【0026】
次に、所定の大きさの容量を有する焼成容器を準備し、この焼成容器にリチウムイオン電池正極材用前駆体の粉末を充填する。次に、リチウムイオン電池正極材用前駆体の粉末が充填された焼成容器を、焼成炉へ移設し、焼成を行う。焼成は、酸素雰囲気下で所定時間加熱保持することにより行う。また、101〜202KPaでの加圧下で焼成を行うと、さらに組成中の酸素量が増加するため、好ましい。
焼成工程における加熱保持温度は、リチウムイオン電池正極材の一次粒子の粒径に影響を与える。本発明では、原料に炭酸リチウムを用いているため、水酸化リチウムを原料として用いる場合に比べて反応性が弱い。従って、高温で長時間の焼成が必要となるが、この高温且つ長時間の焼成によって粒子の結晶性が向上し正極材の一次粒子の粒径が大きくなる。本発明では、原料に炭酸リチウムを用いて、750℃以上で12時間以上の焼成を行うことで、一次粒子の
平均粒径
D50を1.6〜2.3μmに制御している。これに対し、水酸化リチウムを原料とする場合、通常、反応性が高いために焼成温度は低下し、焼成時間は少なくなるため、生成する一次粒子の
平均粒径
D50は0.5μm程度と小さくなってしまう。
その後、焼成容器から粉末を取り出し、市販の解砕装置等を用いて解砕を行うことにより正極活物質の粉体を得る。このときの解砕は、微粉がなるべく生じないように、適宜解砕強度及び解砕時間を調整して行う。具体的には、当該解砕により、解砕後の粒径6μm以下の微粉の体積%が4.0〜7.0%、好ましくは4.3〜6.9%となるように調整する。
このように解砕時の微粉の発生を制御することにより、体積当たりの粉末の表面積が減少するため、粒子表面の水酸化リチウム量を抑制することができる。
また、炭酸リチウムは水分があるような場所では、水酸化リチウムに変わってしまうため、解砕を乾燥空気雰囲気下で行うことで、水分を取り込まないように制御する。
【実施例】
【0027】
以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。
【0028】
(実施例1〜15)
まず、表1に記載の投入量の炭酸リチウムを純水3.2リットルに懸濁させた後、金属塩溶液を4.8リットル投入した。ここで、金属塩溶液は、各金属の硝酸塩の水和物を、各金属が表1に記載の組成比になるように調整し、また全金属モル数が14モルになるように調整した
。
この処理により溶液中に微小粒のリチウム含有炭酸塩が析出したが、この析出物を、フィルタープレスを使用して濾別した。
続いて、析出物を乾燥してリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。
次に、焼成容器を準備し、この焼成容器内にリチウム含有炭酸塩を充填した。次に、焼成容器を、大気圧下、酸素雰囲気炉に入れて、表1に記載の焼成温度で10時間加熱保持した後冷却して酸化物を得た。
次に、小型粉砕機(ホソカワミクロン ACM−2EC)を用いて、所定の粒径の微粉が所定の粒度分布の分布幅となるように、得られた酸化物を解砕し、リチウムイオン二次電池正極材の粉末を得た。
【0029】
(実施例16)
実施例16として、実施例16として、原料の各金属を表1に示すような組成とし、金属塩を塩化物とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1〜15と同様の処理を行った。
【0030】
(実施例17)
実施例17として、原料の各金属を表1に示すような組成とし、金属塩を硫酸塩とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1〜15と同様の処理を行った。
【0031】
(実施例18)
実施例18として、原料の各金属を表1に示すような組成とし、焼成を大気圧下ではなく120KPaの加圧下で行った以外は、実施例1〜15と同様の処理を行った。
【0032】
(実施例19)
実施例19として、原料の各金属を表1に示すような組成とし、金属塩を硝酸塩とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1〜15と同様の処理を行った。
【0033】
(比較例1〜3)
比較例1として、原料の各金属を表1に示すような組成とし、最後の酸化物の解砕について実施例1〜15のような調整を行わない以外は、実施例1〜15と同様の処理を行った。
【0034】
(比較例4〜6)
比較例4〜6として、原料の各金属を表1に示すような組成とし、酸素雰囲気炉ではなく空気雰囲気炉で焼成工程を行った点以外は、比較例1と同様の処理を行った。
【0035】
(評価)
−正極材組成の評価−
各正極材中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP−OES)で測定し、各金属の組成比(モル比)を算出した。また、酸素含有量はLECO法で測定しαを算出した。これらの結果が表1に記載の通りであることを確認した。
【0036】
−一次粒子の粒径の評価−
各正極材の粉末を採取し、一次粒子の
平均粒径
D50をレーザー回折粒度分布測定機(マイクロトラックMT3300EX II)によって測定した。
【0037】
−アルカリ量の評価−
正極材中のアルカリ量は、2段階中和滴定法により測定した。具体的には、各正極材の粉末を1g採取し、50mLの純水に加えて10分間撹拌した後、ろ過を行った。続いて、マクロピペットを用いて、ろ液10mLと純水15mLとを50mLのトールビーカーに入れた。続いて、指示薬としてフェノールフタレインを加えたビーカーに撹拌子を入れてスターラーに乗せ、ビーカー内に電極をセットした。次に、ビーカー内の溶液を撹拌させながら、0.01NのHClを滴下した。
ここで、2段階中和滴定法は、以下のアルカリと酸との反応に基づく。
LiOH+HCl→LiCl+H
2O (1)
Li
2CO
3+HCl→LiCl+LiHCO
3 (2)
LiHCO
3+HCl→LiCl+CO
2+H
2O (3)
(1)及び(2)の反応においてpH7.8を検出し、当該測定点を第1終点とした。また、(3)の反応においてpH3.9を検出し、当該測定点を第2終点とした。そして、第1の終点までに用いたHCl量をx(mL)とし、第2終点までに用いたHCl量をy(mL)として、Li
2CO
3量を(y−x)×0.369質量%、LiOH量を(2x−y)×0.12質量%により求めた。
また、算出したLiOH量とLi
2CO
3量とから、それらの比(LiOH量/Li
2CO
3量)を求めた。
なお、上記Li
2CO
3量に係る計算式:(y−x)×0.369質量%、及び、LiOH量に係る計算式:(2x−y)×0.12質量%は、以下の式から導かれたものである。
・上記(3)式のHClのモル数は以下の式で求められる。
(y−x)×1/1000×0.01mol/L=10
-5×(y−x)mol
・上記(2)のLi
2CO
3のモル数は上記HClのモル数と同じであり、Li
2CO
3の分子量が73.89であり、滴定には50mLのうちの10mL使用し、元の正極材の投入量が1gであることから、Li
2CO
3量は以下の式で求められる。
73.89g/mol×10
-5×(y−x)mol×(50mL/10mL)÷1g×100%=(y−x)×0.369質量%
・上記(1)のLiOHのモル数は以下の式で求められる。
x×1/1000×0.01mol/L-10
-5×(y−x)mol=10
-5×(2x−y)mol
・LiOHの分子量が23.95であり、滴定には50mLのうちの10mL使用し、元の正極材の投入量が1gであることから、LiOH量は以下の式で求められる。
23.95g/mol×10
-5×(2x−y)mol×(50mL/10mL)÷1g×100%=(2x−y)×0.12質量%
【0038】
−電池特性の評価−
各正極材と、導電材と、バインダーとを85:8:7の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極材料と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF
6をEC−DMC(1:1)に溶解したものを用いて、電流密度0.2Cの際の放電容量を測定した。また電流密度0.2Cのときの電池容量に対する電流密度2Cのときの、放電容量の比を算出してレート特性を得た。さらに、容量保持率は、室温で1Cの放電電流で得られた初期放電容量と100サイクル後の放電容量を比較することによって測定した。
これらの結果を表1及び2に示す。
【0039】
【表1】
【0040】
【表2】
【0041】
(評価)
実施例1〜19は、いずれも電池特性が良好であった。また、原料の金属塩を硝酸塩とした実施例1〜15、18は特に電池特性が良好であった。さらに、焼成を大気圧下ではなく加圧下で行った実施例18は最も電池特性が良好であった。
比較例1〜3は、原料とした金属の組成は本発明と同様に酸素が過剰に含まれているものであったが、解砕条件が原因で、電池特性が不良であった。比較例4〜6は、原料とした金属の組成が本発明の範囲外のものであり、さらに解砕条件が原因で、電池特性が不良であった。