電池を組み立てた直後の電池の内部抵抗を低くすることができる。
【0027】
多孔質フィルムにおけるポリオレフィン成分の割合は、多孔質基材全体の50体積%以上であることを必須とし、90体積%以上であることが好ましく、95体積%以上であることがより好ましい。多孔質フィルムのポリオレフィン成分には、重量平均分子量が5×10〜15×10の高分子量成分が含まれていることが好ましい。特に多孔質基材のポリオレフィン成分として重量平均分子量100万以上のポリオレフィン成分が含まれることにより、多孔質フィルム及び非水電解液二次電池用セパレータ全体の強度が高くなるため好ましい。
【0028】
多孔質フィルムを構成するポリオレフィン系樹脂としては、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどを重合した高分子量の単独重合体又は共重合体を挙げることができる。多孔質フィルムは、これらのポリオレフィン系樹脂を単独にて含む層、及び/又は、これらのポリオレフィン系樹脂の2種以上を含む層、であり得る。特に、エチレンを主体とする高分子量のポリエチレンが好ましい。なお、多孔質基材は、当該層の機能を損なわない範囲で、ポリオレフィン以外の成分を含むことを妨げない。
【0029】
多孔質フィルムの透気度は、通常、ガーレ値で30〜500秒/100ccの範囲であり、好ましくは、50〜300秒/100ccの範囲である。多孔質フィルムが、前記範囲の透気度を有すると、セパレータとして用いた際に、十分なイオン透過性を得ることができる。
【0030】
多孔質フィルムの目付は、強度、膜厚、ハンドリング性及び重量、さらには、非水電解液二次電池のセパレータとして用いた場合の当該電池の重量エネルギー密度や体積エネルギー密度を高くできる点で、通常、4〜20g/mであり、4〜12g/mが好ましい。
【0031】
次に、多孔質フィルムの製造方法について説明する。
まず、多孔質フィルムの原材料となる樹脂組成物を製造する。例えば、超高分子量ポリエチレンと、重量平均分子量1万以下の低分子量ポリエチレンと、炭酸カルシウム又は可塑剤等の孔形成剤と、酸化防止剤とを混練してポリオレフィン樹脂組成物を得る。
【0032】
続いて、樹脂組成物を一対の圧延ロールで圧延し、速度比を変えた巻き取りロールで引っ張りながら段階的に冷却し、シートを成形する。そして、成形されたシート中から孔形成剤を除去し、設定された延伸倍率になるように延伸する。
【0033】
ここで、巻き取りロールの速度と圧延ロールの速度との比である圧延ドロー比(巻き取りロール速度/圧延ロール速度)、および、上記の延伸倍率を適宜変更することで、多孔質フィルムの位相差を制御することができる。
【0034】
(1−2)非水電解液二次電池用積層セパレータ
さらに、本発明の非水電解液二次電池用セパレータは、接着層や耐熱層、保護層等の公知の多孔質層を備えていてもよい。本明細書において、非水電解液二次電池用セパレータと、多孔質層とを備えるセパレータのことを非水電解液二次電池用積層セパレータ(以下、積層セパレータということがある)という。
【0035】
セパレータには、多孔質層を形成する前に、つまり、後述する塗工液を塗工する前に、親水化処理を施しておくことがより好ましい。セパレータに親水化処理を施しておくことにより、塗工液の塗工性がより向上し、それゆえ、より均一な多孔質層を形成することができる。この親水化処理は、塗工液に含まれる溶媒(分散媒)に占める水の割合が高い場合に有効である。
【0036】
上記親水化処理としては、具体的には、例えば、酸やアルカリ等による薬剤処理、コロナ処理、プラズマ処理等の公知の処理が挙げられる。上記親水化処理のうち、比較的短時間でセパレータを親水化することができる上に、親水化がセパレータの表面近傍のみに限られ、セパレータの内部を変質させないことから、コロナ処理がより好ましい。
【0037】
(多孔質層)
多孔質層は、好ましくは、樹脂を含んでなる樹脂層である。多孔質層を構成する樹脂は、非水電解液二次電池の電解液に不溶であると共に、その非水電解液二次電池の使用範囲において電気化学的に安定であることが好ましい。セパレータの片面に多孔質層が積層される場合には、当該多孔質層は、好ましくは、セパレータを非水電解液二次電池の部材として用いた場合のセパレータの面のうち、当該非水電解液二次電池の正極と対向する面に積層され、より好ましくは、上記正極と接する面に積層される。
【0038】
多孔質層を構成する上記樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、およびエチレン−プロピレン共重合体等のポリオレフィン;ポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレン等の含フッ素樹脂;フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体やエチレン−テトラフルオロエチレン共重合体等の含フッ素ゴム;芳香族ポリアミド;全芳香族ポリアミド(アラミド樹脂);スチレン−ブタジエン共重合体およびその水素化物、メタクリル酸エステル共重合体、アクリロニトリル−アクリル酸エステル共重合体、スチレン−アクリル酸エステル共重合体、エチレンプロピレンラバー、およびポリ酢酸ビニル等のゴム類;ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド、およびポリエステル等の融点やガラス転移温度が180℃以上の樹脂;ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリルアミド、およびポリメタクリル酸等の水溶性ポリマー;等が挙げられる。
【0039】
また、上記芳香族ポリアミドとしては、具体的には、例えば、ポリ(パラフェニレンテレフタルアミド)、ポリ(メタフェニレンイソフタルアミド)、ポリ(パラベンズアミド)、ポリ(メタベンズアミド)、ポリ(4,4’−ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(メタフェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(メタフェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(2−クロロパラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6−ジクロロパラフェニレンテレフタルアミド共重合体、メタフェニレンテレフタルアミド/2,6−ジクロロパラフェニレンテレフタルアミド共重合体等が挙げられる。このうち、ポリ(パラフェニレンテレフタルアミド)がより好ましい。
【0040】
上記樹脂のうち、ポリオレフィン、含フッ素樹脂、芳香族ポリアミド、および水溶性ポリマーがより好ましい。中でも、多孔質層が非水電解液二次電池の正極に対向して配置される場合には、含フッ素樹脂が特に好ましい。含フッ素樹脂を適用した場合は、非水電解液二次電池作動時の酸性劣化による、非水電解液二次電池のレート特性や抵抗特性(液抵抗)等の各種性能を維持し易い。水溶性ポリマーは、多孔質層を形成するときの溶媒として水を用いることができるため、プロセスや環境負荷の観点からより好ましく、セルロースエーテル、アルギン酸ナトリウムがさらに好ましく、セルロースエーテルが特に好ましい。
【0041】
セルロースエーテルとしては、具体的には、例えば、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、カルボキシエチルセルロース、メチルセルロース、エチルセルロース、シアンエチルセルロース、オキシエチルセルロース等が挙げられ、長時間にわたる使用における劣化が少なく、化学的な安定性に優れているCMCおよびHECがより好ましく、CMCが特に好ましい。
【0042】
上記多孔質層は、フィラーを含んでいることがより好ましい。したがって、多孔質層がフィラーを含む場合には、上記樹脂は、バインダー樹脂としての機能を有することとなる。フィラーとしては特に限定されるものではなく、有機物からなるフィラーであってもよく、無機物からなるフィラーであってもよい。
【0043】
有機物からなるフィラーとしては、具体的には、例えば、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチル等の単量体の単独重合体或いは2種類以上の共重合体;ポリテトラフルオロエチレン、4フッ化エチレン−6フッ化プロピレン共重合体、4フッ化エチレン−エチレン共重合体、ポリフッ化ビニリデン等の含フッ素樹脂;メラミン樹脂;尿素樹脂;ポリエチレン;ポリプロピレン;ポリアクリル酸、ポリメタクリル酸;等からなるフィラーが挙げられる。
【0044】
無機物からなるフィラーとしては、具体的には、例えば、炭酸カルシウム、タルク、クレー、カオリン、シリカ、ハイドロタルサイト、珪藻土、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、酸化カルシウム、酸化マグネシウム、酸化チタン、窒化チタン、アルミナ(酸化アルミニウム)、窒化アルミニウム、マイカ、ゼオライト、ガラス等の無機物からなるフィラーが挙げられる。フィラーは、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
【0045】
上記フィラーのうち、無機物からなるフィラーが好適であり、シリカ、酸化カルシウム、酸化マグネシウム、酸化チタン、アルミナ、マイカ、ゼオライト、水酸化アルミニウム、ベーマイト等の無機酸化物からなるフィラーがより好ましく、シリカ、酸化マグネシウム、酸化チタン、水酸化アルミニウム、ベーマイトおよびアルミナからなる群から選択される少なくとも1種のフィラーがさらに好ましく、アルミナが特に好ましい。アルミナには、α−アルミナ、β−アルミナ、γ−アルミナ、θ−アルミナ等の多くの結晶形が存在するが、何れも好適に使用することができる。この中でも、熱的安定性および化学的安定性が特に高いため、α−アルミナが最も好ましい。
【0046】
フィラーの形状は、原料である有機物または無機物の製造方法や、多孔質層を形成するための塗工液を作製するときのフィラーの分散条件等によって変化し、球形、長円形、短形、瓢箪形等の形状、或いは特定の形状を有さない不定形等、何れの形状であってもよい。
【0047】
多孔質層がフィラーを含んでいる場合において、フィラーの含有量は、多孔質層の1〜99体積%であることが好ましく、5〜95体積%であることがより好ましい。フィラーの含有量を上記範囲とすることにより、フィラー同士の接触によって形成される空隙が、樹脂等によって閉塞されることが少なくなり、充分なイオン透過性を得ることができると共に、単位面積当たりの目付を適切な値にすることができる。
【0048】
本発明においては、通常、上記樹脂を溶媒に溶解させると共に、上記フィラーを分散させることにより、多孔質層を形成するための塗工液を作製する。
【0049】
上記溶媒(分散媒)は、多孔質フィルムに悪影響を及ぼさず、上記樹脂を均一かつ安定に溶解し、上記フィラーを均一かつ安定に分散させることができればよく、特に限定されるものではない。上記溶媒(分散媒)としては、具体的には、例えば、水;メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、t−ブチルアルコール等の低級アルコール;アセトン、トルエン、キシレン、ヘキサン、N−メチルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド;等が挙げられる。上記溶媒(分散媒)は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
【0050】
塗工液は、所望の多孔質層を得るのに必要な樹脂固形分(樹脂濃度)やフィラー量等の条件を満足することができれば、どのような方法で形成されてもよい。塗工液の形成方法としては、具体的には、例えば、機械攪拌法、超音波分散法、高圧分散法、メディア分散法等が挙げられる。
【0051】
また、例えば、スリーワンモーター、ホモジナイザー、メディア型分散機、圧力式分散機等の従来公知の分散機を使用してフィラーを溶媒(分散媒)に分散させてもよい。
【0052】
また、上記塗工液は、本発明の目的を損なわない範囲で、上記樹脂およびフィラー以外の成分として、分散剤や可塑剤、界面活性剤、pH調整剤等の添加剤を含んでいてもよい。尚、添加剤の添加量は、本発明の目的を損なわない範囲であればよい。
【0053】
塗工液のセパレータへの塗布方法、つまり、必要に応じて親水化処理が施されたセパレータの表面への多孔質層の形成方法は、特に制限されるものではない。セパレータの両面に多孔質層を積層する場合においては、セパレータの一方の面に多孔質層を形成した後、他方の面に多孔質層を形成する逐次積層方法や、セパレータの両面に多孔質層を同時に形成する同時積層方法を適用することができる。
【0054】
多孔質層の形成方法としては、例えば、塗工液をセパレータの表面に直接塗布した後、溶媒(分散媒)を除去する方法;塗工液を適当な支持体に塗布し、溶媒(分散媒)を除去して多孔質層を形成した後、この多孔質層とセパレータとを圧着させ、次いで支持体を剥がす方法;塗工液を適当な支持体に塗布した後、塗布面に多孔質フィルムを圧着させ、次いで支持体を剥がした後に溶媒(分散媒)を除去する方法;および、塗工液中にセパレータを浸漬し、ディップコーティングを行った後に溶媒(分散媒)を除去する方法;等が挙げられる。
【0055】
多孔質層の厚さは、塗工後の湿潤状態(ウェット)の塗工膜の厚さ、樹脂とフィラーとの重量比、塗工液の固形分濃度(樹脂濃度とフィラー濃度との和)等を調節することによって制御することができる。尚、支持体として、例えば、樹脂製のフィルム、金属製のベルト、またはドラム等を用いることができる。
【0056】
上記塗工液をセパレータまたは支持体に塗布する方法は、必要な目付や塗工面積を実現し得る方法であればよく、特に制限されるものではない。塗工液の塗布方法としては、従来公知の方法を採用することができる。このような方法として、具体的には、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクターブレードコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、バーコーター法、ダイコーター法、スクリーン印刷法、およびスプレー塗布法等が挙げられる。
【0057】
溶媒(分散媒)の除去方法は、乾燥による方法が一般的である。乾燥方法としては、自然乾燥、送風乾燥、加熱乾燥、および減圧乾燥等が挙げられるが、溶媒(分散媒)を充分に除去することができるのであれば如何なる方法でもよい。上記乾燥には、通常の乾燥装置を用いることができる。
【0058】
また、塗工液に含まれる溶媒(分散媒)を他の溶媒に置換してから乾燥を行ってもよい。溶媒(分散媒)を他の溶媒に置換してから除去する方法としては、例えば、塗工液に含まれる溶媒(分散媒)に溶解し、かつ、塗工液に含まれる樹脂を溶解しない他の溶媒(以下、溶媒X)を使用し、塗工液が塗布されて塗膜が形成されたセパレータまたは支持体を上記溶媒Xに浸漬し、セパレータ上または支持体上の塗膜中の溶媒(分散媒)を溶媒Xで置換した後に、溶媒Xを蒸発させる方法が挙げられる。この方法によれば、塗工液から溶媒(分散媒)を効率よく除去することができる。
【0059】
尚、セパレータまたは支持体に形成された塗工液の塗膜から溶媒(分散媒)或いは溶媒Xを除去するために加熱を行う場合には、多孔質フィルムの細孔が収縮して透気度が低下することを回避するために、セパレータの透気度が低下しない温度、具体的には、10〜120℃、より好ましくは20〜80℃で行うことが望ましい。
【0060】
上述した方法により形成される上記多孔質層の膜厚は、セパレータを基材として用い、セパレータの片面または両面に多孔質層を積層して積層セパレータを形成する場合においては、0.5〜15μm(片面当たり)であることが好ましく、2〜10μm(片面当たり)であることがより好ましい。
【0061】
多孔質層の膜厚が両面の合計で1μm未満であると、積層セパレータを非水電解液二次電池に用いた場合に、非水電解液二次電池の破損等による内部短絡を充分に防止することができない。また、多孔質層における電解液の保持量が低下する。
【0062】
一方、多孔質層の膜厚が両面の合計で30μmを超えると、積層セパレータを非水電解液二次電池に用いた場合に、当該セパレータ全域におけるリチウムイオンの透過抵抗が増加するので、サイクルを繰り返すと非水電解液二次電池の正極が劣化し、レート特性やサイクル特性が低下する。また、正極および負極間の距離が増加するので非水電解液二次電池が大型化する。
【0063】
多孔質層の物性に関する下記説明においては、セパレータの両面に多孔質層が積層される場合には、非水電解液二次電池としたときの、積層セパレータにおける正極と対向する面に積層された多孔質層の物性を少なくとも指す。
【0064】
多孔質層の単位面積当たりの目付(片面当たり)は、積層セパレータの強度、膜厚、重量、およびハンドリング性を考慮して適宜決定すればよい。積層セパレータを非水電解液二次電池に用いた場合に、多孔質層の単位面積当たりの目付は、通常、1〜20g/mであることが好ましく、2〜10g/mであることがより好ましい。
【0065】
多孔質層の単位面積当たりの目付をこれらの数値範囲とすることにより、当該多孔質層を備えた非水電解液二次電池の重量エネルギー密度や体積エネルギー密度を高くすることができる。多孔質層の目付が上記範囲を超える場合には、当該積層セパレータを備える非水電解液二次電池が重くなる。
【0066】
多孔質層の空隙率は、充分なイオン透過性を得ることができるように、20〜90体積%であることが好ましく、30〜80体積%であることがより好ましい。また、多孔質層が有する細孔の孔径は、1μm以下であることが好ましく、0.5μm以下であることがより好ましい。細孔の孔径をこれらのサイズとすることにより、当該多孔質層を含む積層セパレータを備える非水電解液二次電池は、充分なイオン透過性を得ることができる。
【0067】
上記積層セパレータの透気度は、ガーレ値で30〜1000 sec/100mLであることが好ましく、50〜800 sec/100mLであることがより好ましい。積層セパレータが上記透気度を有することにより、上記積層セパレータを非水電解液二次電池用の部材として使用した場合に、充分なイオン透過性を得ることができる。
【0068】
透気度が上記範囲を超える場合には、積層セパレータの空隙率が高いために積層セパレータの積層構造が粗になっていることを意味し、結果としてセパレータの強度が低下して、特に高温での形状安定性が不充分になるおそれがある。一方、透気度が上記範囲未満の場合には、上記積層セパレータを非水電解液二次電池用の部材として使用した場合に、充分なイオン透過性を得ることができず、非水電解液二次電池の電池特性を低下させることがある。
【0069】
〔2.非水電解液二次電池〕
本発明に係る非水電解液二次電池は、上記セパレータまたは上記積層セパレータを備えている(以下、上記セパレータおよび上記積層セパレータを合わせてセパレータ等ということがある)。より具体的には、本発明に係る非水電解液二次電池は、正極、セパレータ等、および負極がこの順で配置されてなる非水電解液二次電池用部材を含んでいる。即ち、当該非水電解液二次電池用部材も本発明の範囲に含まれる。以下、非水電解液二次電池として、リチウムイオン二次電池を例に挙げて説明する。尚、セパレータ以外の非水電解液二次電池の構成要素は、下記説明の構成要素に限定されるものではない。
【0070】
本発明に係る非水電解液二次電池においては、例えばリチウム塩を有機溶媒に溶解してなる非水電解液を用いることができる。リチウム塩としては、例えば、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、低級脂肪族カルボン酸リチウム塩、LiAlCl等が挙げられる。上記リチウム塩は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
【0071】
上記リチウム塩のうち、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、およびLiC(CFSOからなる群から選択される少なくとも1種のフッ素含有リチウム塩がより好ましい。
【0072】
非水電解液を構成する有機溶媒としては、具体的には、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタン等のカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトン等のエステル類;アセトニトリル、ブチロニトリル等のニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;3−メチル−2−オキサゾリドン等のカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトン等の含硫黄化合物;並びに、上記有機溶媒にフッ素基が導入されてなる含フッ素有機溶媒;等が挙げられる。上記有機溶媒は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
【0073】
上記有機溶媒のうち、カーボネート類がより好ましく、環状カーボネートと非環状カーボネートとの混合溶媒、または、環状カーボネートとエーテル類との混合溶媒がさらに好ましい。
【0074】
環状カーボネートと非環状カーボネートとの混合溶媒としては、作動温度範囲が広く、かつ、負極活物質として天然黒鉛や人造黒鉛等の黒鉛材料を用いた場合においても難分解性を示すことから、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒がさらに好ましい。
【0075】
正極としては、通常、正極活物質、導電材および結着剤を含む正極合剤を正極集電体上に担持したシート状の正極を用いる。
【0076】
上記正極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料が挙げられる。当該材料としては、具体的には、例えば、V、Mn、Fe、Co、Ni等の遷移金属を少なくとも1種類含んでいるリチウム複合酸化物が挙げられる。
【0077】
上記リチウム複合酸化物のうち、平均放電電位が高いことから、ニッケル酸リチウム、コバルト酸リチウム等のα−NaFeO型構造を有するリチウム複合酸化物、リチウムマンガンスピネル等のスピネル型構造を有するリチウム複合酸化物がより好ましい。当該リチウム複合酸化物は、種々の金属元素を含んでいてもよく、複合ニッケル酸リチウムがさらに好ましい。
【0078】
さらに、Ti、Zr、Ce、Y、V、Cr、Mn、Fe、Co、Cu、Ag、Mg、Al、Ga、InおよびSnからなる群から選択される少なくとも1種の金属元素のモル数と、ニッケル酸リチウム中のNiのモル数との和に対して、上記少なくとも1種の金属元素の割合が0.1〜20モル%となるように、当該金属元素を含む複合ニッケル酸リチウムを用いると、高容量での使用におけるサイクル特性に優れるので特に好ましい。中でもAlまたはMnを含み、かつ、Ni比率が85%以上、さらに好ましくは90%以上である活物質が、当該活物質を含む正極を備える非水電解液二次電池の高容量での使用におけるサイクル特性に優れることから、特に好ましい。
【0079】
上記導電材としては、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素質材料等が挙げられる。上記導電材は、1種類のみを用いてもよく、例えば人造黒鉛とカーボンブラックとを混合して用いる等、2種類以上を組み合わせて用いてもよい。
【0080】
上記結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンの共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレンの共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルの共重合体、エチレン−テトラフルオロエチレンの共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレンの共重合体、熱可塑性ポリイミド、ポリエチレン、及びポリプロピレン等の熱可塑性樹脂、アクリル樹脂、並びに、スチレンブタジエンゴムが挙げられる。尚、結着剤は、増粘剤としての機能も有している。
【0081】
正極合剤を得る方法としては、例えば、正極活物質、導電材および結着剤を正極集電体上で加圧して正極合剤を得る方法;適当な有機溶剤を用いて正極活物質、導電材および結着剤をペースト状にして正極合剤を得る方法;等が挙げられる。
【0082】
上記正極集電体としては、例えば、Al、Ni、ステンレス等の導電体が挙げられ、薄膜に加工し易く、安価であることから、Alがより好ましい。
【0083】
シート状の正極の製造方法、即ち、正極集電体に正極合剤を担持させる方法としては、例えば、正極合剤となる正極活物質、導電材および結着剤を正極集電体上で加圧成型する方法;適当な有機溶剤を用いて正極活物質、導電材および結着剤をペースト状にして正極合剤を得た後、当該正極合剤を正極集電体に塗工し、乾燥して得られたシート状の正極合剤を加圧して正極集電体に固着する方法;等が挙げられる。
【0084】
負極としては、通常、負極活物質を含む負極合剤を負極集電体上に担持したシート状の負極を用いる。シート状の負極には、好ましくは上記導電材、及び、上記結着剤が含まれる。
【0085】
上記負極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料、リチウム金属またはリチウム合金等が挙げられる。当該材料としては、具体的には、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素質材料;正極よりも低い電位でリチウムイオンのドープ・脱ドープを行う酸化物、硫化物等のカルコゲン化合物;アルカリ金属と合金化するアルミニウム(Al)、鉛(Pb)、錫(Sn)、ビスマス(Bi)、シリコン(Si)などの金属、アルカリ金属を格子間に挿入可能な立方晶系の金属間化合物(AlSb、MgSi、NiSi)、リチウム窒素化合物(Li-xMN(M:遷移金属))等を用いることができる。上記負極活物質のうち、電位平坦性が高く、また平均放電電位が低いために正極と組み合わせた場合に大きなエネルギー密度が得られることから、天然黒鉛、人造黒鉛等の黒鉛材料を主成分とする炭素質材料がより好ましく、黒鉛とシリコンの混合物であって、そのCに対するSiの比率が5%以上のものがより好ましく、10%以上である負極活物質がさらに好ましい。
【0086】
負極合剤を得る方法としては、例えば、負極活物質を負極集電体上で加圧して負極合剤を得る方法;適当な有機溶剤を用いて負極活物質をペースト状にして負極合剤を得る方法;等が挙げられる。
【0087】
上記負極集電体としては、例えば、Cu、Ni、ステンレス等が挙げられ、特にリチウムイオン二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工し易いことから、Cuがより好ましい。
【0088】
シート状の負極の製造方法、即ち、負極集電体に負極合剤を担持させる方法としては、例えば、負極合剤となる負極活物質を負極集電体上で加圧成型する方法;適当な有機溶剤を用いて負極活物質をペースト状にして負極合剤を得た後、当該負極合剤を負極集電体に塗工し、乾燥して得られたシート状の負極合剤を加圧して負極集電体に固着する方法;等が挙げられる。上記ペーストには、好ましくは上記導電助剤、及び、上記結着剤が含まれる。
【0089】
上記正極と、上記セパレータ等と、上記負極とをこの順で配置して非水電解液二次電池用部材を形成した後、非水電解液二次電池の筐体となる容器に当該非水電解液二次電池用部材を入れ、次いで、当該容器内を非水電解液で満たした後、減圧しつつ密閉することにより、本発明に係る非水電解液二次電池を製造することができる。非水電解液二次電池の形状は、特に限定されるものではなく、薄板(ペーパー)型、円盤型、円筒型、直方体等の角柱型等のどのような形状であってもよい。尚、非水電解液二次電池の製造方法は、特に限定されるものではなく、従来公知の製造方法を採用することができる。
【実施例】
【0090】
<各種物性の測定方法>
以下の実施例および比較例に係る非水電解液二次電池用セパレータの各種物性を、以下の方法で測定した。
【0091】
(1)空隙率
非水電解液二次電池用セパレータとして用いられる多孔質フィルムを一辺の長さ8cmの正方形に切り取り、その切り取った小片の重量:W(g)および厚さ:E(cm)を測定する。測定された重量(W)および厚さ(E)、並びに、多孔質フィルムの真比重ρ(g/cm)に基づき、
空隙率=(1−{(W/ρ)}/(8×8×E))×100
の式に従って多孔質フィルムの空隙率を算出した。
【0092】
(2)位相差および複屈折率
非水電解液二次電池用セパレータとして用いられる多孔質フィルムを4cm×4cmに切り取り、エタノール0.5mLを垂らし、エタノールに含浸させることで半透明状フィルムを得た。この際、吸収しきれなかった余分なエタノールは拭き取って除去した。そして、王子計測機器製位相差測定装置(KOBRA-WPR)を用いて、得られた半透明状フィルムの、25℃における波長590nmの光に対する複屈折率を測定し、位相差を算出した。
【0093】
(3)電気抵抗
後述のようにして組み立てた非水電解液二次電池を日置電機製LCRメーター(製品名:ケミカルインピーダンスメーター(形式3532−80))によって、室温25℃において、電圧振幅10mV印加し、交流インピーダンスを測定した。そして、測定周波数10Hzの実数部の抵抗値Rを、電池組み立て直後の抵抗値(電池の内部抵抗値)とした。
【0094】
<非水電解液二次電池用セパレータの作製>
以下のようにして、非水電解液二次電池用セパレータとして用いられる、実施例1〜4に係る多孔質フィルムを作製した。
【0095】
(実施例1)
超高分子量ポリエチレン粉末(GUR2024、ティコナ社製)を68重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)32重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、ステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して38体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。そして、該ポリオレフィン樹脂組成物を表面温度が150℃一対の圧延ロールにて圧延し、速度比を変えた巻取りロールで引張りながら段階的に冷却した。ここでは、圧延ドロー比(巻取りロール速度/圧延ロール速度)1.4倍として、膜厚約62μmのシートを作成した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて105℃で6.2倍に延伸して実施例1の多孔質フィルムを得た。
【0096】
(実施例2)
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製)を68.5重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、分岐度1/1000C、日本精鑞社製)31.5重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、ステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して36体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。そして、該ポリオレフィン樹脂組成物を表面温度が150℃一対の圧延ロールにて圧延し、速度比を変えた巻取りロールで引張りながら段階的に冷却した。ここでは、圧延ドロー比(巻取りロール速度/圧延ロール速度)1.4倍として、膜厚約62μmのシートを作成した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて105℃で7倍に延伸して実施例2の多孔質フィルムを得た。
【0097】
(実施例3)
超高分子量ポリエチレン粉末(GUR4012、ティコナ社製)を80重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、分岐度1/1000C、日本精鑞社製)20重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、ステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して37体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。そして、該ポリオレフィン樹脂組成物を表面温度が150℃一対の圧延ロールにて圧延し、速度比を変えた巻取りロールで引張りながら段階的に冷却した。ここでは、圧延ドロー比(巻取りロール速度/圧延ロール速度)1.4倍として、膜厚約62μmのシートを作成した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて105℃で4倍に延伸して実施例3の多孔質フィルムを得た。
【0098】
(実施例4)
超高分子量ポリエチレン粉末(GUR4012、ティコナ社製)を80重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、分岐度1/1000C、日本精鑞社製)20重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、ステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して37体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。そして、該ポリオレフィン樹脂組成物を表面温度が150℃一対の圧延ロールにて圧延し、速度比を変えた巻取りロールで引張りながら段階的に冷却した。ここでは、圧延ドロー比(巻取りロール速度/圧延ロール速度)1.4倍として、膜厚約62μmのシートを作成した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて105℃で5.8倍に延伸して実施例4の多孔質フィルムを得た。
【0099】
(比較例1)
市販品のポリオレフィン多孔質フィルム(ポリオレフィンセパレータ)を比較例1として用いた。
【0100】
(比較例2)
比較例1とは別の市販品のポリオレフィン多孔質フィルム(ポリオレフィンセパレータ)を比較例2として用いた。
【0101】
(比較例3)
比較例1及び2とは別の市販品のポリオレフィン多孔質フィルム(ポリオレフィンセパレータ)を比較例3として用いた。
【0102】
<非水電解液二次電池の作製>
次に、上記のようにして作製した実施例1〜4および比較例1〜3の多孔質フィルムからなる非水電解液二次電池用セパレータの各々を用いて非水電解液二次電池を以下に従って作製した。
【0103】
(正極)
LiNi0.5Mn0.3Co0.2/導電材/PVDF(重量比92/5/3)をアルミニウム箔に塗布することにより製造された市販の正極を用いた。上記正極を、正極活物質層が形成された部分の大きさが40mm×35mmであり、かつその外周に幅13mmで正極活物質層が形成されていない部分が残るように、アルミニウム箔を切り取って正極とした。正極活物質層の厚さは58μm、密度は2.50g/cmであった。
【0104】
(負極)
黒鉛/スチレン−1,3−ブタジエン共重合体/カルボキシメチルセルロースナトリウム(重量比98/1/1)を銅箔に塗布することにより製造された市販の負極を用いた。上記負極を、負極活物質層が形成された部分の大きさが50mm×40mmであり、かつその外周に幅13mmで負極活物質層が形成されていない部分が残るように、銅箔を切り取って負極とした。負極活物質層の厚さは49μm、の密度は1.40g/cmであった。
【0105】
(組み立て)
ラミネートパウチ内で、上記正極、非水電解液二次電池用セパレータ、および負極をこの順で積層(配置)することにより、非水電解液二次電池用部材を得た。このとき、正極の正極活物質層における主面の全部が、負極の負極活物質層における主面の範囲に含まれる(主面に重なる)ように、正極および負極を配置した。
【0106】
続いて、上記非水電解液二次電池用部材を、アルミニウム層とヒートシール層とが積層されてなる袋に入れ、さらにこの袋に非水電解液を0.25mL入れた。上記非水電解液は、濃度1.0モル/リットルのLiPFをエチルメチルカーボネート、ジエチルカーボネートおよびエチレンカーボネートの体積比が50:20:30の混合溶媒に溶解させた25℃の電解液を用いた。そして、袋内を減圧しつつ、当該袋をヒートシールすることにより、非水電解液二次電池を作製した。
【0107】
<各種物性の測定結果>
実施例1〜4および比較例1〜3の多孔質フィルムについての、空隙率、複屈折率、位相差の測定結果を表1に示す。また、これら多孔質フィルムを非水電解液二次電池用セパレータとして用いた非水電解液二次電池における、組み立て後の抵抗値の測定結果も表1に合わせて示す。
【0108】
【表1】
【0109】
図2は、表1に示される位相差を横軸とし、10Hz抵抗を縦軸とし、各実施例および比較例の測定結果をプロットしたグラフである。表1および図1に示されるように、空隙率が30〜60%であり、位相差が80nm以下の実施例1〜4の多孔質フィルムを非水電解液二次電池用セパレータとして用いた非水電解液二次電池では、組み立て後の抵抗値が0.91Ω以下と低い値を示すことがわかる。一方、比較例1〜3は、空隙率が30〜60%であるが、位相差が100nm以上と大きく、非水電解液二次電池の組み立て後の抵抗値が0.99Ω以上と高い値を示すことがわかる。このように、位相差と非水電解液二次電池の組み立て後の電池の内部抵抗とが相関していることが確認され、空隙率30〜60%、位相差80nm以下の多孔質フィルムを非水電解液二次電池用セパレータとして用いることで、非水電解液二次電池の組み立て後の電池の内部抵抗が優れることがわかった。
【要約】
【課題】非水電解液二次電池を組み立てた直後の電池の内部抵抗に優れた非水電解液二次電池用セパレータを提供する。
【解決手段】非水電解液二次電池用セパレータは、ポリオレフィンを主成分とする多孔質フィルムであって、エタノールを含浸した状態における、波長590nmの光に対する位相差が80nm以下であり、かつ、空隙率が30〜60%である。
【選択図】なし
図1
図2