【実施例】
【0019】
以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。
【0020】
実施例1:
R−Fe−B系焼結磁石の加工工程で発生したスクラップ(加工不良の固形屑。ICP発光分光法による合金組成分析結果はNd:20.86,Pr:5.82,Dy:4.09,Fe:66.40,B:1.00,その他:1.83(単位はmass%))を、エタノールを用いて洗浄処理した後、スタンプミルによって粉砕し、篩にかけて各種の粒度に分級した合金粉末を得た(JIS Z 2510に記載の方法によるJIS Z 8801−1に規定の篩を用いた分級)。それぞれの粒度の合金粉末約3gを管状型の流気炉に仕込み、炉内の圧力が4×10
−3Paになるまでいったん減圧した。次に、Arガスを炉内の圧力が大気圧(約100kPa)になるように2L/分の流量で導入しながら炉内の温度を1時間で室温から850℃まで昇温した。その後、炉内へのArガスの導入を停止し、かわりに水素ガスを炉内の圧力が大気圧になるように2L/分の流量で導入しながら850℃で4時間、HD工程を行った。4時間後、温度を850℃に維持したままで、炉内への水素ガスの導入を停止し、かわりにArガスを炉内の圧力が5.3kPaになるように2L/分の流量で導入しながら1時間、DR工程を行った。その後、炉内にArガスを10L/分以上の流量で導入して炉内の圧力を大気圧に復圧し、炉内の温度を室温まで冷却してから合金粉末を炉内から取り出した。HDDR処理を行う前と後の合金粉末に含まれる炭素量を、堀場製作所社のEMIA−820型ガス分析装置を用いて測定した。結果を表1に示す。表1から明らかなように、炭素を含む合金粉末にHDDR処理を行うことによって炭素を効果的に除去できることがわかった。
【0021】
【表1】
【0022】
実施例2:
磁石スクラップの粉砕を水素粉砕(加圧炉内で室温において200kPaの水素圧力で1時間処理することによる)によって行うことと、それぞれの粒度の合金粉末約0.35gを管状型の流気炉に仕込むこと以外は実施例1と同様にしてHDDR処理を行い、HDDR処理を行う前と後の合金粉末に含まれる炭素量を測定した。結果を表2に示す。表2から明らかなように、合金粉末に含まれる炭素は水素粉砕によっては除去できないこと(実施例1のスタンプミルによって粉砕した合金粉末に含まれる炭素量との比較による)、スタンプミルによって粉砕した合金粉末よりも水素粉砕によって粉砕した合金粉末の方がHDDR処理を行うことによって炭素をより効果的に除去できることがわかった。
【0023】
【表2】
【0024】
実施例3:
粒度が150μm〜300μmの合金粉末約12gを加圧炉に仕込み、炉内に水素ガスを導入して炉内の圧力を110kPaに保持しながら各種の温度で1時間、HD工程を行うことと、1時間後、炉内をArガスに置換し、炉内の圧力を0.3kPaに保持しながら850℃で1時間、DR工程を行うこと以外は実施例1と同様にしてHDDR処理を行い、HDDR処理を行う前と後の合金粉末に含まれる炭素量を測定した。結果を表3に示す。表3から明らかなように、600℃〜900℃でHD工程を行うことによる炭素除去効果を確認することができた。
【0025】
【表3】
【0026】
実施例4:
HD工程を850℃で各種の時間行うこと以外は実施例3と同様にしてHDDR処理を行い、HDDR処理を行う前と後の合金粉末に含まれる炭素量を測定した。結果を表4に示す。表4から明らかなように、HD工程を行う時間が長くなるにつれて合金粉末に含まれる炭素量は減少し、1時間で0.05mass%以下にまで、2時間で0.03mass%以下にまで、4時間で0.02mass%以下にまで減少した。
【0027】
【表4】
【0028】
実施例5:
実施例1に記載のR−Fe−B系焼結磁石の加工工程で発生したスクラップから実施例1と同様にして得た、300μm〜2800μmの粒度に分級した合金粉末に含まれる炭素を、回転式の炉を用いて
図1に示す処理パターンで除去した。具体的には、まず、炉内に合金粉末を仕込んだ後、炉内をArガス雰囲気に置換してから炉内の温度を30分間で室温から300℃まで昇温した。次に、炉内に5L/分の流量で水素ガスを導入しながら炉内の温度を300℃に維持して1時間、合金粉末を水素粉砕した。その後、3rpmでの炉の回転を開始し、炉内に2.5L/分の流量で水素ガスを導入しながら炉内の温度を1時間で300℃から850℃まで昇温し、引き続き炉内に2.5L/分の流量で水素ガスを導入しながら850℃で4時間、HD工程を行った。4時間後、温度を850℃に維持したままで、炉内への水素ガスの導入を停止し、かわりに10分間、Arガスを導入して炉内をArガス雰囲気に置換した後、真空引きを行って炉内の圧力を0.3Pa以下にまで減圧した状態で5時間、DR工程を行った。その後、炉内にArガスを導入して炉内の圧力を大気圧に復圧し、炉内の温度を室温まで冷却してから合金粉末を炉内から取り出した。なお、炉の回転は、HD工程を終了してから1時間後に停止した。炉内に仕込む前の合金粉末と炉内から取り出した合金粉末に含まれる炭素量を測定したところ、前者が0.070mass%であるのに対し後者が0.026mass%であり、この方法によって合金粉末に含まれる炭素を効果的に除去することができることがわかった。
【0029】
実施例6:
炉内の温度を300℃から850℃に昇温する際とHD工程を行う際、炉内に5L/分の流量で水素ガスを導入すること以外は実施例5と同様にして処理を行い、炉内に仕込む前の合金粉末と炉内から取り出した合金粉末に含まれる炭素量を測定したところ、前者が0.070mass%であるのに対し後者が0.014mass%であり、炉内の温度を300℃から850℃に昇温する際とHD工程を行う際における炉内への水素ガスの導入流量を、実施例5における炉内への水素ガスの導入流量の2倍にすることで、合金粉末に含まれる炭素をより効果的に除去することができることがわかった。
【0030】
実施例7:
市場から回収した使用済みR−Fe−B系焼結磁石を高周波真空溶解炉に投入して溶解した後、ストリップキャスティングを行って鋳造することによって作製した鋳片(ICP発光分光法による合金組成分析結果はNd:22.96,Pr:6.44,Dy:1.03,Fe:66.96,B:1.15,その他:1.52(単位はmass%))を炉内に仕込むこと以外は実施例5と同様にして処理を行い、炉内に仕込む前の鋳片と炉内から取り出した鋳片粉砕粉に含まれる炭素量を測定したところ、前者が0.043mass%であるのに対し後者が0.030mass%であり、この方法によって鋳片に含まれる炭素を効果的に除去することができることがわかった。
【0031】
実施例8:
炉内の温度を300℃から850℃に昇温する際とHD工程を行う際、炉内に5L/分の流量で水素ガスを導入すること以外は実施例7と同様にして処理を行い、炉内に仕込む前の鋳片と炉内から取り出した鋳片粉砕粉に含まれる炭素量を測定したところ、前者が0.043mass%であるのに対し後者が0.014mass%であり、炉内の温度を300℃から850℃に昇温する際とHD工程を行う際における炉内への水素ガスの導入流量を、実施例7における炉内への水素ガスの導入流量の2倍にすることで、鋳片に含まれる炭素をより効果的に除去することができることがわかった。
【0032】
実施例9:
実施例4においてHD工程を4時間行って得た合金粉末600gから、ハンドプレス機(SCHMIDTFeintechnik GmbH製)を用いて600kgf/cm
2程度の成形圧力で成形することで直径3.5mm×高さ5mmの円柱状物を1000個得た。得られた円柱状物をムライト製のるつぼに仕込んだ後、るつぼを高周波真空溶解炉に仕込んだ。いったんメカニカルブースターポンプを用いて炉内を排気した後、純Arガスを炉内に導入し、炉内の圧力を40kPaに保持した後、電力を投入して昇温を開始した。炉内のるつぼの内部を目視観察したところ、1250℃でるつぼに仕込んだ円柱状物が溶解し始めた。その後、1400℃で15分間保持した後、るつぼを傾斜させてストリップキャスティング用の回転ローラーに溶湯を注ぎ、連続的に生成した鋳片をピンミルで破砕し、一辺が10mm程度で厚みが0.3mm程度の大きさの鋳片を回収した。この鋳片を用いて標準的な方法でR−Fe−B系焼結磁石を製造した。
【0033】
実施例10:
図2に示す作製フローに従ってR−Fe−B系焼結磁石製造用の鋳片を作製した。具体的には、まず、実施例1に記載のR−Fe−B系焼結磁石の加工工程で発生したスクラップ(スクラップ原料)を高周波真空溶解炉に投入して溶解した後(一次溶解)、ストリップキャスティングを行って鋳造することでSC一次鋳片を得た。次に、このSC一次鋳片(炭素含有量:0.04mass%以上)を回転式の炉内に仕込み、実施例8と同様にして鋳片に含まれる炭素を除去した。炉内から取り出した鋳片粉砕粉(炭素含有量:0.02mass%以下)とR−Fe−B系焼結磁石を製造するためのバージン合金材料(バージン原料)を3:7の割合で配合した後(重量比)、高周波真空溶解炉に投入して溶解し(二次溶解)、ストリップキャスティングを行って鋳造することでSC二次鋳片を得た。このSC二次鋳片を用いて標準的な方法でR−Fe−B系焼結磁石を製造した。
【0034】
参考例1:HDDR処理におけるHD工程による脱炭効果の確認試験
実施例1に記載のR−Fe−B系焼結磁石の加工工程で発生したスクラップを、2mm×2mm×20mmの寸法で切り出して試料を調製した。この試料に対し、実施例1と同様にしてHDDR処理におけるHD工程を所定時間行った後、炉内の温度を室温まで冷却してから試料を炉内から取り出した。HD工程を行う前の試料、HD工程を15分間行った試料、HD工程を420分間行った試料のそれぞれを、走査型オージェ電子分光分析装置(FE−AES分析装置:アルバックファイ社製のPHI−700)の内部で真空破断し、破断面に存在する代表的なNd
2Fe
14B相(主相:HD工程を行った後においてはαFeやFe
2Bで構成される部位)、Ndリッチ相(粒界相)、酸化物相(粒界3重点)について元素マッピングを行うとともに定性スペクトルを取得し、それぞれの炭素の局在分布を調べた。HD工程を行う前の試料の定性スペクトルを
図3に、HD工程を15分間行った試料の定性スペクトルを
図4に、HD工程を420分間行った試料の定性スペクトルを
図5にそれぞれ示す。
図3〜
図5から明らかなように、HD工程を行う前の試料では、Nd
2Fe
14B相、Ndリッチ相、酸化物相の全てにおいて炭素の存在が認められたが、HD工程を15分間行った試料では、Nd
2Fe
14B相に由来するαFeやFe
2Bで構成される部位とNdリッチ相における炭素の存在の程度が減少する一方で、酸化物相における炭素の存在の程度が増加し、HD工程を420分間行った試料では、HD工程を15分間行った試料で認められた酸化物相における炭素の存在の程度が減少した。以上の結果は、炭素を含むR−Fe−B系永久磁石合金に対してHD工程を行うと、合金組織に広く分布していた炭素が酸化物相に集約され、時間の経過とともに酸化物相に集約された炭素が徐々に放出されることで脱炭効果が得られることを示唆するものであった。なお、流気炉の出口において炉内からの排出ガスをサンプリングし、ガスクロマトグラフィーによってその成分分析を行ったところ、炭化水素(メタン)の存在が認められたことから、炭素を含む磁石合金に対してHD工程を行うと、磁石合金に含まれていた炭素は水素によって還元されることで炭化水素に変換されて放出されると考えられた。