(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0028】
本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
また本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
さらに本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
【0029】
<素子>
本発明の素子は、シリコンを含む基板と、前記基板上に配置された電極とを有するものであって、前記電極は、銅含有粒子、ガラス粒子、溶剤及び樹脂を含む電極用ペースト組成物の焼成物であり、体積抵抗率が1×10
−4Ω・cm以下であることを特徴とする。
前記電極が、特定の構成を有する電極用ペースト組成物の焼成物であることで、体積抵抗率が低く、焼成時における銅の酸化が抑制され、良好なオーミックコンタクトを有する銅含有電極がシリコンを含む基板上に形成された素子を構成することができる。
【0030】
前記電極は、体積抵抗率が1×10
−4Ω・cm以下であるが、8×10
−5Ω・cm以下であることがより好ましく、1×10
−6Ω・cm以上6×10
−6Ω・cm以下であることがさらに好ましい。
尚、電極の体積抵抗率は、以下のようにして測定される。
本発明の電極用ペースト組成物を所望の基板上に塗布し、これを所定の条件で焼成することで焼成物を得る。次いで、得られた焼成物について、4探針4端子法を用いた抵抗率計(例えば、三菱化学(株)製Loresta−EP MCP−T360型抵抗率計)によって体積抵抗率を測定する。
【0031】
本発明において電極の体積抵抗率を前記範囲とする方法としては、例えば、焼成処理の条件を適宜選択する方法、電極用ペースト組成物の構成を後述する構成とする方法等を挙げることができる。
特に前記電極用ペースト組成物として後述するように、銅含有粒子として耐酸化性を有する銅含有粒子(好ましくは、リン含有銅合金粒子)を用い、これに錫含有粒子を組み合わせることで焼成処理の温度を低下させることができ、酸素の存在下(例えば、大気中)で焼成処理を行っても、より体積抵抗率が低い電極を形成することができる。さらにこれに後述する特定の構成を有する軟化点の低いガラス粒子を組み合わせることでより優れたオーミックコンタクトを達成することができる。
【0032】
前記シリコンを含む基板としては特に制限されず、太陽電池形成用のシリコン基板、太陽電池以外の半導体デバイスの製造に用いるシリコン基板等を挙げることができ、太陽電池形成用のシリコン基板であることが好ましい。
具体的には本発明の素子は、太陽電池素子、プラズマディスプレイの電極配線及びシールド配線、セラミックスコンデンサ、アンテナ回路、各種センサー回路、半導体デバイスの放熱材料等を構成することができる。
これらの中でも、前記素子は太陽電池素子であることが好ましい。
【0033】
前記素子は例えば、銅含有粒子、ガラス粒子、溶剤及び樹脂を含む電極用ペースト組成物を、シリコンを含む基板上に付与して、これを焼成処理することで、シリコンを含む基板上に電極を形成して構成することができる。尚、電極ペースト組成物の詳細については後述する。
またシリコンを含む基板上に付与される電極ペースト組成物の形状は特に制限されず、目的に応じて適宜選択することができる。
【0034】
電極用ペースト組成物を、シリコンを含む基板上に付与する方法は特に制限されない。例えば、スクリーン印刷、インクジェット法、ディスペンサー法等を挙げることができるが、生産性の観点から、スクリーン印刷による塗布であることが好ましい。
【0035】
前記電極用ペースト組成物の付与量は、形成する電極の大きさに応じて適宜選択することができる。例えば、電極用ペースト組成物付与量として2g/m
2〜10g/m
2とすることができ、4g/m
2〜8g/m
2であることが好ましい。
【0036】
またシリコンを含む基板上に付与された電極用ペースト組成物を焼成処理する条件としては、当該技術分野で通常用いられる熱処理条件を適用することができる。
一般に、熱処理温度(焼成温度)としては800〜900℃であるが、後述する電極用ペースト組成物を用いる場合には、より低温での熱処理条件を適用することができ、例えば、450〜850℃の熱処理温度で良好な特性を有する電極を形成することができる。
また熱処理時間は、熱処理温度等に応じて適宜選択することができ、例えば、1秒〜20秒とすることができる。
また焼成処理の雰囲気は特に制限されない。窒素等の不活性ガス雰囲気下であっても、大気中等の酸素の存在する雰囲気下であってもよい。本発明においては生産性の観点から、大気雰囲気下で焼成処理することが好ましい。
【0037】
熱処理装置としては、上記温度に加熱できるものであれば適宜採用することができ、例えば、赤外線加熱炉、トンネル炉、などを挙げることができる。赤外線加熱炉は、電気エネルギーを電磁波の形で加熱材料に直接投入し、熱エネルギーに変換されるため高効率であり、また短時間での急速加熱が可能である。更に、燃焼による生成物がなく、また非接触加熱であるため、生成する電極の汚染を抑えることが可能である。トンネル炉は、試料を自動で連続的に入り口から出口へ搬送し、焼成するため、炉体の区分けと搬送スピードの制御により、均一に焼成することが可能である。太陽電池セルの発電性能の観点からは、トンネル炉により熱処理することが好適である。
【0038】
<太陽電池素子及びその製造方法>
本発明の素子は、太陽電池素子であることが好ましい。
前記太陽電池素子は、シリコン基板上に付与された電極用ペースト組成物を、焼成して形成された電極を有して構成される。これにより、良好な特性を有する太陽電池素子が得られ、該太陽電池素子の生産性に優れる。
尚、本明細書において太陽電池素子とは、pn接合が形成されたシリコン基板と、シリコン基板上に形成された電極とを有するものを意味する。また太陽電池とは、太陽電池素子の電極上にタブ線が設けられ、必要に応じて複数の太陽電池素子がタブ線を介して接続されて構成され、封止樹脂等で封止された状態のものを意味する。
【0039】
以下、本発明の太陽電池素子の具体例を、図面を参照しながら説明するが、本発明はこれに限定されるものではない。
代表的な太陽電池素子の一例を示す断面図、受光面及び裏面の概要を
図1、
図2及び
図3に示す。
図1に概略を示すように、通常、太陽電池素子の半導体基板1には、単結晶または多結晶シリコンなどが使用される。この半導体基板1には、ホウ素などが含有され、p型半導体を構成している。受光面側は太陽光の反射を抑制するために、NaOHとIPA(イソプロピルアルコール)からなるエッチング溶液により凹凸(テクスチャともいう、図示せず)が形成されている。その受光面側にはリンなどがドーピングされ、n
+拡散層2がサブミクロンオーダーの厚さで設けられているとともに、p型バルク部分との境界にpn接合部が形成されている。さらに受光面側には、n
+拡散層2上に窒化ケイ素などの反射防止膜3が、PECVDなどによって膜厚90nm前後で設けられている。
【0040】
次に、
図2に概略を示す受光面側に設けられた受光面電極4と、
図3に概略を示す裏面に形成される集電用電極5及び出力取出し電極6の形成方法について説明する。
受光面電極4と裏面出力取出し電極6は、本発明の前記電極用ペースト組成物から形成される。また裏面集電用電極5はガラス粉末を含むアルミニウム電極ペースト組成物から形成されている。受光面電極4と、裏面集電用電極5及び裏面出力取出し電極6を形成する第一の方法として、前記ペースト組成物をスクリーン印刷等にて所望のパターンに塗布した後、乾燥後に、大気中450〜850℃程度で同時に焼成して形成することが挙げられる。本発明においては前記電極用ペースト組成物を用いることで、比較的低温で焼成しても、抵抗率及び接触抵抗率に優れる電極を形成することができる。
【0041】
その際に、受光面側では、受光面電極4を形成する前記電極用ペースト組成物に含まれるガラス粒子と、反射防止層3とが反応(ファイアースルー)して、受光面電極4とn
+拡散層2が電気的に接続(オーミックコンタクト)される。
本発明においては、前記電極用ペースト組成物を用いて受光面電極4が形成されることで、導電性金属として銅を含みながら、銅の酸化が抑制され、低抵抗率の受光面電極4が、良好な生産性で形成される。
さらに本発明においては形成される電極がCu−Sn合金相とSn−P−Oガラス相とを含んで構成されることが好ましく、Sn−P−Oガラス相がCu−Sn合金相とシリコン基板との間に配置される(不図示)ことがより好ましい。これにより銅とシリコン基板との反応が抑制され、低抵抗で密着性に優れる電極を形成することができる。
【0042】
また、裏面側では、焼成の際に裏面集電用電極5を形成するアルミニウム電極ペースト組成物中のアルミニウムがp型シリコン基板1の裏面に拡散して、p
+拡散層7を形成することによって、p型シリコン基板1と裏面集電用電極5、裏面出力取出し電極6との間にオーミックコンタクトを得ることができる。
【0043】
受光面電極4と、裏面集電用電極5及び裏面出力取出し電極6を形成する第二の方法として、裏面集電用電極5を形成するアルミニウム電極ペースト組成物を先に印刷し、乾燥後に大気中750〜850℃程度で焼成して裏面集電用電極5を形成した後に、本発明の電極用ペースト組成物を受光面側及び裏面側に印刷し、乾燥後に大気中450〜650℃程度で焼成して、受光面電極4と裏面出力取出し電極6を形成する方法が挙げられる。
【0044】
この方法は、例えば以下の場合に有効である。すなわち、裏面集電用電極5を形成するアルミニウム電極ペーストを焼成する際に、650℃以下の焼成温度では、アルミニウムペーストの組成によっては、アルミニウム粒子の焼結及びp型シリコン基板1へのアルミニウム拡散量が不足して、p
+拡散層を充分に形成できない場合がある。この状態では裏面におけるp型シリコン基板1と裏面集電用電極5、裏面出力取出し電極6との間にオーミックコンタクトが十分に形成できなくなり、太陽電池素子としての発電性能が低下する場合がある。そこで、アルミニウム電極ペースト組成物に最適な焼成温度(例えば750〜850℃)で裏面集電用電極5を形成した後、本発明の電極用ペースト組成物を印刷し、乾燥後に比較的低温(450〜650℃)で焼成して、受光面電極4と裏面出力取出し電極6を形成することが好ましい。
【0045】
また本発明の別の態様であるいわゆるバックコンタクト型太陽電池素子に共通する裏面側電極構造の概略平面図を
図4に、それぞれ別の態様のバックコンタクト型太陽電池素子である太陽電池素子の概略構造を示す斜視図を
図5、
図6及び
図7にそれぞれ示す。尚、
図5、
図6及び
図7は、それぞれ
図4におけるAA断面における斜視図である。
【0046】
図5の斜視図に示す構造を有する太陽電池素子は、p型シリコン基板1には、レーザードリルまたはエッチング等によって、受光面側及び裏面側の両面を貫通したスルーホールが形成されている。また受光面側には光入射効率を向上させるテクスチャー(図示せず)が形成されている。さらに受光面側にはn型化拡散処理によるn
+拡散層2と、n
+拡散層2上に反射防止膜(図示せず)が形成されている。これらは従来の結晶Si型太陽電池セルと同一の工程により製造される。
【0047】
次に、先に形成されたスルーホール内部に、電極用ペースト組成物が印刷法やインクジェット法により充填され、さらに受光面側には同じく本発明の電極用ペースト組成物がグリッド状に印刷され、スルーホール電極9及び受光面集電用電極8を形成する組成物層が形成される。
ここで、充填用と印刷用に用いるペーストでは、粘度を始めとして、それぞれのプロセスに最適な組成のペーストを使用するのが望ましいが、同じ組成のペーストで充填、印刷を一括で行ってもよい。
【0048】
一方、裏面側には、キャリア再結合を防止するためのn
+拡散層2及びp
+拡散層7が形成される。ここでp
+拡散層7を形成する不純物元素として、ボロン(B)やアルミニウム(Al)が用いられる。このp
+拡散層7は、例えばBを拡散源とした熱拡散処理が、前記反射防止膜形成前のセル製造工程において実施されることで形成されていてもよく、あるいは、Alを用いる場合には、前記印刷工程において、反対面側にアルミニウムペーストを印刷、焼成することで形成されていてもよい。
【0049】
裏面側には
図4の平面図で示すように、電極用ペースト組成物をそれぞれn
+拡散層2上及びp
+拡散層7上にストライプ状に印刷することによって、裏面電極10及び11が形成される。ここで、p
+拡散層7をアルミニウムペーストを用いて形成する場合は、n
+拡散層2側についてのみ電極用ペースト組成物を用い、裏面電極を形成すればよい。
【0050】
その後乾燥して大気中450〜850℃程度で焼成して、受光面集電用電極8とスルーホール電極9、及び裏面電極10、11が形成される。また先述したように、裏面電極の一方にアルミニウム電極を用いる場合は、アルミニウムの焼結性と裏面電極とp
+拡散層7とのオーミックコンタクト性の観点から、先にアルミニウムペーストを印刷、焼成するによって裏面電極の一方を形成し、その後、電極用ペースト組成物を印刷、充填し、焼成することで受光面集電用電極8とスルーホール電極9、及び裏面電極の他方を形成しても良い。
【0051】
また
図6の斜視図に示す構造を有する太陽電池素子は、受光面集電用電極を形成しないこと以外は、
図5の斜視図に示す構造を有する太陽電池素子と同様にして製造することができる。すなわち
図6の斜視図に示す構造を有する太陽電池素子において、電極用ペースト組成物は、スルーホール電極9と裏面電極10、11に用いることができる。
【0052】
また、
図7の斜視図に示す構造を有する太陽電池素子は、ベースとなる基板にn型シリコン基板を用いたことと、スルーホールを形成しないこと以外は、
図5の斜視図に示す構造を有する太陽電池素子と同様にして製造することができる。すなわち
図7の斜視図に示す構造を有する太陽電池素子において、電極用ペースト組成物は、裏面電極10、11に用いることができる。
【0053】
<太陽電池>
本発明の太陽電池は、前記太陽電池素子の少なくとも1つを含み、太陽電池素子の電極上にタブ線が配置されて構成される。太陽電池はさらに必要に応じて、タブ線を介して複数の太陽電池素子が連結され、さらに封止材で封止されて構成されていてもよい。
前記タブ線及び封止材としては特に制限されず、当業界で通常用いられているものから適宜選択することができる。
【0054】
<電極用ペースト組成物>
前記電極用ペースト組成物は、銅含有粒子の少なくとも1種と、ガラス粒子の少なくとも1種と、溶剤の少なくとも1種と、樹脂の少なくとも1種とを含み、必要に応じて、錫含有粒子、銀粒子等を更に含んで構成される。
かかる構成であることにより、大気中焼成時における銅の酸化が抑制され、抵抗率の低い電極を形成できる。さらに銅とシリコンを含む基板との反応物相の形成が抑制され、形成される電極とシリコン基板とが良好なオーミックコンタクトを形成できる。
【0055】
(リン含有銅合金粒子)
前記電極ペースト組成物は、銅含有粒子としてリン含有銅合金粒子の少なくとも1種を含むことが好ましい。リン含有銅合金としては、リン銅ろう(リン濃度:7質量%程度以下)と呼ばれるろう付け材料が知られている。リン銅ろうは、銅と銅との接合剤としても用いられるものであるが、本発明の電極用ペースト組成物にリン含有銅合金粒子を用いることで、リンの銅酸化物に対する還元性を利用し、耐酸化性に優れ、体積抵抗率の低い電極を形成することができる。さらに電極の低温焼成が可能となり、プロセスコストを削減できるという効果を得ることができる。
【0056】
本発明におけるリン含有銅合金に含まれるリン含有率としては、耐酸化性と低抵抗率の観点から、リン含有率が6質量%以上8質量%以下であることが好ましく、6.3質量%以上7.8質量%以下であることがより好ましく、6.5質量%以上7.5質量%以下であることがより好ましい。リン含有銅合金に含まれるリン含有率が8質量%以下であることで、より低い抵抗率を達成可能であり、また、リン含有銅合金粒子の生産性に優れる。また6質量%以上であることで、より優れた耐酸化性を達成できる。
【0057】
前記リン含有銅合金粒子は、銅とリンを含む合金であるが、他の原子をさらに含んでいてもよい。他の原子としては、例えば、Ag、Mn、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Sn、Al、Zr、W、Mo、Ti、Co、Ni、及びAu等を挙げることができる。
また前記リン含有銅合金粒子に含まれる他の原子の含有率は、例えば、前記リン含有銅合金粒子中に3質量%以下とすることができ、耐酸化性と低抵抗率の観点から、1質量%以下であることが好ましい。
【0058】
また本発明において、前記リン含有銅合金粒子は、1種単独でも又は2種以上を組み合わせて用いてもよい。
【0059】
前記リン含有銅合金粒子の粒子径としては特に制限はないが、積算した重量が50%の場合における粒子径(以下、「D50%」と略記することがある)として、0.4μm〜10μmであることが好ましく、1μm〜7μmであることがより好ましい。0.4μm以上とすることで耐酸化性がより効果的に向上する。また10μm以下であることで電極中におけるリン含有銅合金粒子同士、または後述する錫含有粒子との接触面積が大きくなり、抵抗率がより効果的に低下する。尚、リン含有銅合金粒子の粒子径は、マイクロトラック粒度分布測定装置(日機装社製、MT3300型)によって測定される。
また前記リン含有銅合金粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、及び鱗片状等のいずれであってもよいが、耐酸化性と低抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
【0060】
電極用ペースト組成物におけるリン含有銅合金粒子の含有率は特に制限されない。低抵抗率の観点から、電極用ペースト組成物中に20質量%以上85質量%以下であることが好ましく、25質量%以上80質量%以下であることがより好ましく、30質量%以上75質量%以下であることがさらに好ましい。
【0061】
リン含有銅合金は、通常用いられる方法で製造することができる。また、リン含有銅合金粒子は、所望のリン含有率となるように調製したリン含有銅合金を用いて、金属粉末を調製する通常の方法を用いて調製することができ、例えば、水アトマイズ法を用いて定法により製造することができる。尚、水アトマイズ法の詳細については金属便覧(丸善(株)出版事業部)等の記載を参照することができる。
具体的には、リン含有銅合金を溶解し、これをノズル噴霧によって粉末化した後、得られた粉末を乾燥、分級することで、所望のリン含有銅合金粒子を製造することができる。また、分級条件を適宜選択することで所望の粒子径を有するリン含有銅合金粒子を製造することができる
【0062】
(錫含有粒子)
電極用ペースト組成物は、錫含有粒子の少なくとも1種を更に含むことが好ましい。銅含有粒子(好ましくは、リン含有銅合金粒子)に加えて、錫含有粒子を含むことにより、焼成処理において、抵抗率の低い電極を形成できる。
これは例えば以下のように考えることができる。リン含有銅合金粒子及び錫含有粒子を含む電極用ペースト組成物を用いて電極を形成する場合、リン含有銅合金粒子と錫含有粒子とが、焼成処理の際に互いに反応して、Cu−Sn合金相とSn−P−Oガラス相からなる電極を形成する。ここで前記Cu−Sn合金相は、電極内で緻密なバルク体を形成し、これが導電層として機能することで抵抗率の低い電極を形成できると考えられる。
尚、ここでいう緻密なバルク体とは、塊状のCu−Sn合金相が互いに密に接触し、三次元的に連続している構造を形成していることを意味する。
【0063】
またリン含有銅合金粒子及び錫含有粒子を含む電極用ペースト組成物を用いてシリコンを含む基板(以下、単に「シリコン基板」ともいう)上に電極を形成する場合、シリコン基板に対する密着性が高い電極を形成することができ、さらに電極とシリコン基板との良好なオーミックコンタクトを達成することができる。
これは例えば以下のように考えることができる。リン含有銅合金粒子と錫含有粒子とが、焼成工程で互いに反応して、Cu−Sn合金相とSn−P−Oガラス相からなる電極を形成する。上記Cu−Sn合金相が緻密なバルク体であるために、このSn−P−Oガラス相は、Cu−Sn合金相とシリコン基板との間に形成される。これによりCu−Sn合金相のシリコン基板に対する密着性が向上すると考えることができる。またSn−P−Oガラス相が、銅とシリコンとの相互拡散を防止するためのバリア層として機能することで、焼成して形成される電極とシリコン基板との良好なオーミックコンタクトが達成できると考えることができる。すなわち銅を含む電極とシリコンを直に接触して加熱したときに形成される反応相(Cu
3Si)の形成を抑制し、半導体性能(例えば、pn接合特性)を劣化することなくシリコン基板との密着性を保ちながら、良好なオーミックコンタクトを発現することができると考えられる。
【0064】
このような効果は、シリコンを含む基板上にリン含有銅合金粒子及び錫含有粒子を含む電極用ペースト組成物を用いて電極を形成する場合であれば、一般的に発現するものであり、シリコンを含む基板の種類は特に制限されるものではない。
【0065】
すなわち本発明の好ましい態様においては、電極用ペースト組成物中にリン含有銅合金粒子と錫含有粒子を組み合わせることで、まずリン含有銅合金粒子中のリン原子の銅酸化物に対する還元性を利用し、耐酸化性に優れ、体積抵抗率の低い電極が形成される。次いでリン含有銅合金粒子と錫含有粒子との反応により、体積抵抗率を低く保ったままCu−Sn合金相からなる導電層とSn−P−Oガラス相とが形成される。そして例えば、Sn−P−Oガラス相が銅とシリコンの相互拡散を防止するためのバリア層として機能することで電極とシリコン基板との間に反応物相が形成されることを抑制し、銅電極との良好なオーミックコンタクトが形成されるという2つの特徴的な機構を、焼成処理で同時に実現できると考えることができる。
【0066】
前記錫含有粒子としては、錫を含む粒子であれば特に制限はない。中でも、錫粒子及び錫合金粒子から選ばれる少なくとも1種であることが好ましく、錫粒子及び錫含有率が1質量%以上である錫合金粒子から選ばれる少なくとも1種であることが好ましい。
錫粒子における錫の純度は特に制限されない。例えば錫粒子の純度は、95質量%以上とすることができ、97質量%以上であることが好ましく、99質量%以上であることが好ましい。
【0067】
また錫合金粒子は、錫を含む合金粒子であれば合金の種類は特に制限されない。中でも、錫合金粒子の融点、及びリン含有銅合金粒子との反応性の観点から、錫の含有率が1質量%以上である錫合金粒子であることが好ましく、錫の含有率が3質量%以上である錫合金粒子であることがより好ましく、錫の含有率が5質量%以上である錫合金粒子であることがさらに好ましい。
【0068】
錫合金粒子としては、例えば、Sn−Ag系合金、Sn−Cu系合金、Sn−Ag−Cu系合金、Sn−Ag−Sb系合金、Sn−Ag−Sb−Zn系合金、Sn−Ag−Cu−Zn系合金、Sn−Ag−Cu−Sb系合金、Sn−Ag−Bi系合金、Sn−Bi系合金、Sn−Ag−Cu−Bi系合金、Sn−Ag−In−Bi系合金、Sn−Sb系合金、Sn−Bi−Cu系合金、Sn−Bi−Cu−Zn系合金、Sn−Bi−Zn系合金、Sn−Bi−Sb−Zn系合金、Sn−Zn系合金、Sn−In系合金、SnーZn−In系合金、Sn−Pb系合金等が挙げられる。
【0069】
前記錫合金粒子のうち、特に、Sn−3.5Ag、Sn−0.7Cu、Sn−3.2Ag−0.5Cu、Sn−4Ag−0.5Cu、Sn−2.5Ag−0.8Cu−0.5Sb、Sn−2Ag−7.5Bi、Sn−3Ag−5Bi、Sn−58Bi、Sn−3.5Ag−3In−0.5Bi、Sn−3Bi−8Zn、Sn−9Zn、Sn−52In、Sn−40Pb等の錫合金粒子は、Snのもつ融点(232℃)と同じ、もしくはより低い融点をもつ。そのため、これら錫合金粒子は焼成の初期段階で溶融することで、リン含有銅合金粒子の表面を覆い、リン含有銅合金粒子と均一に反応することができるという点で、好適に用いることができる。尚、錫合金粒子における表記は、例えばSn−AX−BY−CZの場合は、錫合金粒子の中に、元素XがA質量%、元素YがB質量%、元素ZがC質量%含まれていることを示す。
本発明において、これらの錫含有粒子は1種単独で使用してもよく、又2種類以上を組み合わせて使用することもできる。
【0070】
前記錫含有粒子は、不可避的に混入する他の原子をさらに含んでいてもよい。不可避的に混入する他の原子としては、例えば、Ag、Mn、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Al、Zr、W、Mo、Ti、Co、Ni、及びAu等を挙げることができる。
また前記錫含有粒子に含まれる他の原子の含有率は、例えば前記錫含有粒子中に3質量%以下とすることができ、融点及びリン含有銅合金粒子との反応性の観点から、1質量%以下であることが好ましい。
【0071】
前記錫含有粒子の粒子径としては特に制限はないが、積算した重量が50%の場合における粒子径(以下、「D50%」と略記することがある)として、0.5μm〜20μmであることが好ましく、1μm〜15μmであることがより好ましく、5μm〜15μmであることがさらに好ましい。0.5μm以上とすることで錫含有粒子自身の耐酸化性が向上する。また20μm以下であることで電極中におけるリン含有銅合金粒子との接触面積が大きくなり、リン含有銅合金粒子との反応が効果的に進む。
また前記錫含有粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、及び鱗片状等のいずれであってもよいが、耐酸化性と低抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
【0072】
また電極用ペースト組成物が錫含有粒子を含む場合における錫含有粒子の含有率は特に制限されない。中でも、前記リン含有銅合金粒子と前記錫含有粒子及びの総含有率を100質量%としたときの錫含有粒子の含有率が、5質量%以上70質量%以下であることが好ましく、7質量%以上65質量%以下であることがより好ましく、9質量%以上60質量%以下であることがさらに好ましい。
錫含有粒子の含有率を5質量%以上とすることで、リン含有銅合金粒子との反応をより均一に生じさせることができる。また錫含有粒子を70質量%以下とすることで、充分な体積のCu−Sn合金相を形成することができ、電極の体積抵抗率がより低下する。
【0073】
(ガラス粒子)
電極用ペースト組成物は、ガラス粒子の少なくとも1種を含む。電極用ペースト組成物がガラス粒子を含むことにより、焼成時に電極部と基板との密着性が向上する。また。特に太陽電池受光面側の電極形成において、焼成時にいわゆるファイアースルーによって反射防止膜である窒化ケイ素膜が取り除かれ、電極とシリコン基板とのオーミックコンタクトが形成される。
【0074】
前記ガラス粒子は、基板との密着性と電極の低抵抗率化の観点から、ガラス軟化点が650℃以下であって、結晶化開始温度が650℃を超えるガラスを含むガラス粒子であることが好ましい。尚、前記ガラス軟化点は、熱機械分析装置(TMA)を用いて通常の方法によって測定され、また前記結晶化開始温度は、示差熱−熱重量分析装置(TG−DTA)を用いて通常の方法によって測定される。
【0075】
電極用ペースト組成物を太陽電池受光面側の電極として使用する場合は、前記ガラス粒子は、電極形成温度で軟化・溶融し、接触した窒化ケイ素膜を酸化し、酸化された二酸化ケイ素を取り込むことで、反射防止膜を除去可能なものであれば、当該技術分野において通常用いられるガラス粒子を特に制限なく用いることができる。
【0076】
一般に電極用ペースト組成物に含まれるガラス粒子は、二酸化ケイ素を効率よく取り込み可能であることから鉛を含むガラスから構成される。このような鉛を含むガラスとしては、例えば、特許第03050064号公報等に記載のものを挙げることができ、本発明においてもこれらを好適に使用することができる。
また本発明においては、環境に対する影響を考慮すると、鉛を実質的に含まない鉛フリーガラスを用いることが好ましい。鉛フリーガラスとしては、例えば、特開2006−313744号公報の段落番号0024〜0025に記載の鉛フリーガラスや、特開2009−188281号公報等に記載の鉛フリーガラスを挙げることができ、これらの鉛フリーガラスから適宜選択して本発明に適用することもまた好ましい。
【0077】
また、電極用ペースト組成物を太陽電池受光面側の電極以外、例えば裏面取出し電極、バックコンタクト型太陽電池セルにおけるスルーホール電極及び裏面電極として用いる場合には、ガラス軟化点が650℃以下であって、結晶化開始温度が650℃を超えるガラスを含むガラス粒子であれば、上記鉛のようなファイアースルーに必要な成分を含むことなく用いることができる。
【0078】
電極用ペースト組成物に用いられるガラス粒子を構成するガラス成分としては、二酸化ケイ素(SiO
2)、酸化リン(P
2O
5)、酸化アルミニウム(Al
2O
3)、酸化ホウ素(B
2O
3)、酸化バナジウム(V
2O
5)、酸化カリウム(K
2O)、酸化ビスマス(Bi
2O
3)、酸化ナトリウム(Na
2O)、酸化リチウム(Li
2O)、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化ベリリウム(BeO)、酸化亜鉛(ZnO)、酸化鉛(PbO)、酸化カドミウム(CdO)、酸化スズ(SnO)、酸化ジルコニウム(ZrO
2)、酸化タングステン(WO
3)、酸化モリブデン(MoO
3)、酸化ランタン(La
2O
3)、酸化ニオブ(Nb
2O
5)、酸化タンタル(Ta
2O
5)、酸化イットリウム(Y
2O
3)、酸化チタン(TiO
2)、酸化ゲルマニウム(GeO
2)、酸化テルル(TeO
2)、酸化ルテチウム(Lu
2O
3)、酸化アンチモン(Sb
2O
3)、酸化銅(CuO)、酸化鉄(FeO)、酸化銀(AgO)及び酸化マンガン(MnO)が挙げられる。
【0079】
中でも、SiO
2、P
2O
5、Al
2O
3、B
2O
3、V
2O
5、Bi
2O
3、ZnO、及びPbOから選択される少なくとも1種を用いることが好ましい。具体的には、ガラス成分として、SiO
2、PbO、B
2O
3、Bi
2O
3及びAl
2O
3を含むものが挙げられる。このようなガラス粒子の場合には、軟化点が効果的に低下し、さらにリン含有銅合金粒子及び必要に応じて添加された銀粒子との濡れ性が向上するため、焼成過程での前記粒子間の焼結が進み、抵抗率の低い電極を形成することができる。
【0080】
他方、低接触抵抗率の観点からは、五酸化二リンを含むガラス粒子(リン酸ガラス、P
2O
5系ガラス粒子)であることが好ましく、五酸化二リンに加えて五酸化二バナジウムを更に含むガラス粒子(P
2O
5−V
2O
5系ガラス粒子)であることがより好ましい。五酸化二バナジウムを更に含むことで、耐酸化性がより向上し、電極の抵抗率がより低下する。これは、例えば、五酸化二バナジウムを更に含むことでガラスの軟化点が低下することに起因すると考えることができる。五酸化二リン−五酸化二バナジウム系ガラス粒子(P
2O
5−V
2O
5系ガラス粒子)を用いる場合、五酸化二バナジウムの含有率としては、ガラスの全質量中に1質量%以上であることが好ましく、1質量%〜70質量%であることがより好ましい。
【0081】
前記ガラス粒子の粒子径としては特に制限はないが、積算した重量が50%である場合における粒子径(D50%)が、0.5μm以上10μm以下であることが好ましく、0.8μm以上8μm以下であることがより好ましい。0.5μm以上とすることで電極用ペースト組成物作製時の作業性が向上する。また10μm以下であることで、電極用ペースト組成物中に均一に分散し、焼成工程で効率よくファイアースルーを生じることができ、さらにシリコン基板との密着性も向上する。
また前記ガラス粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、及び鱗片状等のいずれであってもよいが、耐酸化性と低抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
【0082】
前記ガラス粒子の含有率としては電極用ペースト組成物の全質量中に0.1質量%〜10質量%であることが好ましく、0.5質量%〜8質量%であることがより好ましく、1質量%〜8質量%であることがさらに好ましい。かかる範囲の含有率でガラス粒子を含むことで、より効果的に耐酸化性、電極の低抵抗率化、及び低接触抵抗化が達成され、また前記リン含有銅合金粒子と前記錫含有粒子との反応を促進させることができる。
【0083】
(溶剤及び樹脂)
電極用ペースト組成物は、溶剤の少なくとも1種と樹脂の少なくとも1種とを含む。これにより電極用ペースト組成物の液物性(例えば、粘度、表面張力等)を、シリコン基板等に付与する際の付与方法に応じて必要とされる液物性に調整することができる。
【0084】
前記溶剤としては特に制限はない。例えば、ヘキサン、シクロヘキサン、トルエンなどの炭化水素系溶剤;ジクロロエチレン、ジクロロエタン、ジクロロベンゼンなどの塩素化炭化水素系溶剤;テトラヒドロフラン、フラン、テトラヒドロピラン、ピラン、ジオキサン、1,3−ジオキソラン、トリオキサンなどの環状エーテル系溶剤;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド系溶剤;ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶剤;アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノンなどのケトン系溶剤;エタノール、2−プロパノール、1−ブタノール、ジアセトンアルコールなどのアルコール系化合物;2,2,4−トリメチル−1,3−ペンタンジオールモノアセテート、2,2,4−トリメチル−1,3−ペンタンジオールモノプロピオレート、2,2,4−トリメチル−1,3−ペンタンジオールモノブチレート、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート、2,2,4−トリエチル−1,3−ペンタンジオールモノアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどの多価アルコールのエステル系溶剤;ブチルセロソルブ、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテルなとの多価アルコールのエーテル系溶剤;α−テルピネン、α−テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、α−ピネン、β−ピネン、ターピネオール、カルボン、オシメン、フェランドレンなどのテルペン系溶剤、及びこれらの混合物が挙げられる。
【0085】
前記溶剤としては、電極用ペースト組成物をシリコン基板に形成する際の塗布性、印刷性の観点から、多価アルコールのエステル系溶剤、テルペン系溶剤、及び多価アルコールのエーテル系溶剤から選ばれる少なくとも1種であることが好ましく、多価アルコールのエステル系溶剤及びテルペン系溶剤から選ばれる少なくとも1種であることがより好ましい。
また前記溶剤は1種単独でも、2種以上を組み合わせて用いてもよい。
【0086】
また前記樹脂としては焼成によって熱分解されうる樹脂であれば、当該技術分野において通常用いられる樹脂を特に制限なく用いることができる。具体的には例えば、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ニトロセルロースなどのセルロース系樹脂;ポリビニルアルコール類;ポリビニルピロリドン類;アクリル樹脂;酢酸ビニル−アクリル酸エステル共重合体;ポリビニルブチラール等のブチラール樹脂;フェノール変性アルキド樹脂、ひまし油脂肪酸変性アルキド樹脂のようなアルキド樹脂;エポキシ樹脂;フェノール樹脂;ロジンエステル樹脂等を挙げることができる。
【0087】
前記樹脂としては、焼成時における消失性の観点から、セルロース系樹脂、及びアクリル樹脂から選ばれる少なくとも1種であることが好ましい。
また本発明において前記樹脂は1種単独でも、2種以上を組み合わせて用いてもよい。
【0088】
また前記樹脂の重量平均分子量は特に制限されない。中でも重量平均分子量は5000以上500000以上が好ましく、10000以上300000以下であることがより好ましい。前記樹脂の重量平均分子量が5000以上であると、電極用ペースト組成物の粘度が増加することを抑制できる。これは例えばリン含有銅合金粒子及び錫含有粒子に吸着させたときの立体的な反発作用が不足し、粒子同士が凝集してしまうためと考えることができる。一方、樹脂の重量平均分子量が500000以下であると、樹脂同士が溶剤中で凝集することが抑制され、電極用ペースト組成物の粘度が増加することを抑制できる。
またこれに加え樹脂の重量平均分子量が500000以下であると、樹脂の燃焼温度が高くなることが抑制され、電極用ペースト組成物を焼成する際に樹脂が完全に燃焼されず異物として残存することが抑制され、電極をより低抵抗に構成することができる。
【0089】
電極用ペースト組成物において、前記溶剤と前記樹脂の含有率は、所望の液物性と使用する溶剤及び樹脂の種類に応じて適宜選択することができる。例えば、溶剤と樹脂の総含有率が、電極用ペースト組成物の全質量中に3質量%以上29.9質量%以下であることが好ましく、5質量%以上25質量%以下であることがより好ましく、7質量%以上20質量%以下であることがさらに好ましい。
溶剤と樹脂の総含有率が前記範囲内であることにより、電極用ペースト組成物をシリコン基板に付与する際の付与適性が良好になり、所望の幅及び高さを有する電極をより容易に形成することができる。
【0090】
さらに電極用ペースト組成物においては、耐酸化性と電極の低抵抗率の観点から、リン含有銅合金粒子及び錫含有粒子の総含有率が70質量%以上94質量%以下であって、ガラス粒子の含有率が0.1質量%以上10質量%以下であって、溶剤及び樹脂の総含有率が3質量%以上29.9質量%以下であることが好ましく、リン含有銅合金粒子及び錫含有粒子の総含有率が74質量%以上88質量%以下であって、ガラス粒子の含有率が0.5質量%以上8質量%以下であって、溶剤及び樹脂の総含有率が7質量%以上20質量%以下であることがより好ましく、リン含有銅合金粒子及び錫含有粒子の総含有率が74質量%以上88質量%以下であって、ガラス粒子の含有率が1質量%以上8質量%以下であって、溶剤及び樹脂の総含有率が7質量%以上20質量%以下であることがさらに好ましい。
【0091】
(銀粒子)
電極用ペースト組成物は、銀粒子を更に含むことが好ましい。銀粒子を含むことで耐酸化性がより向上し、電極としての抵抗率がより低下する。また、電極用ペースト組成物がリン含有銅合金粒子及び錫含有粒子を含む場合、リン含有銅合金粒子と錫含有粒子との反応によって生成したSn−P−O系ガラス相の中にAg粒子が析出することで、電極層の中のCu−Sn合金相とシリコン基板間のオーミックコンタクト性がより向上する。さらに太陽電池モジュールとした場合のはんだ接続性が向上するという効果も得られる。
【0092】
前記銀粒子を構成する銀は、不可避的に混入する他の原子を含んでいてもよい。不可避的に混入する他の原子としては、例えば、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Sn、Al、Zr、W、Mo、Ti、Co、Ni、及びAu等を挙げることができる。
また前記銀粒子に含まれる他の原子の含有率は、例えば銀粒子中に3質量%以下とすることができ、融点及び電極の低抵抗率化の観点から、1質量%以下であることが好ましい。
【0093】
前記銀粒子の粒子径としては特に制限はないが、積算した重量が50%である場合における粒子径(D50%)が、0.4μm以上10μm以下であることが好ましく、1μm以上7μm以下であることがより好ましい。0.4μm以上とすることでより効果的に耐酸化性が向上する。また10μm以下であることで電極中における銀粒子とリン含有銅合金粒子及び錫含有粒子との接触面積が大きくなり、抵抗率がより効果的に低下する。
また前記銀粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、及び鱗片状等のいずれであってもよいが、耐酸化性と低抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
【0094】
また電極用ペースト組成物が銀粒子を含む場合における銀粒子の含有率としては、前記リン含有銅合金粒子と前記錫含有粒子及び前記銀粒子の総含有率を100質量%としたときの銀粒子の含有率が0.1質量%以上10質量%以下であることが好ましく、0.5質量%以上8質量%以下であることがより好ましい。
【0095】
また電極用ペースト組成物は、耐酸化性、電極の低抵抗率化、シリコン基板への塗布性の観点から、リン含有銅合金粒子、錫含有粒子及び銀粒子を含み、リン含有銅合金粒子、錫含有粒子及び銀粒子の総含有率が70質量%以上94質量%以下であることが好ましく、74質量%以上88質量%以下であることがより好ましい。リン含有銅合金粒子、錫含有粒子及び銀粒子の総含有率が70質量%以上であることで、電極用ペースト組成物を付与する際に好適な粘度を容易に達成することができる。またリン含有銅合金粒子、錫含有粒子及び銀粒子の総含有率が94質量%以下であることで、電極用ペースト組成物を付与する際のかすれの発生をより効果的に抑制することができる。
【0096】
さらに電極用ペースト組成物がリン含有銅合金粒子、錫含有粒子及び銀粒子を含む場合、耐酸化性と電極の低抵抗率の観点から、リン含有銅合金粒子、錫含有粒子及び銀粒子の総含有率が70質量%以上94質量%以下であって、ガラス粒子の含有率が0.1質量%以上10質量%以下であって、溶剤及び樹脂の総含有率が3質量%以上29.9質量%以下であることが好ましく、リン含有銅合金粒子、錫含有粒子及び銀粒子の総含有率が74質量%以上88質量%以下であって、ガラス粒子の含有率が0.5質量%以上8質量%以下であって、溶剤及び樹脂の総含有率が7質量%以上20質量%以下であることがより好ましく、リン含有銅合金粒子、錫含有粒子及び銀粒子の総含有率が74質量%以上88質量%以下であって、ガラス粒子の含有率が1質量%以上8質量%以下であって、溶剤及び樹脂の総含有率が7質量%以上20質量%以下であることがさらに好ましい。
【0097】
(フラックス)
電極用ペースト組成物は、フラックスの少なくとも1種をさらに含むことができる。フラックスを含むことでリン含有銅合金粒子の表面に形成された酸化膜を除去し、焼成中のリン含有銅合金粒子の還元反応を促進させることができる。また焼成中の錫含有粒子の溶融も進むためリン含有銅合金粒子との反応が進み、結果として耐酸化性がより向上し、形成される電極の抵抗率がより低下する。さらに電極材とシリコン基板の密着性が向上するという効果も得られる。
【0098】
本発明におけるフラックスとしては、リン含有銅合金粒子の表面に形成された酸化膜を除去可能で、錫含有粒子の溶融を促進するものであれば特に制限はない。具体的には例えば、脂肪酸、ホウ酸化合物、フッ化化合物、及びホウフッ化化合物等を好ましいフラックスとして挙げることができる。
【0099】
フラックスとしてより具体的には、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ソルビン酸、ステアロール酸、プロピオン酸、酸化ホウ素、ホウ酸カリウム、ホウ酸ナトリウム、ホウ酸リチウム、ホウフッ化カリウム、ホウフッ化ナトリウム、ホウフッ化リチウム、酸性フッ化カリウム、酸性フッ化ナトリウム、酸性フッ化リチウム、フッ化カリウム、フッ化ナトリウム、フッ化リチウム等が挙げられる。
中でも、電極材焼成時の耐熱性(フラックスが焼成の低温時に揮発しない特性)及びリン含有銅合金粒子の耐酸化性補完の観点から、ホウ酸カリウム及びホウフッ化カリウムが特に好ましいフラックスとして挙げられる。
本発明においてこれらのフラックスは、それぞれ1種単独で使用してもよく、2種類以上を組み合わせて使用することもできる。
【0100】
本発明の電極用ペースト組成物がフラックスを含む場合におけるフラックスの含有率としては、リン含有銅合金粒子の耐酸化性を効果的に発現させ、錫含有粒子の溶融を促進させる観点及び電極材の焼成完了時にフラックスが除去された部分の空隙率低減の観点から、電極用ペースト組成物の全質量中に、0.1質量%〜5質量%であることが好ましく、0.3質量%〜4質量%であることがより好ましく、0.5質量%〜3.5質量%であることがさらに好ましく、0.7〜3質量%であることが特に好ましく、1質量%〜2.5質量%であることが極めて好ましい。
【0101】
(その他の成分)
本発明の電極用ペースト組成物は、上述した成分に加え、必要に応じて、当該技術分野で通常用いられるその他の成分をさらに含むことができる。その他の成分としては、例えば、可塑剤、分散剤、界面活性剤、無機結合剤、金属酸化物、セラミック、有機金属化合物等を挙げることができる。
【0102】
本発明の電極用ペースト組成物の製造方法としては特に制限はない。前記リン含有銅合金粒子、前記錫含有粒子、ガラス粒子、溶剤、樹脂、及び必要に応じて含まれる銀粒子等を、通常用いられる分散・混合方法を用いて、分散・混合することで製造することができる。
分散・混合方法は特に制限されず、通常用いられる分散・混合方法から適宜選択して適用することができる。
【0103】
前記電極用ペースト組成物は、表面塗布性及び成形性の観点から、リン含有銅合金粒子、錫含有粒子、ガラス粒子、溶剤及び樹脂を含み、25℃における粘度が20Pa・s〜1000Pa・sの範囲であることが好ましく、前記粘度が、25Pa・s〜800Pa・sの範囲であることがより好ましく、30Pa・s〜600Pa・sの範囲であることがさらに好ましい。
前記粘度が20Pa・s未満では電極ペースト付与時にダレが発生するなどして、所望の形状に付与することができない場合がある。また1000Pa・sを超えると流動性が不十分で、付与をスクリーン印刷で行う場合には印刷マスクの目詰まりが発生したり、付与をインクジェットで行う場合にはノズルの目詰まりなどが発生したりして、付与が困難になる場合がある。
尚、電極用ペースト組成物の粘度は、ブルックフィールドHBT粘度計を用いて25℃で測定される。
【0104】
また前記電極用ペースト組成物は、リン含有銅合金粒子、錫含有粒子、ガラス粒子、溶剤及び樹脂を含み、固形分濃度が70質量%〜98質量%の範囲であることが好ましく、前記固形分濃度が75質量%〜96質量%の範囲であることがより好ましく、80質量%〜95質量%の範囲であることがさらに好ましい。
前記固形分濃度が70質量%未満ではリン含有銅合金及び錫含有粒子の反応又は焼結が不十分になり抵抗率が上昇する場合がある。また98質量%を超えると電極用ペースト組成物の流動性が低下したり、分散性が低下したりして電極用ペースト組成物の付与の際にムラが発生する場合がある。
尚、電極用ペースト組成物の固形分濃度は、電極用ペースト組成物を構成する成分から揮発性成分を除いた残分を意味する。具体的には電極用ペースト組成物を25℃、1気圧の環境下に10時間放置して揮発性成分を除去した後の残分を基準にして測定される。
【実施例】
【0105】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない、尚、特に断りのない限り、「部」及び「%」は質量基準である。
【0106】
<実施例1>
(a)電極用ペースト組成物の調製
7質量%のリンを含むリン含有銅合金粒子を定法により調製し、これを溶解して水アトマイズ法により粉末化した後、乾燥、分級した。分級した粉末をブレンドして、脱酸素・脱水処理し、7質量%のリンを含むリン含有銅合金粒子を作製した。尚、リン含有銅合金粒子の粒子径(D50%)は5.0μmであり、その形状は略球状であった。
【0107】
二酸化ケイ素(SiO
2)3部、酸化鉛(PbO)60部、酸化ホウ素(B
2O
3)18部、酸化ビスマス(Bi
2O
3)5部、酸化アルミニウム(Al
2O
3)5部、酸化亜鉛(ZnO)9部からなるガラス(以下、「G01」と略記することがある)を調製した。得られたガラスG01の軟化点は、420℃、結晶化温度は650℃を超えていた。
得られたガラスG01を用いて、粒子径(D50%)が2.5μmであるガラスG01粒子を得た。またその形状は略球状であった。
【0108】
上記で得られたリン含有銅合金粒子を39.9部、錫粒子(Sn;粒子径(D50%)は10.0μm;純度99.9%)を41.5部、ガラスG01粒子を4.1部、テルピネオール(Ter)を14.1部、エチルセルロース(EC)を0.4部混ぜ合わせ、メノウ乳鉢の中で20分間かき混ぜ、電極用ペースト組成物1を調製した。
得られた電極用ペースト組成物について、その粘度をブルックフィールドHBT粘度計(東京計器社製)を用いて25℃で測定したところ、35.3Pa・sであった。
また得られた電極用ペースト組成物を25℃、1気圧の環境下に10時間放置して揮発性成分を除去して固形分濃度を算出したところ、85.9質量%であった。
【0109】
(b)素子の作製
受光面にn
+拡散層、テクスチャ及び反射防止膜(窒化ケイ素膜)が形成された膜厚190μmのp型半導体基板を用意し、125mm×125mmの大きさに切り出した。その受光面にスクリーン印刷法を用い、上記で得られた電極用ペースト組成物1を
図2に示すような電極パターンとなるように印刷した。電極のパターンは150μm幅のフィンガーラインと1.5mm幅のバスバーで構成され、焼成後の膜厚が20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。これを150℃に加熱したオーブンの中に15分間いれ、溶剤を蒸散により取り除いた。
続いてトンネル炉(ノリタケ社製、1列搬送W/Bトンネル炉)を用いて大気雰囲気下、焼成最高温度800℃で保持時間10秒の加熱処理(焼成)を行って、所望の電極が形成された素子を作製した。
形成された電極について、三菱化学(株)製Loresta−EP MCP−T360型抵抗率計を用いて、4探針4端子法によって体積抵抗率を測定したところ、1×10
−4Ω・cm以下であった。