(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0014】
以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。
【0015】
<第1実施形態>
本実施形態に係る露光装置について
図1を参照しながら説明する。
図1は露光装置EXの一実施形態を示す概略構成図である。
図1において、露光装置EXは、マスクMを保持して移動可能なマスクステージMSTと、基板Pを保持する基板ホルダPHを有し、基板Pを保持した基板ホルダPHを移動可能な基板ステージPSTと、マスクステージMSTに保持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターン像を基板P上に投影する投影光学系PLと、露光装置EX全体の動作を統括制御する制御装置CONTとを備えている。
【0016】
本実施形態の露光装置EXは、露光波長を実質的に短くして解像度を向上するとともに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、投影光学系PLの像面側における露光光ELの光路空間K1を液体LQで満たした状態で基板Pに露光光ELを照射して、基板Pを露光する。具体的には、露光装置EXは、投影光学系PLを構成する複数の光学素子のうち、投影光学系PLの像面に最も近い最終光学素子LS1と、基板ホルダPHに保持され、投影光学系PLの像面側に配置された基板Pとの間の露光光ELの光路空間K1を液体LQで満たし、投影光学系PL、及び投影光学系PLと基板Pとの間の液体LQを介してマスクMを通過した露光光ELを基板Pに照射することによってマスクMのパターンを基板Pに投影露光する。
【0017】
また本実施形態の露光装置EXは、液体LQにより投影光学系PLの投影領域ARを含む基板P上の一部に、投影領域ARよりも大きく且つ基板Pよりも小さい液体LQの液浸領域LRを局所的に形成する局所液浸方式を採用している。露光装置EXは、少なくともマスクMのパターン像を基板P上に転写している間、投影光学系PLと基板Pとの間の露光光ELの光路空間K1を液体LQで満たし、基板P上に液体LQの液浸領域LRを局所的に形成する。
【0018】
後に詳述するように、露光装置EXは、露光光ELの光路空間K1を液体LQで満たすための液浸機構1と、露光光ELの光路空間K1に満たされた液体LQをシールするために基板P上に気流を生成するガスシール機構3と、ガスシール機構3により生成された気流に起因する基板Pの温度変化を補償するための補償機構5とを備えている。ガスシール機構3は、投影光学系PLの像面側近傍に設けられたシール部材70を備えている。シール部材70は、基板P(基板ホルダPH)の上方において、少なくとも投影光学系PLを構成する複数の光学素子のうち、投影光学系PLの像面に最も近い最終光学素子LS1、及び光路空間K1を囲むように環状に設けられている。
【0019】
本実施形態では、露光装置EXとしてマスクMと基板Pとを走査方向に同期移動しつつマスクMに形成されたパターンを基板Pに露光する走査型露光装置(所謂スキャニングステッパ)を使用する場合を例にして説明する。以下の説明において、水平面内においてマスクMと基板Pとの同期移動方向(走査方向)をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向(非走査方向)、X軸及びY軸方向に垂直で投影光学系PLの光軸AXと一致する方向をZ軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。なお、ここでいう「基板」は、露光処理を含む各種プロセス処理を施される処理基板であって、半導体ウエハ等の基材上に感光材(レジスト)、保護膜などの膜を塗布したものを含む。「マスク」は基板上に縮小投影されるデバイスパターンやテストパターン、アライメントパターンを形成されたレチクルを含む。
【0020】
照明光学系ILは、露光用光源、露光用光源から射出された光束の照度をマスクM上で均一化するオプティカルインテグレータ、オプティカルインテグレータからの露光光ELを集光するコンデンサレンズ、リレーレンズ系、及び露光光ELによるマスクM上の照明領域を設定する視野絞り等を有している。マスクM上の所定の照明領域は照明光学系ILにより均一な照度分布の露光光ELで照明される。照明光学系ILから射出される露光光ELとしては、例えば水銀ランプから射出される輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)、ArFエキシマレーザ光(波長193nm)及びF
2レーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態においてはArFエキシマレーザ光が用いられる。
【0021】
本実施形態においては、液体LQとして純水が用いられている。純水は、ArFエキシマレーザ光のみならず、例えば、水銀ランプから射出される輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)も透過可能である。
【0022】
マスクステージMSTは、マスクMを保持して移動可能である。マスクステージMSTは、マスクMを真空吸着(又は静電吸着)により保持する。マスクステージMSTは、制御装置CONTにより制御されるリニアモータ等を含むマスクステージ駆動装置MSTDの駆動により、マスクMを保持した状態で、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能及びθZ方向に微少回転可能である。マスクステージMST上には移動鏡91が設けられている。また、移動鏡91に対向する位置にはレーザ干渉計92が設けられている。マスクステージMST上のマスクMの2次元方向の位置、及びθZ方向の回転角(場合によってはθX、θY方向の回転角も含む)はレーザ干渉計92によりリアルタイムで計測される。レーザ干渉計92の計測結果は制御装置CONTに出力される。制御装置CONTは、レーザ干渉計92の計測結果に基づいてマスクステージ駆動装置MSTDを駆動し、マスクステージMSTに保持されているマスクMの位置制御を行う。なお、レーザ干渉計92はその一部(例えば、光学系)のみ、移動鏡91に対向して設けるようにしてもよい。また、移動鏡91は平面鏡のみでなくコーナーキューブ(レトロリフレクタ)を含むものとしてもよいし、移動鏡91を固設する代わりに、例えばマスクステージMSTの端面(側面)を鏡面加工して形成される反射面を用いてもよい。さらにマスクステージMSTは、例えば特開平8−130179号公報(対応する米国特許第6,721,034号)に開示される粗微動可能な構成としてもよい。
【0023】
投影光学系PLは、マスクMのパターンを所定の投影倍率βで基板Pに投影露光するものであって、複数の光学素子で構成されており、それら光学素子は鏡筒PKで保持されている。本実施形態において、投影光学系PLは、投影倍率βが例えば1/4、1/5、あるいは1/8の縮小系であり、前述の照明領域と共役な投影領域ARにマスクパターンの縮小像を形成する。なお、投影光学系PLは縮小系、等倍系及び拡大系のいずれでもよい。また、投影光学系PLは、反射光学素子を含まない屈折系、屈折光学素子を含まない反射系、反射光学素子と屈折光学素子とを含む反射屈折系のいずれであってもよい。また、本実施形態においては、投影光学系PLを構成する複数の光学素子のうち、投影光学系PLの像面に最も近い最終光学素子LS1は、鏡筒PKより露出している。
【0024】
基板ステージPSTは、基板Pを保持する基板ホルダPHを有しており、基板Pを保持する基板ホルダPHを投影光学系PLの像面側においてベース部材BP上で移動可能である。基板ホルダPHは、例えば真空吸着等により基板Pを保持する。基板ステージPST上には凹部95が設けられており、基板Pを保持するための基板ホルダPHは凹部95に配置されている。そして、基板ステージPSTのうち凹部95以外の上面96は、基板ホルダPHに保持された基板Pの表面とほぼ同じ高さ(面一)になるような平坦面となっている。なお、基板ステージPSTの上面96の一部、例えば基板Pを囲む所定領域のみ、基板Pの表面とほぼ同じ高さとしてもよい。また、投影光学系PLの像面側の光路空間K1を液体LQで満たし続けることができる(即ち、液浸領域LRを良好に保持できる)ならば、基板ホルダPHに保持された基板Pの表面と基板ステージPSTの上面96との間に段差があっても構わない。
【0025】
基板ステージPSTは、制御装置CONTにより制御されるリニアモータ等を含む基板ステージ駆動装置PSTDの駆動により、ベース部材BP上でXY平面内で2次元移動可能及びθZ方向に微小回転可能である。更に基板ステージPSTは、Z軸方向、θX方向、及びθY方向にも移動可能である。したがって、基板ステージPST上の基板Pの表面は、X軸、Y軸、Z軸、θX、θY、及びθZ方向の6自由度の方向に移動可能である。基板ステージPSTの側面には移動鏡93が設けられている。また、移動鏡93に対向する位置にはレーザ干渉計94が設けられている。基板ステージPST上の基板Pの2次元方向の位置、及び回転角はレーザ干渉計94によりリアルタイムで計測される。また、露光装置EXは、基板ステージPSTに支持されている基板Pの表面の面位置情報を検出する斜入射方式のフォーカス・レベリング検出系(不図示)を備えている。フォーカス・レベリング検出系は、基板Pの表面の面位置情報(Z軸方向の位置情報、及びθX及びθY方向の傾斜情報)を検出する。なお、フォーカス・レベリング検出系は、静電容量型センサを使った方式のものを採用してもよい。レーザ干渉計94の計測結果は制御装置CONTに出力される。フォーカス・レベリング検出系の検出結果も制御装置CONTに出力される。制御装置CONTは、フォーカス・レベリング検出系の検出結果に基づいて、基板ステージ駆動装置PSTDを駆動し、基板Pのフォーカス位置(Z位置)及び傾斜角(θX、θY)を制御して基板Pの表面を投影光学系PLの像面に合わせ込むとともに、レーザ干渉計94の計測結果に基づいて、基板PのX軸方向、Y軸方向、及びθZ方向における位置制御を行う。
【0026】
なお、レーザ干渉計94はその一部(例えば、光学系)のみを移動鏡93に対向して設けるようにしてもよいし、基板ステージPST(基板P)のZ軸方向の位置、及びθX、θY方向の回転角をも計測可能としてよい。基板ステージPSTのZ軸方向の位置を計測可能なレーザ干渉計を備えた露光装置の詳細は、例えば特表2001−510577号公報(対応する国際公開第1999/28790号パンフレット)に開示されている。さらに、移動鏡93を基板ステージPSTに固設する代わりに、例えば基板ステージPSTの一部(側面など)を鏡面加工して形成される反射面を用いてもよい。また、フォーカス・レべリング検出系はその複数の計測点でそれぞれ基板PのZ軸方向の位置情報を計測することで、基板PのθX及びθY方向の傾斜情報(回転角)を検出するものであるが、この複数の計測点はその少なくとも一部が液浸領域LR(又は投影領域AR)内に設定されてもよいし、あるいはその全てが液浸領域LRの外側に設定されてもよい。さらに、例えばレーザ干渉計94が基板PのZ軸、θX及びθY方向の位置情報を計測可能であるときは、基板Pの露光動作中にそのZ軸方向の位置情報が計測可能となるようにフォーカス・レべリング検出系を設けなくてもよく、少なくとも露光動作中はレーザ干渉計94の計測結果を用いてZ軸、θX及びθY方向に関する基板Pの位置制御を行うようにしてもよい。
【0027】
次に、液浸機構1、ガスシール機構3、及び補償機構5について
図2、
図3、及び
図4を参照しながら説明する。
図2はシール部材70近傍の側断面図、
図3はシール部材70を下方から見た図、
図4は液浸機構1、ガスシール機構3、及び補償機構5を説明するための構成図である。
【0028】
液浸機構1は、露光光ELの光路空間K1を液体LQで満たすものであって、投影光学系PLの直下に配置される基板Pと対向するように設けられ、液体LQを供給する供給口12と、光路空間K1に対して供給口12より外側であって、基板Pと対向するように設けられ、液体LQを回収する回収口22とを有している。供給口12及び回収口22のそれぞれは、シール部材70のうち基板ホルダPHに保持された基板Pと対向する下面70Aに設けられている。シール部材70は、基板P(基板ホルダPH)の上方において、投影光学系PLを構成する複数の光学素子のうち、像面側に配置される少なくとも1つの光学素子(ここでは、投影光学系PLの像面に最も近い最終光学素子LS1)、及び光路空間K1を囲むように環状に設けられている。
【0029】
また、液浸機構1は、供給管13及びシール部材70の内部に形成された内部流路(供給流路)14を介して供給口12に液体LQを供給する液体供給装置10と、シール部材70の内部に形成された不図示の内部流路(回収流路)及び回収管23を介して回収口22と接続され、投影光学系PLの像面側の液体LQを回収口22を介して回収する液体回収装置20とを備えている。
【0030】
液体供給装置10は、液体LQを収容するタンク、加圧ポンプ、及び液体LQ中の異物を取り除くフィルタユニット等を備えている。液体供給装置10の動作は制御装置CONTにより制御される。なお、液体供給装置10のタンク、加圧ポンプ、フィルタユニット等は、その全てを露光装置EXが備えている必要はなく、露光装置EXが設置される工場等の設備を代用してもよい。
【0031】
液体回収装置20は、例えば真空ポンプ等の真空系(吸引装置)、回収された液体LQと気体とを分離する気液分離器、及び回収した液体LQを収容するタンク等を備えている。液体回収装置20の動作は制御装置CONTに制御される。なお、液体回収装置20の真空系、気液分離器、タンク等は、その全てを露光装置EXが備えている必要はなく、露光装置EXが設置される工場等の設備を代用してもよい。
【0032】
シール部材70の下面70Aのうち、光路空間K1に対して走査方向一方側(+X側)と他方側(−X側)とのそれぞれには、凹部15が設けられている。
図3に示すように、凹部15は平面視においてY軸方向に延びるように設けられている。供給口12は、平面視において略円形状であり、シール部材70の下面70Aのうち、+X側と−X側とのそれぞれの凹部15の内側に、Y軸方向に複数(3つ)並んで設けられている。したがって、供給口12は、シール部材70の下面70Aにおいて、光路空間K1に対して走査方向一方側(+X側)と他方側(−X側)とのそれぞれに設けられた構成となっている。
【0033】
本実施形態の回収口22は、シール部材70の下面70Aにおいて、光路空間K1及び供給口12を囲むように環状に設けられている。回収口22には多孔部材(例えば、セラミック製の多孔体など)あるいはメッシュ部材(例えば、チタン製の板状メッシュなど)が設けられている。
【0034】
露光光ELの光路空間K1を液体LQで満たすために、制御装置CONTは、液浸機構1の液体供給装置10及び液体回収装置20のそれぞれを駆動する。制御装置CONTの制御のもとで液体供給装置10から送出された液体LQは、供給管13を流れた後、シール部材70の供給流路14を介して、供給口12より投影光学系PLの像面側に供給される。また、制御装置CONTのもとで液体回収装置20が駆動されると、投影光学系PLの像面側の液体LQは回収口22を介してシール部材70の回収流路に流入し、回収管23を流れた後、液体回収装置20に回収される。
【0035】
本実施形態においては、供給口12は、シール部材70の下面70Aに設けられた凹部15の内側に配置されており、複数の供給口12のそれぞれから供給された液体LQは、凹部15においてそのエネルギー(圧力、流速)が分散された後、投影光学系PLと基板Pとの間の光路空間K1に流れ込むようになっている。シール部材70の下面70Aにおける液体LQのエネルギーは供給口12近傍のほうがその他の位置より高い可能性があるため、凹部15が設けられていない場合、光路空間K1に流れ込む液体LQのエネルギー(圧力、流速)が不均一となる場合があるが、バッファ空間として機能する凹部15を設けたことにより、供給口12から供給された液体LQのエネルギーを分散して均一化することができる。
【0036】
図2に示すように、本実施形態においては、投影光学系PLの最終光学素子LS1の側面とシール部材70の内側面70Tとの間には所定のギャップG1が設けられており、光路空間K1に満たされた液体LQの一部はギャップG1に入り込むようになっている。
また、シール部材70の内縁部の一部は、投影光学系PLの最終光学素子LS1と基板Pとの間に配置されており、シール部材70の内側面70Tの一部は、最終光学素子LS1の下面と対向している。また、
図3に示すように、投影光学系PLの投影領域ARは、Y軸方向を長手方向とするスリット状(矩形状)に設定されている。
【0037】
なお、本実施形態においては、供給口12はシール部材70の下面70Aに設けられているが、シール部材70の内側面70Tに供給口を設けて、最終光学素子LS1の下に向かって液体LQを供給するようにしてもよい。
【0038】
ガスシール機構3は、露光光ELの光路空間K1に満たされた液体LQをシールするために基板P上に気流を生成するものであって、投影光学系PLの直下に配置される基板Pと対向するように設けられ、気流を生成するために基板Pに向けて気体を噴射する噴射口32と、光路空間K1に対して噴射口32より内側であって、基板Pと対向するように設けられ、気体を吸引する吸引口42とを有している。噴射口32及び吸引口42のそれぞれは、シール部材70のうち基板ホルダPHに保持された基板Pと対向する下面70Aに設けられている。
【0039】
またガスシール機構3は、供給管33及びシール部材70の内部に形成された内部流路(供給流路)34を介して噴射口32に気体を供給する気体供給装置30と、シール部材70の内部に形成された内部流路(吸引流路)44及び吸引管43を介して吸引口42と接続され、シール部材70と基板Pとの間の気体を吸引口42を介して吸引する気体吸引装置40とを備えている。
【0040】
気体供給装置30は、ケミカルフィルタやパーティクル除去フィルタ等を含むフィルタユニットを備えており、フィルタユニットを介したクリーンな気体を供給可能である。
気体供給装置30は、露光装置EXが収容されたチャンバ内部の気体とほぼ同じ気体を供給する。本実施形態においては、気体供給装置30は、空気(ドライエア)を供給する。
なお、気体供給装置30から供給される気体としては、窒素ガス(ドライ窒素)等であってもよい。気体供給装置30の動作は制御装置CONTにより制御される。
【0041】
気体吸引装置40は、例えば真空ポンプ等の真空系(吸引装置)等を備えている。気体吸引装置40の動作は制御装置CONTに制御される。
【0042】
図3に示すように、シール部材70の下面70Aにおいて、光路空間K1に対して回収口22よりも外側には、光路空間K1、供給口12、及び回収口22を囲むように設けられた環状の第1溝部45が設けられている。また、シール部材70の下面70Aにおいて、光路空間K1に対して第1溝部45よりも外側には、第1溝部45を囲むように設けられた環状の第2溝部35が設けられている。吸引口42は、第1溝部45の内側に複数所定間隔で設けられている。噴射口32は、第2溝部35の内側に複数所定間隔で設けられている。すなわち、吸引口42は、回収口22の外側において、光路空間K1を囲むように複数設けられており、噴射口32は、吸引口42の外側において、光路空間K1を囲むように複数設けられている。本実施形態の噴射口32及び吸引口42のそれぞれは平面視において略円形状である。
【0043】
露光光ELの光路空間K1に満たされた液体LQをシールするために、制御装置CONTは、ガスシール機構3の気体供給装置30及び気体吸引装置40のそれぞれを駆動する。制御装置CONTの制御のもとで気体供給装置30から送出された気体は、供給管33を流れた後、シール部材70の供給流路34を介して、噴射口32より基板Pに向けて噴射される。制御装置CONTは、気体供給装置30より噴射口32に対して単位時間当たり所定量の気体を供給することにより、噴射口32から所定の流速で気体を噴射することができる。また、制御装置CONTのもとで気体吸引装置40が駆動されると、シール部材70の下面70Aと基板Pの表面との間の気体は吸引口42を介してシール部材70の吸引流路44に流入し、吸引管43を流れた後、気体吸引装置40に吸引される。ここで、吸引口42は、光路空間K1に対して噴射口32の内側に設けられており、噴射口32の気体噴射動作と吸引口42の気体吸引動作との協働作用によって、基板P上(基板Pの表面とシール部材70の下面70Aとの間)には、噴射口32から光路空間K1に向かう気流が生成される。ガスシール機構3は、噴射口32から光路空間K1に向かう気流を生成することにより、液体LQを吸引口42よりも内側に封じ込めることができ、投影光学系PLと基板Pとの間の露光光ELの光路空間K1に満たされた液体LQの漏出や、液浸領域LRの巨大化を防止することができる。
【0044】
また、ガスシール機構3は、噴射口32から基板Pに噴射した気体により、基板P上でシール部材70を浮上支持する。すなわちガスシール機構3は、噴射口32から基板Pに向けて噴射した気体により、基板Pとシール部材70との間に気体軸受を形成する。これにより、
図2に示すように、基板Pの表面とシール部材70の下面70Aとの間には所定のギャップG2が形成される。
【0045】
補償機構5は、ガスシール機構3により生成された気流に起因する基板Pの温度変化を補償するものである。ガスシール機構3の噴射口32から基板Pに向けて噴射された気体により生成された気流により、基板P上の液体LQ(光路空間K1に満たされた液体LQ)の一部が気化する可能性がある。そして、気流により液体LQの一部が気化することで生じる気化熱によって、基板Pの局所的な領域が温度変化(低下)する可能性がある。
補償機構5は、生成された気流により液体LQの一部が気化することで生じる気化熱による基板Pの局所的な温度低下を補償する。補償機構5は、供給口12より光路空間K1に供給される液体LQの温度と、基板Pの温度とがほぼ等しくなるように、基板Pの温度低下を補償する。
【0046】
図4において、補償機構5は、供給管33の途中に設けられ、気体供給装置30から噴射口32に供給される気体の温度を調整する気体温調装置50を備えている。また、補償機構5は、供給管13の途中に設けられ、液体供給装置10から供給口12に供給される液体LQの温度を調整する液体温調装置51を備えている。補償機構5は、気化熱に起因する基板Pの温度変化を補償するために、気体温調装置50を使って、噴射口32から噴射される気体の温度を、供給口12から供給される液体LQの温度よりも高くする。
【0047】
気体温調装置50及び液体温調装置51のそれぞれは制御装置CONTに制御される。制御装置CONTは、液体温調装置51を使って、供給口12より光路空間K1に供給される液体LQの温度と、基板ホルダPHに保持されている基板Pの温度とがほぼ等しくなるように、液体LQの温度を調整する。また、制御装置CONTは、液体温調装置51を使って、供給口12より光路空間K1に供給される液体LQの温度と、露光装置EXが収容されたチャンバ内部の温度とがほぼ等しくなるように、液体LQの温度を調整する。
したがって、本実施形態においては、供給口12より光路空間K1に供給される液体LQの温度と、光路空間K1に満たされた液体LQの温度と、基板ホルダPHに保持されている基板Pの温度とはほぼ等しくなっている。そして、制御装置CONTは、気体温調装置50を使って、噴射口32から噴射される気体の温度を、光路空間K1に満たされた液体LQの温度(すなわち基板Pの温度)よりも高くする。噴射口32から噴射される気体の温度を液体LQの温度よりも高くすることにより、ガスシール機構3により生成された気流に起因する基板Pの温度変化、具体的には液体LQの一部が気化することで生じる気化熱による基板Pの局所的な温度低下を補償することができる。
【0048】
ところで、シール部材70の内部には液体LQの温度や基板Pの温度よりも高い温度の気体が流れるため、シール部材70自体の温度が上昇する可能性がある。すると、シール部材70に接触する液体LQの温度変化(温度上昇)を引き起こしたり、あるいはシール部材70と対向する基板Pや投影光学系PL(最終光学素子LS1)の温度変化(温度上昇)を引き起こす可能性がある。液体LQや投影光学系PLの温度が変化すると、投影光学系PL及び液体LQを介した結像特性が変動(劣化)する等の不都合が生じる。また、基板Pの温度が変動すると、上述のようにパターンの重ね合わせ精度が劣化する等の不都合が生じる。
【0049】
そこで、本実施形態においては、シール部材70の液体LQと接触し得る部分、シール部材70の基板Pと対向する部分、及びシール部材70の投影光学系PLと対向する部分に断熱構造71が設けられている。本実施形態の断熱構造71は、シール部材70の下面70A及び内側面70Tを形成する断熱材によって構成されている。これにより、シール部材70の内部に高い温度の気体が流れても、シール部材70の周囲に配置される基板P、投影光学系PL、及び液体LQ等の各物体に与える熱的影響を抑えることができる。
なお断熱構造としては、シール部材70の周囲に配置される各物体に与える熱的影響を抑えることができるのであれば、任意の構成を採用することができる。
【0050】
次に、上述の構成を有する露光装置EXを用いて基板Pを露光する方法について説明する。
【0051】
基板Pの露光中、制御装置CONTは、液浸機構1を使って、光路空間K1に液体LQを所定量供給するとともに基板P上の液体LQを所定量回収することで、投影光学系PLと基板ホルダPHに保持されている基板Pとの間の光路空間K1を液体LQで満たし、基板P上に液体LQの液浸領域LRを局所的に形成する。制御装置CONTは、光路空間K1を液体LQで満たした状態で、投影光学系PLと基板Pとを相対的に移動しながらマスクMのパターン像を投影光学系PL及び光路空間K1の液体LQを介して基板P上に投影露光する。
【0052】
基板P上に液浸領域LRを形成している状態においては、制御装置CONTは、ガスシール機構3を使って、噴射口32から所定の流速の気体を噴射するとともに、吸引口42から気体を吸引し、光路空間K1に向かう気流を生成する。これにより、吸引口42の内側に液体LQを封じ込めることができるので、投影光学系PLに対して基板Pを移動しつつ露光する場合でも、液体LQの漏出が抑えられ、液浸領域LRの巨大化を防止することができる。なお、制御装置CONTは、噴射口32から気体を噴射させるとき、気体供給装置30より噴射口32に対して供給する単位時間当たりの気体供給量を一定にしてもよいし、変動させてもよい。そして、基板Pに向けて噴射される気体は、補償機構5の気体温調装置50によって温度調整されているため、ガスシール機構3により生成された気流により液体LQの一部が気化することで生じる気化熱による基板Pの局所的な温度低下が補償される。
【0053】
また、シール部材70は、噴射口32から基板Pに噴射された気体により基板P上で浮上支持されているため、例えば、基板Pの走査露光中に投影光学系PLの像面に対して基板Pの表面を位置合わせするために、基板Pが傾斜される場合でも、所定のギャップG2を維持したまま、基板Pの傾斜に合わせてシール部材70も傾斜される。
【0054】
以上説明したように、液体LQの一部が気化することで生じる気化熱によって基板Pの局所的な領域の温度が低下しようとしても、液体LQよりも高い温度を有する気体を吹き付けることで、基板Pの温度変化(温度低下)を補償することができる。したがって、基板Pの温度変化(低下)に起因する基板Pの熱変形を防止し、基板Pにパターン像を転写するときのパターン重ね合わせ精度(露光精度)の劣化を防止することができる。
【0055】
なお本実施形態においては、制御装置CONTは、気体温調装置50及び液体温調装置51のそれぞれを制御し、噴射口32から噴射される気体の温度を供給口12から供給される液体LQの温度よりも高くしているが、補償機構5に液体温調装置51を設けずに、液体供給装置10から供給される液体LQの温度に基づいて、噴射口32から噴射される気体の温度を調整するようにしてもよい。例えば供給口12から供給される液体LQの温度、あるいは光路空間K1に満たされた液体LQの温度を検出可能な温度センサを設けることにより、制御装置CONTは、その温度センサの検出結果に基づいて、噴射口32から噴射される気体の温度が液体LQの温度よりも高くなるように、気体温調装置50を使って、噴射口32から噴射される気体の温度を調整することができる。
【0056】
なお本実施形態においては、制御装置CONTは、液体温調装置51を使って、供給口12より光路空間K1に供給される液体LQの温度と、基板ホルダPHに保持されている基板Pの温度とがほぼ等しくなるように、液体LQの温度を調整しているが、基板ホルダPHに基板Pの温度を調整可能な温調装置を設け、その温調装置を用いて、液体LQの温度と基板Pの温度とがほぼ等しくなるように、基板Pの温度を調整するようにしてもよい。あるいは、液体温調装置51と基板ホルダPHに設けられた温調装置との両方を用いて、液体LQの温度と基板Pの温度とがほぼ等しくなるように、液体LQの温度と基板Pの温度とのそれぞれを調整するようにしてもよい。
【0057】
一般に、基板Pはコータ・デベロッパからインラインで投入されるが、基板Pはコータ・デベロッパ側の温度に設定され、露光装置EXの基板ローダ(ウエハローダ)に入った後で、温度調整用プレート(クールプレート等)上に一時的に設置され、基板P全体の温度が基板ホルダPHの温度と同じになるように設定される。このように、コータ・デベロッパから基板Pが送られてくる場合、露光装置EX側で設定される基板ホルダPHの温度、液浸用の液体温度、ガスシールの気体温度等の諸条件に応じて、コータ・デベロッパ側で基板Pを適当な温度に調整しておくような待機場所(搬出ポート部等)を設けておいてもよい。
【0058】
<第2実施形態>
次に、第2実施形態について
図5を参照しながら説明する。本実施形態の特徴的な部分は、補償機構5が、光路空間K1に対して噴射口32の外側に、気体を吹き出す吹き出し口36を備えている点にある。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
【0059】
図5において、シール部材70の下面70Aには、上述の実施形態同様、液体LQを供給する供給口12、及び液体LQを回収する回収口22のそれぞれが設けられている。
なお
図5では省略されているが、上述の実施形態同様、供給口12は供給流路及び供給管13を介して液体供給装置10と接続されており、回収口22は回収流路及び回収管23を介して液体回収装置20と接続されている。
【0060】
シール部材70の下面70Aにおいて、光路空間K1に対して回収口22の外側には、気体を吸引する吸引口42が設けられており、光路空間K1に対して吸引口42の外側には、気体を噴射する噴射口32が設けられている。上述の実施形態同様、吸引口42は吸引流路44及び吸引管43を介して気体吸引装置40と接続されており、噴射口32は供給流路34及び供給管33を介して気体供給装置30と接続されている。ここで、本実施形態においては、供給管33の途中に設けられた気体温調装置50は、噴射口32から噴射される気体の温度と、光路空間K1に満たされた液体LQの温度(基板Pの温度)とがほぼ等しくなるように、気体の温度を調整する。
【0061】
シール部材70の下面70Aにおいて、光路空間K1に対して噴射口32の外側には、気体を吹き出す吹き出し口36が設けられている。また、光路空間K1に対して吹き出し口36の外側には、気体を吸引する第2吸引口46が設けられている。吹き出し口36は、シール部材70の下面70Aにおいて、光路空間K1を囲むように設けられた環状の溝部内に複数配置されており、第2吸引口46も、シール部材70の下面70Aにおいて、光路空間K1を囲むように設けられた環状の溝部内に複数配置されている。そして、吹き出し口36の気体吹き出し動作と第2吸引口46の気体吸引動作との協働作用によって、吹き出し口36と第2吸引口46との間における基板P上(基板Pの表面とシール部材70の下面70Aとの間)には、吹き出し口36から光路空間K1に対して外側に向かう気流が生成される。
【0062】
第2吸引口46は、シール部材70の内部に形成された第2吸引流路47及び第2吸引管48を介して第2気体吸引装置49と接続されている。吹き出し口36は、シール部材70の内部に形成された第2供給流路37及び第2供給管38を介して第2気体供給装置39と接続されている。そして、第2供給管38の途中には、第2気体供給装置39より送出され、吹き出し口36から吹き出される気体の温度を調整する第2気体温調装置52が設けられている。
【0063】
第2気体温調装置52は、ガスシール機構3により生成された気流に起因する基板Pの温度変化を補償するために、吹き出し口36から吹き出される気体の温度を液体LQの温度よりも高くする。吹き出し口36から吹き出される気体の温度を液体LQの温度よりも高くすることにより、ガスシール機構3により生成された気流に起因する基板Pの温度変化、具体的には液体LQの一部が気化することで生じる気化熱による基板Pの局所的な温度低下を補償することができる。
【0064】
本実施形態においては、吹き出し口36、第2気体温調装置52、第2気体供給装置39、第2吸引口46、第2気体吸引装置49が、ガスシール機構3により生成された気流に起因する基板Pの温度変化を補償する補償機構5の少なくとも一部を構成している。
即ち、本実施形態では補償機構5の少なくとも一部がガスシール機構3とは別設されている。
【0065】
そして、本実施形態においても、ガスシール機構3の噴射口32より噴射した気体によって、液体LQの漏出を防止するとともに、基板P上でシール部材70を浮上支持させている。そして、光路空間K1に対して噴射口32の外側に設けられた補償機構5の吹き出し口36より吹き出した気体によって、基板Pの温度変化を補償している。すなわち、ガスシール機構3は、液体LQをシールするとともに、基板P上でシール部材70を浮上支持させるための最適な流速で噴射口32から気体を噴射することができる。また、補償機構5は、ガスシール機構3により生成された気流に起因する基板Pの温度変化を補償するための最適な温度及び流速で、基板Pに気体を吹き付けることができる。この場合、補償機構5は、吹き出し口36から吹き出した気体を基板P上でのシール部材70の浮上支持に寄与させる必要は無いため、基板Pの温度変化を補償するための最適な温度及び流速で吹き出し口36から気体を吹き出すことができる。
【0066】
また、本実施形態においては、シール部材70の第2供給流路37及び第2吸引流路47のそれぞれに、液体LQの温度や基板Pの温度よりも高い温度の気体が流れるため、この第2供給流路37及び第2吸引流路47を囲むように、断熱材71が設けられている。これにより、基板Pや液体LQ等の温度変化(温度上昇)を抑制することができる。
【0067】
なお、本実施形態において、基板Pの温度は、第2気体温調装置52によって温度調整された吹き出し口36から吹き出される気体によって調整可能なので、噴射口32から噴射する気体の温度を調整する気体温調装置50を省略することも可能である。
【0068】
<第3実施形態>
次に、第3実施形態について
図6を参照しながら説明する。本実施形態では補償機構5及び断熱構造(断熱材)71の構成が上述の第1実施形態(
図4)と異なる。以下の説明では、上述の第1実施形態と同一又は同等の構成部分については同一の符号を付してその説明を省略する。本実施形態の補償機構5は、基板Pに向かって熱を放射することによって、ガスシール機構3により生成された気流に起因する基板Pの温度変化を補償する放射部53を有している。本実施形態においては、放射部53は、シール部材70のうち基板Pと対向する下面70Aの一部に複数設けられている。より具体的には、放射部53は、シール部材70の下面70Aにおいて、光路空間K1に対してガスシール機構3の噴射口32の外側に設けられている。放射部53は、例えば遠赤外線セラミックヒータ等によって構成されている。基板Pの表面と対向する位置に放射部53を設けることにより、放射部53から放射された熱によって基板Pを暖めることができるため、ガスシール機構3により生成された気流に起因する基板Pの温度変化(温度低下)を抑制することができる。また、
図6に示すように、シール部材70の一部として、放射部53を囲むように断熱材71を設けることにより、放射部53に対向する基板Pの局所的な領域のみを暖め、他の領域や、液体LQ、あるいは最終光学素子LS1の温度上昇を抑えることができる。
【0069】
なお、本実施形態において、放射部53から放射される熱と、気体温調装置50で温度調整されて噴射口32より噴射される気体とを併用して、ガスシール機構3により生成された気流に起因する基板Pの温度変化を補償してもよいし、放射部53から放射される熱のみで基板Pの温度変化を補償するようにしてもよい。あるいは、第2実施形態で説明したような吹き出し口36から吹き出される気体と放射部53から放射される熱との両方を用いて、基板Pの温度変化を補償するようにしてもよい。また、本実施形態では放射部53を遠赤外線セラミックヒータで構成するものとしたが、これに限らず、例えばペルチェ素子など他の熱電素子、あるいは赤外光などの光照射装置などで構成してもよい。
【0070】
<第4実施形態>
第4実施形態について
図7を参照しながら説明する。本実施形態では補償機構5の構成が上述の各実施形態と異なる。以下の説明では、上述の実施形態と同一又は同等の構成部分については同一の符号を付してその説明を省略する。本実施形態の補償機構5は、基板Pを保持する基板ホルダPHに設けられ、基板Pの温度を調整するホルダ温調装置54を備えている。ホルダ温調装置54は、熱を放射する放射部を含んで構成されており、基板P上の任意の領域を液体LQの温度よりも高くすることができる。ホルダ温調装置を構成する放射部54は、上述の第3実施形態同様、例えば遠赤外線セラミックヒータ等によって構成される。
【0071】
基板ホルダPHは、基板ホルダPHの基材99上に設けられ、基板Pの裏面を支持する複数のピン状部材97と、そのピン状部材97を囲むように設けられた周壁部(リム部)98とを備えており、基板Pの裏面と基材99と周壁部98とで囲まれた空間を負圧にすることによって、基板Pを吸着保持する。すなわち、本実施形態の基板ホルダPHは所謂ピンチャック機構を有している。
【0072】
放射部54は、基板ホルダPHのうち基板Pの裏面と対向する位置に設けられている。具体的には、放射部54は、基板ホルダPHの基材99に複数埋設されている。放射部54は、基板Pの裏面に向かって熱を放射することによって、ガスシール機構3により生成された気流に起因する基板Pの温度変化を補償する。基板Pの裏面と対向する位置に放射部54を設けることにより、放射部54から放射された熱によって基板Pを暖めることができるため、ガスシール機構3により生成された気流に起因する基板Pの温度変化(温度低下)を抑制することができる。
【0073】
本実施形態においては、基板ホルダPHは、ピン状部材97によって基板Pの裏面を支持しており、基板Pと基板ホルダPH(ピン状部材97)との接触面積が小さいため、基板ホルダPH自体の温度を上昇させても、基板Pを暖めることは困難である。そこで、基板Pの裏面と対向する位置に放射部54を設け、基板Pの裏面に向かって熱を放射することで、基板Pの温度調整を円滑に行うことができる。
【0074】
また、
図7に示すように、基板ステージPSTの上面96近傍に放射部54を埋設しても良い。これにより、例えば基板ステージPSTの上面96に液浸領域LRを形成して所定の処理(基板Pの外縁付近のショット領域の露光など)を行う場合であっても、ガスシール機構3により生成された気流に起因する基板ステージPSTの温度変化を補償することができ、その所定の処理を円滑に行うことができる。
【0075】
ところで、第4実施形態においては、基板ホルダPHに設けられた各放射部54と液浸領域LRとの相対位置が変動する。すなわち、本実施形態の露光装置EXは、光路空間K1に対して基板Pを保持した基板ホルダPH(基板ステージPST)を相対的に移動しつつ、基板Pに露光光ELを照射する構成であるため、光路空間K1に満たされた液体LQ、すなわち液浸領域LRと基板ステージPST(基板ホルダPH)に埋設された複数の放射部54のそれぞれとの相対位置が変動する。
【0076】
図8は投影光学系PLと基板Pとを相対的に移動しつつ露光するときの投影光学系PL及び液浸領域LRと基板Pとの位置関係を模式的に示した図である。
図8において、基板P上には、マスクMのパターンが露光される複数のショット領域S1〜S21がマトリクス状に設定されている。制御装置CONTは、
図8中、矢印y1で示すように、投影光学系PLの光軸AX(投影領域AR)と基板Pとを相対的に移動しつつ、各ショット領域S1〜S21のそれぞれを順次露光する。このように、制御装置CONTは、投影光学系PLに対して基板P(基板ホルダPH)を、各ショット領域の走査露光時にはX軸方向に、ショット領域間のステッピング時にはY軸方向、またはX軸及びY軸方向の両方に移動しつつ基板Pの露光動作を実行する。
【0077】
基板Pの移動に伴って、基板P上の局所領域と液浸領域LRの液体LQとが接触するが、
図8に示すように、投影領域ARに対して液浸領域LRは大きいので、例えば第1ショット領域S1に露光光ELを照射しているときにおいても、液浸領域LRの液体LQは、基板P上の未だ露光されていない第2、第6、第7、第8ショット領域S2、S6、S7、S8等に接触する。すると、基板P上の第2、第6、第7、第8ショット領域S2、S6、S7、S8等が、液体LQの気化熱に起因して温度変化(温度低下)する可能性がある。露光される前の第2、第6、第7、第8ショット領域S2、S6、S7、S8等が温度低下すると、その第2、第6、第7、第8ショット領域S2、S6、S7、S8等を露光するときのパターン重ね合わせ精度が劣化する可能性がある。
【0078】
そこで、基板ホルダPHに、基板P上に設定された複数のショット領域に応じた複数の放射部(温調部)54を設けておき、制御装置CONTは、基板Pの移動状態(位置、移動速度、移動方向、移動軌跡等を含む)と、その移動状態に応じた光路空間K1に対する基板P上の局所領域(未露光領域であって液体LQと接触した領域)との関係に基づいて、複数の放射部54のそれぞれを制御する。すなわち、制御装置CONTは、第1ショット領域S1を液浸露光しているとき、第1ショット領域S1に対応して設けられた放射部54から基板Pの裏面に向かって熱を放射するとともに、液浸領域LRの液体LQが接触する第2、第6、第7、第8ショット領域S2、S6、S7、S8のそれぞれに対応して設けられた放射部54のそれぞれから基板Pの裏面に向かって熱を放射する。こうすることにより、基板P上の未だ露光されていない第2、第6、第7、第8ショット領域S2、S6、S7、S8に液体LQが接触しても、これら各第2、第6、第7、第8ショット領域S2、S6、S7、S8の液体LQの気化熱に起因する温度低下を抑制した状態で基板Pを露光することができる。また、液体LQが接触していないショット領域(例えばショット領域S19、S20、S21等)に対応して設けられた放射部54からは、基板Pの裏面に向かって熱を放射しないようにすることで、基板P(ショット領域S19、S20、S21等)の不要な温度上昇を防止することができる。ここで、基板Pの移動状態と、その移動状態に応じた光路空間K1に対する基板P上の局所領域の位置との関係は、露光シーケンス等によって予め定められており、制御装置CONTに接続された記憶装置MRYに予め記憶させておくことができる。制御装置CONTは、記憶装置MRYに記憶されている記憶情報と、基板ステージPSTの位置情報をモニタするレーザ干渉計94の出力とに基づいて、各ショット領域S1〜S21のそれぞれに対応して設けられた複数の放射部54のそれぞれを制御することができる。
【0079】
なおここでは、複数の放射部54はショット領域S1〜S21のそれぞれに対応して設けられているが、必ずしもショット領域S1〜S21に対応して設ける必要はなく、基板P上に設定された任意の分割領域に応じて放射部54を設けるようにしてもよい。
【0080】
なお本実施形態において、放射部54から放射される熱と、気体温調装置50で温度調整された噴射口32より噴射される気体とを併用して、ガスシール機構3により生成された気流に起因する基板Pの温度変化を補償してもよいし、放射部54から放射される熱のみで基板Pの温度変化を補償するようにしてもよい。あるいは、第2実施形態で説明したような吹き出し口36から吹き出される気体、または第3実施形態で説明したようなシール部材70に設けられた放射部53から放射される熱を併用して、基板Pの温度変化を補償するようにしてもよい。
【0081】
また、複数の放射部54のうち、加熱すべき放射部54の位置や数、加熱のタイミングや時間などの制御は、基板Pに熱が伝わるまでの時間遅れを考慮して、フィードフォワード方式にしてもよい。なお、本実施形態では放射部54を遠赤外線セラミックヒータで構成するものとしたが、これに限らず、例えばペルチェ素子など他の熱電素子、あるいは温度制御される気体を噴出する装置などで構成してもよい。また、本実施形態では基板ホルダPHが基板ステージPSTの一部と一体に形成される(即ち、基材99が基板ステージPSTの一部である)ものとしたが、基板ホルダPHと基板ステージPSTとを別々に構成してもよい。
【0082】
なお、上述の第1〜第4実施形態において、例えば
図9に示すような、温度センサ80が設けられたダミー基板DPに対してテスト露光を行い、そのときの温度を温度センサ80で計測し、温度センサ80の計測結果に基づいて、実際に基板Pの露光を行うときに、噴射口32から噴射する気体の温度、吹き出し口36から吹き出す気体の温度、及び放射部53、54から放射する熱量などを最適化することができる。
【0083】
図9において、ダミー基板DPは、デバイス製造用の基板Pと略同じ大きさ及び形状を有しており、基板ホルダPHはダミー基板DPを保持可能である。ダミー基板DPの表面には複数の温度センサ80が設けられている。温度センサ80は、ダミー基板DPの表面に設けられた複数のセンサ素子81を有している。センサ素子81は、例えば熱電対により構成されている。温度センサ80のセンサ素子81の計測部(プローブ)は、ダミー基板DPの表面に露出している。また、ダミー基板DP上には、温度センサ80の温度計測信号を記憶する記憶素子85が設けられている。記憶素子85とセンサ素子81(温度センサ80)とは信号伝達線(ケーブル)83を介して接続されており、センサ素子81(温度センサ80)の温度計測信号は、信号伝達線(ケーブル)83を介して記憶素子85に送られる。制御装置CONTは、記憶素子85に記憶されている温度計測結果を抽出する(読み出す)ことができる。
【0084】
なおダミー基板DPとして、半導体ウエハを用意し、その上にMEMS等の形成技術を使ってセンサ素子を直接作り込んでもよく、この場合、センサーアンプ、通信回路等をそのウエハ上に作り込むことができる。
【0085】
図9のダミー基板DPを基板ホルダPHで保持し、ダミー基板DPと投影光学系PLとの間に液体LQを満たした状態で、ガスシール機構3によりダミー基板DP上に気流を生成しつつ、例えば基板Pの露光動作時と全く同様に、投影光学系PLの像面側で基板ステージPSTを移動することにより、制御装置CONTは、ガスシール機構3により生成された気流に起因するダミー基板DPの温度変化を求めることができる。そして、制御装置CONTは、ダミー基板DP上の温度センサ80の計測結果に基づいて、液体LQの温度とダミー基板DPの温度とがほぼ等しくなるように、例えば噴射口32から噴射される気体の温度を気体温調装置50を使って調整し、そのときの調整量(補正量)を記憶する。そして、制御装置CONTは、基板Pを露光するときに、記憶した調整量に基づいて、噴射口32から噴射される気体の温度を気体温調装置50を使って調整することにより、ガスシール機構3により生成された気流に起因する基板Pの温度変化を補償しつつ、基板Pを露光することができる。同様に、制御装置CONTは、温度センサ80の計測結果に基づいて、液体LQの温度とダミー基板DPの温度とがほぼ等しくなるように、吹き出し口36から吹き出される気体の温度を第2気体温調装置52を使って調整し、そのときの調整量を記憶し、基板Pを露光するときには、記憶した調整量に基づいて、吹き出し口36から吹き出される気体の温度を第2気体温調装置52を使って調整することにより、ガスシール機構3により生成された気流に起因する基板Pの温度変化を補償しつつ、基板Pを露光することができる。同様に、制御装置CONTは、温度センサ80の計測結果に基づいて、液体LQの温度と基板Pの温度とがほぼ等しくなるように、放射部53から放射する熱量を最適化することができる。なお、補償機構5における前述の調整量(補正量)は、基板P上のショット領域に対応付けて記憶してもよいし、あるいは基板PのXY位置に対応付けて記憶してもよい。
【0086】
また、温度センサ80を複数のショット領域S1〜S21のそれぞれに対応するように設けておくことにより、制御装置CONTは、温度センサ80の計測結果に基づいて、基板ホルダPHに埋設された複数の放射部54のそれぞれを、基板Pの移動状態に応じて最適に制御することができる。
【0087】
なお、上述の第1〜第4実施形態において、シール部材70は噴射口32から噴射される気体によって基板P上で浮上支持されるが、ガスシール機構3は光路空間K1に満たされる液体LQをシールするだけでもよい。この場合、ガスシール機構3とは別に気体軸受機構を設ける、あるいはシール部材70を所定の支持機構で移動可能に支持するようにしてもよい。例えば、投影光学系PLを支持する支持部材とシール部材70とを所定の支持機構で接続するようにしてもよい。また、ガスシール機構3は少なくともシール部材70が容易に交換または着脱可能な構成、例えば複数のブロックに分割可能な構成などとすることが好ましい。さらに、シール部材70に接続される配管類も着脱が容易であることが好ましい。
また、上述の第1〜第4実施形態では、ガスシール機構3によって液体LQを保持する(液体LQの不要な拡がりを防止する)ものとしたが、必ずしもガスシールを用いなくてもよい。例えば、少なくとも基板Pの露光動作時における、投影光学系PLの最終光学素子LS1(又はシール部材70の下面70A)と基板Pとの間隔を1〜3mm程度に設定して、毛細管現象を利用することより、液体LQを保持しつつ、液体LQの供給、回収を行うようにしてもよい。
さらに、上述の第1〜第3実施形態ではシール部材70に断熱材71を設けるものとしたが、断熱材を設ける代わりに、あるいは断熱材と組み合わせて、例えばシール部材70の温度を調整する機構を設けてもよい。勿論、補償機構5などに起因するシール部材70の温度変化、ひいては液体LQ、投影光学系PLなどの温度変化が所定の許容範囲内であるときは、前述した断熱材などを設けなくてもよい。
なお、上述の第1〜第4実施形態では、ガスシール機構3により生成された気流により液体LQの一部が気化することで生じる気化熱による基板Pの温度変化を補償するものとしたが、ガスシール機構3による気体の噴出を行わなくても液体LQの一部が気化し得るので、液体LQをシールする気体の噴出を行わない、あるいはガスシール機構3を設けない場合にも、前述の補償機構5によって気化熱による基板の温度変化を補償するようにしてもよい。
また、上述の第1〜第4実施形態では、光路空間K1に満たされる液体LQの温度と基板Pの温度とをほぼ等しくするものとしたが、前述の気化熱による基板Pの局所的な温度変化(即ち、露光精度の変動)が所定の許容範囲内となっているならば、液体LQの温度と基板Pの温度とを異ならせてもよい。
【0088】
上述したように、上記各実施形態では液体LQとして純水を用いている。純水は、半導体製造工場等で容易に大量に入手できるとともに、基板P上のフォトレジスト、光学素子(レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がないとともに、不純物の含有量が極めて低いため、基板Pの表面、及び投影光学系PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。なお工場等から供給される純水の純度が低い場合には、露光装置が超純水製造器を持つようにしてもよい。
【0089】
そして、波長が193nm程度の露光光ELに対する純水(水)の屈折率nはほぼ1.44と言われており、露光光ELの光源としてArFエキシマレーザ光(波長193nm)を用いた場合、基板P上では1/n、すなわち約134nmに短波長化されて高い解像度が得られる。更に、焦点深度は空気中に比べて約n倍、すなわち約1.44倍に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光学系PLの開口数をより増加させることができ、この点でも解像度が向上する。
【0090】
上記各実施形態では、投影光学系PLの先端に最終光学素子LS1が取り付けられており、このレンズにより投影光学系PLの光学特性、例えば収差(球面収差、コマ収差等)の調整を行うことができる。なお、投影光学系PLの先端に取り付ける光学素子としては、投影光学系PLの光学特性の調整に用いる光学プレートであってもよい。あるいは露光光ELを透過可能な平行平面板(カバープレートなど)であってもよい。
【0091】
なお、液体LQの流れによって生じる投影光学系PLの先端の光学素子と基板Pとの間の圧力が大きい場合には、その光学素子を交換可能とするのではなく、その圧力によって光学素子が動かないように堅固に固定してもよい。
【0092】
また、上記各実施形態では、投影光学系の先端の光学素子の像面側の光路空間を液体で満たしているが、国際公開第2004/019128号パンフレットに開示されているように、先端の光学素子のマスク側の光路空間も液体で満たす投影光学系を採用することもできる。
【0093】
さらに、上記各実施形態では、液浸機構1のうち液体LQの供給、回収を行うノズル部材と、ガスシール機構3のシール部材70とが同一の部材であるものとしたが、ノズル部材とシール部材とを異なる部材としてもよい。なお、液浸機構1(特にノズル部材)の構造は、上述の構造に限られず、例えば欧州特許公開第1420298号公報、国際公開第2004/055803号公報、国際公開第2004/057590号公報、国際公開第2005/029559号公報などに記載されているものも用いることができる。
【0094】
なお、上記各実施形態では液体LQが水(純水)であるが、水以外の液体であってもよい、例えば、露光光ELの光源がF
2レーザである場合、このF
2レーザ光は水を透過しないので、液体LQとしてはF
2レーザ光を透過可能な例えば、過フッ化ポリエーテル(PFPE)、フッ素系オイル等のフッ素系流体であってもよい。この場合、液体LQと接触する部分には、例えばフッ素を含む極性の小さい分子構造の物質で薄膜を形成することで親液化処理する。また、液体LQとしては、その他にも、露光光ELに対する透過性があってできるだけ屈折率が高く、投影光学系PLや基板P表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である。
さらに、液体LQとしては、屈折率が1.6〜1.8程度のものを使用してもよい。
また、石英及び蛍石よりも屈折率が高い材料(例えば1.6以上)で、少なくとも最終光学素子LS1を形成してもよい。液体LQとして、種々の液体、例えば超臨界流体を用いることも可能である。
【0095】
なお、上記各実施形態では干渉計システム(92、94)を用いてマスクステージMST、基板ステージPSTの位置情報を計測するものとしたが、これに限らず、例えばステージに設けられるスケール(回折格子)を検出するエンコーダシステムを用いてもよい。この場合、干渉計システムとエンコーダシステムの両方を備えるハイブリッドシステムとし、干渉計システムの計測結果を用いてエンコーダシステムの計測結果の較正(キャリブレーション)を行うことが好ましい。また、干渉計システムとエンコーダシステムとを切り替えて用いる、あるいはその両方を用いて、ステージの位置制御を行うようにしてもよい。
【0096】
なお、上記各実施形態の基板Pとしては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
【0097】
露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。
【0098】
また、露光装置EXとしては、第1パターンと基板Pとをほぼ静止した状態で第1パターンの縮小像を投影光学系(例えば1/8縮小倍率で反射素子を含まない屈折型投影光学系)を用いて基板P上に一括露光する方式の露光装置にも適用できる。この場合、更にその後に、第2パターンと基板Pとをほぼ静止した状態で第2パターンの縮小像をその投影光学系を用いて、第1パターンと部分的に重ねて基板P上に一括露光するスティッチ方式の一括露光装置にも適用できる。また、スティッチ方式の露光装置としては、基板P上で少なくとも2つのパターンを部分的に重ねて転写し、基板Pを順次移動させるステップ・アンド・スティッチ方式の露光装置にも適用できる。
【0099】
また、本発明は、特開平10−163099号公報、特開平10−214783号公報(対応する米国特許第6,590,634号)、特表2000−505958号公報(対応する米国特許第5,969,441号)あるいは米国特許第6,208,407号などに開示されているような複数の基板ステージを備えたツインステージ型の露光装置にも適用できる。本国際出願で指定又は選択された国の法令で許容される限りにおいて、上記ツインステージ型の露光装置に関する公開公報及び米国特許の開示を援用して本文の記載の一部とする。
【0100】
更に、特開平11−135400号公報、特開2000−164504号公報(対応する米国特許第6,897,963号)などに開示されているように、基板を保持する基板ステージと基準マークが形成された基準部材、及び/又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも本発明を適用することができる。本国際出願で指定又は選択された国の法令で許容される限りにおいて、上記計測ステージを備える露光装置に関する公開公報及び米国特許の開示を援用して本文の記載の一部とする。
【0101】
露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
【0102】
また、CDやDVD等のディスク媒体を製造するためのスタンパー用原版(所謂金型)を作るためのビーム描画装置においても、ビームスポット照射用の対物レンズと被描画原版との間に液体を満たす場合、本発明を同様に適用することができる。
【0103】
なお、上記各実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6,778,257号公報に開示されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスクとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いてもよい。
【0104】
また、国際公開第2001/035168号パンフレットに開示されているように、干渉縞を基板P上に形成することによって、基板P上にライン・アンド・スペースパターンを露光する露光装置(リソグラフィシステム)にも本発明を適用することができる。
さらに、例えば特表2004−519850号公報(対応する米国特許第6,611,316号)に開示されているように、2つのマスクのパターンを、投影光学系を介して基板上で合成し、1回のスキャン露光によって基板上の1つのショット領域をほぼ同時に二重露光する露光装置にも本発明を適用することができる。
【0105】
以上のように、本願実施形態の露光装置EXは、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
【0106】
半導体デバイス等のマイクロデバイスは、
図10に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを基板に露光する処理を含むステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。