特許第5966357号(P5966357)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ニコンの特許一覧

<>
  • 特許5966357-撮像素子および撮像装置 図000002
  • 特許5966357-撮像素子および撮像装置 図000003
  • 特許5966357-撮像素子および撮像装置 図000004
  • 特許5966357-撮像素子および撮像装置 図000005
  • 特許5966357-撮像素子および撮像装置 図000006
  • 特許5966357-撮像素子および撮像装置 図000007
  • 特許5966357-撮像素子および撮像装置 図000008
  • 特許5966357-撮像素子および撮像装置 図000009
  • 特許5966357-撮像素子および撮像装置 図000010
  • 特許5966357-撮像素子および撮像装置 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5966357
(24)【登録日】2016年7月15日
(45)【発行日】2016年8月10日
(54)【発明の名称】撮像素子および撮像装置
(51)【国際特許分類】
   H04N 5/374 20110101AFI20160728BHJP
   H04N 5/351 20110101ALI20160728BHJP
   H04N 5/378 20110101ALI20160728BHJP
【FI】
   H04N5/335 740
   H04N5/335 510
   H04N5/335 780
【請求項の数】11
【全頁数】17
(21)【出願番号】特願2011-288161(P2011-288161)
(22)【出願日】2011年12月28日
(65)【公開番号】特開2013-138328(P2013-138328A)
(43)【公開日】2013年7月11日
【審査請求日】2014年11月10日
(73)【特許権者】
【識別番号】000004112
【氏名又は名称】株式会社ニコン
(74)【代理人】
【識別番号】100072718
【弁理士】
【氏名又は名称】古谷 史旺
(74)【代理人】
【識別番号】100116001
【弁理士】
【氏名又は名称】森 俊秀
(72)【発明者】
【氏名】壽圓 正博
【審査官】 松永 隆志
(56)【参考文献】
【文献】 特開2010−187317(JP,A)
【文献】 特開2009−290296(JP,A)
【文献】 特開2008−312169(JP,A)
【文献】 特開2009−077345(JP,A)
【文献】 特開2008−294618(JP,A)
【文献】 特開2004−312785(JP,A)
【文献】 特開2009−177378(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 5/374
H04N 5/351
H04N 5/378
(57)【特許請求の範囲】
【請求項1】
行列状に配置され、入射光を電気信号に変換する画素と、
複数の前記画素と列方向に接続され、ノイズ成分を含む暗信号と受光成分を含む明信号とを前記画素から読み出す複数の垂直信号線と、
前記垂直信号線に読み出された信号を増幅するカラムアンプと、
前記カラムアンプの入力側で前記垂直信号線に接続され、所定電圧外の信号をクリップするクリップ部と、
前記カラムアンプの出力側に配置され、信号をA/D変換して出力するカラムA/D変換部と、
前記カラムアンプから出力される前記暗信号のレベルが閾値よりも大きいときに前記カラムA/D変換部に報知信号を出力する検出部と、を備え、
前記カラムA/D変換部は、前記報知信号の受信時に画素値の情報として白レベルに相当するコードを出力し、
前記カラムアンプおよび前記カラムA/D変換部の電源電圧は、前記画素および前記クリップ部の電源電圧よりも低い撮像素子。
【請求項2】
請求項1に記載の撮像素子において、
前記明信号と前記暗信号とを保持するサンプルホールド部を、前記カラムアンプの後段にさらに備え、
前記検出部は、前記サンプルホールド部から出力された前記暗信号のレベルと、前記閾値とを比較して前記報知信号を出力し、
前記カラムA/D変換部は、前記報知信号の受信時に前記カラムアンプからの出力に拘わらず、前記白レベルに相当するコードを出力する撮像素子。
【請求項3】
請求項1または請求項2に記載の撮像素子において、
前記カラムA/D変換部は、前記報知信号の受信時に前記暗信号の階調値を所定の黒基準値に置換し、前記明信号の階調値と前記黒基準値との差分を求めることで、前記白レベルに相当するコードを出力する撮像素子。
【請求項4】
請求項1から請求項のいずれか1項に記載の撮像素子において、
前記閾値を規定する黒基準電圧を前記検出部に供給する電圧生成部をさらに備え、
前記電圧生成部は、
電源電圧と前記カラムアンプの基準電圧との間に接続された抵抗器群と、
前記抵抗器群との接続を切り替えて、抵抗分割比の変化により前記黒基準電圧を調整する調整部と、を含む撮像素子。
【請求項5】
請求項1から請求項のいずれか1項に記載の撮素子を備える撮像装置。
【請求項6】
画素部から読み出された信号を出力する信号線と、
前記信号及び基準信号を比較して、前記信号が前記基準信号よりも大きい場合に報知信号を出力する検出部と、
前記信号線及び前記検出部に接続される信号変換部であって、前記報知信号が入力された場合、前記信号を一定のデジタル信号として出力する信号変換部と、を備え、
前記信号変換部の電源電圧は、前記画素部の電源電圧よりも低い撮像素子。
【請求項7】
請求項6に記載の撮像素子において、
前記画素部及び前記検出部の間の前記信号線に接続され、前記信号線の電圧が所定の閾値を超えないように調整するクリップ部を備え、
前記信号変換部の電源電圧は、前記クリップ部の電源電圧よりも低い撮像素子。
【請求項8】
請求項6または請求項7に記載の撮像素子において、
前記信号線に接続され、前記信号を増幅する増幅部を備え、
前記検出部は、前記増幅部により増幅された前記信号と前記基準信号を比較して、前記信号が前記基準信号よりも大きい場合に前記報知信号を出力する撮像素子。
【請求項9】
請求項8に記載の撮像素子において、
前記増幅部の電源電圧は、前記画素部の電源電圧よりも低い撮像素子。
【請求項10】
請求項8または請求項9に記載の撮像素子において、
前記増幅部の電源電圧は、前記クリップ部の電源電圧よりも低い撮像素子。
【請求項11】
請求項6から請求項10のいずれか1項に記載の撮像素子を備える撮像装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、撮像素子および撮像装置に関する。
【背景技術】
【0002】
CMOS(相補性金属酸化膜半導体)型の固体撮像素子に高輝度の光が入射すると、受光素子の電荷転送トランジスタがオフであってもフローティングディフュージョンに電荷がオーバーフローする場合がある。上記の場合、画素の暗信号のレベルが非常に大きくなるため、画素の明信号から暗信号を減算した後の画素値が小さくなってしまう(例えば、太陽等の高輝度被写体が画像上で黒く表現される)。
【0003】
上記の対策として、例えば、カラムアンプの入力側および出力側にそれぞれクリップ回路を設けた固体撮像素子が提案されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】国際公開WO2009/047883号
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、信号処理の高速化のために、カラムアンプやクリップ回路を低電圧駆動させると、明信号と暗信号とのレベル差が非常に小さくなる。そして、従来の技術におけるカラムアンプの出力側のクリップ回路を低電圧駆動させると、クリップ回路の不感帯の分も考慮した明信号と暗信号との差が十分確保できず、その結果、画像上で高輝度被写体が黒化する現象を十分に抑制できない可能性がある。
【課題を解決するための手段】
【0006】
本発明の一態様である撮像素子は、行列状に配置され、入射光を電気信号に変換する画素と、複数の垂直信号線と、カラムアンプと、クリップ部と、カラムA/D変換部と、検出部と、を備える。垂直信号線は、複数の画素と列方向に接続され、ノイズ成分を含む暗信号と受光成分を含む明信号とを画素から読み出す。カラムアンプは、垂直信号線に読み出された信号を増幅する。クリップ部は、カラムアンプの入力側で垂直信号線に接続され、所定電圧外の信号をクリップする。カラムA/D変換部は、カラムアンプの出力側に配置され、信号をA/D変換して出力する。検出部は、カラムアンプから出力される暗信号のレベルが閾値よりも大きいときにカラムA/D変換部に報知信号を出力する。そして、カラムA/D変換部は、報知信号の受信時に画素値の情報として白レベルに相当するコードを出力する。カラムアンプおよびカラムA/D変換部の電源電圧は、画素およびクリップ部の電源電圧よりも低い。
本発明の他の態様である撮像素子は、画素部から読み出された信号を出力する信号線と、信号及び基準信号を比較して、信号が基準信号よりも大きい場合に報知信号を出力する検出部と、信号線及び検出部に接続される信号変換部であって、報知信号が入力された場合、信号を一定のデジタル信号として出力する信号変換部と、を備え、信号変換部の電源電圧は、画素部の電源電圧よりも低い。
【発明の効果】
【0007】
本発明の一態様または他の態様の撮像素子によれば、低電圧駆動時においても、画像上で高輝度被写体が黒化する現象を抑制できる。
【図面の簡単な説明】
【0008】
図1】一の実施形態での固体撮像素子の構成例を示すブロック図
図2】画素PXの回路構成例を示す図
図3】第1信号出力回路の回路構成例を示す図
図4】バイアス回路における電圧生成部の構成例を示す図
図5】一の実施形態での固体撮像素子の動作例を示すタイミングチャート
図6】他の実施形態での第1信号出力回路の回路構成例を示す図
図7】他の実施形態での固体撮像素子の動作例を示すタイミングチャート
図8】撮像装置の構成例を示す図
図9】画素の変形例を示す図
図10】画素の変形例を示す図
【発明を実施するための形態】
【0009】
<一の実施形態の説明>
図1は、一の実施形態での固体撮像素子の構成例を示すブロック図である。一の実施形態での固体撮像素子は、シリコン基板上にCMOS(相補性金属酸化膜半導体)プロセスを使用して形成されたXYアドレス型の固体撮像素子である。一の実施形態の固体撮像素子は、例えば、デジタルスチルカメラやビデオカメラなどの撮像装置に実装される(なお、撮像装置の構成例は後述する)。
【0010】
固体撮像素子11は、画素アレイ12と、複数の水平制御信号線13と、複数の垂直信号線14と、第1信号出力回路15と、第2信号出力回路16と、駆動回路17と、バイアス回路18とを有している。ここで、駆動回路17は、例えば撮像装置の制御部からの指示を受けて、画素アレイ12、第1信号出力回路15、第2信号出力回路16に対して各種の制御信号を供給する。また、バイアス回路18は、電圧生成部の一例であって、第1信号出力回路15、第2信号出力回路16に対して各種の基準電圧を供給する。
【0011】
また、一の実施形態では、画素アレイ12、駆動回路17およびバイアス回路18の電源電圧は、フォトダイオードからの信号読み出しの容易性と、画像信号のダイナミックレンジを広げる点とを考慮して比較的高い第1電圧に設定される。一方、第1信号出力回路15および第2信号出力回路16の電源電圧は、回路を高速駆動させるために、第1電圧よりも低い第2電圧に設定されている。一例として、第1電圧は5Vであり、第2電圧は3V以下である。
【0012】
画素アレイ12は、入射光を電気信号に変換する複数の画素PXを有している。画素アレイ12の画素PXは、受光面上で第1方向D1および第2方向D2にマトリクス状に配置されている。以下、第1方向D1および第2方向D2を、行方向D1および列方向D2ともそれぞれ称する。なお、図1では画素PXの配列を簡略化して示すが、実際の固体撮像素子の受光面にはさらに多数の画素が配列されることはいうまでもない。
【0013】
ここで、各々の画素PXの前面には、それぞれが異なる色成分の光を透過させる複数種類のカラーフィルタが公知のベイヤ配列で配置されている。そのため、画素PXは、カラーフィルタでの色分解によって各色に対応する電気信号を出力する。すなわち、画素アレイ12の奇数行には緑(Gb),青(B)のカラーフィルタが交互に配列され、画素アレイ12の偶数行には赤(R),緑(Gr)のカラーフィルタが交互に配列される。そして、画素アレイ12の全体では緑色のフィルタが市松模様をなすように配列される。これにより、固体撮像素子11は、撮像時にカラーの画像を取得できる。
【0014】
また、画素アレイ12の各行には、駆動回路17に接続された水平制御信号線13がそれぞれ配置されている。各々の水平制御信号線13は、駆動回路17から出力される制御信号(後述の選択信号φSEL、リセット信号φRST、転送信号φTX)を、行方向D1に並ぶ画素群にそれぞれ供給する。
【0015】
また、画素アレイ12の各列には、垂直信号線14がそれぞれ配置されている。列方向D2に配置された複数の画素PXは、列毎に設けられた垂直信号線14により互いに接続されている。すなわち、画素アレイ12において、同じ列に配置された複数の画素PXからの出力信号は共通の垂直信号線14を介して出力される。
【0016】
なお、一の実施形態では、緑画素(Gb)および赤画素(R)に対応する奇数列の垂直信号線14は、図1の下側に位置する第1信号出力回路15にそれぞれ接続される。また、青画素(B)および緑画素(Gr)に対応する偶数列の垂直信号線14は、図1の上側に位置する第2信号出力回路16にそれぞれ接続される。
【0017】
ここで、図2を参照しつつ、画素PXの回路構成例を説明する。
【0018】
画素PXは、フォトダイオードPDと、転送トランジスタTXと、リセットトランジスタRSTと、増幅トランジスタAMPと、選択トランジスタSELと、フローティングディフュージョンFDとをそれぞれ有している。
【0019】
フォトダイオードPDは、入射光の光量に応じて光電変換により信号電荷を生成する。転送トランジスタTXは、転送信号φTXの高レベル期間にオンし、フォトダイオードPDに蓄積された信号電荷をフローティングディフュージョンFDに転送する。
【0020】
転送トランジスタTXのソースはフォトダイオードPDであり、転送トランジスタTXのドレインはフローティングディフュージョンFDである。フローティングディフュージョンFDは、例えば、半導体基板に不純物を導入して形成された拡散領域である。なお、フローティングディフュージョンFDは、増幅トランジスタAMPのゲートと、リセットトランジスタRSTのソースとにそれぞれ接続されている。
【0021】
リセットトランジスタRSTは、リセット信号φRSTの高レベル期間にオンし、フローティングディフュージョンFDを電源電圧VDDにリセットする。また、増幅トランジスタAMPは、ドレインが電源電圧VDDに接続され、ゲートがフローティングディフュージョンFDにそれぞれ接続され、ソースが選択トランジスタSELのドレインに接続されており、垂直信号線14に接続された定電流源19(図1では不図示)を負荷とするソースフォロア回路を構成する。増幅トランジスタAMPは、フローティングディフュージョンFDの電圧値に応じて、選択トランジスタSELを介して読み出し電流を出力する。選択トランジスタSELは、選択信号φSELの高レベル期間にオンし、増幅トランジスタAMPのソースを垂直信号線14に接続する。
【0022】
なお、画素PXのリセットトランジスタRSTがオンした状態では、ノイズ成分を含む暗信号が垂直信号線14に読み出される。また、上記のフォトダイオードPDからフローティングディフュージョンFDに転送された電荷に基づいて、ノイズ成分および受光成分を含む明信号が垂直信号線14に読み出される。
【0023】
図1に戻って、第1信号出力回路15および第2信号出力回路16は、画素アレイ12を隔てて上下に並列して配置されている。第1信号出力回路15は、図1の下側に配置されており、画素アレイ12の奇数列の画像信号(GbまたはR)を行方向D1に向けて色毎に読み出す。また、第2信号出力回路16は、図1の上側に配置されており、画素アレイ12の偶数列の画像信号(BまたはGr)を行方向D1に向けて色毎に読み出す。このように、画素アレイ12の両側(上下)にそれぞれ信号出力回路を設けることで、画素アレイ12から画像信号を高速に読み出すことができる。なお、第2信号出力回路16は偶数列の垂直信号線14が接続される点を除いて第1信号出力回路15と基本構成が同一である。そのため、本明細書では第1信号出力回路15の構成例のみを説明し、第2信号出力回路16に関する重複説明は省略する。
【0024】
第1信号出力回路15は、それぞれ複数のカラムアンプ22およびカラムA/D変換部25(以下、カラムADCとも称する)と、水平データバス26とを含む。カラムアンプ22およびカラムADC25は、1本の垂直信号線14に対してそれぞれ1ペアずつ設けられており、各ペアにおいてカラムアンプ22の後段にカラムADC25がそれぞれ接続される。そして、第1信号出力回路15では、カラムアンプ22およびカラムADC25のペアが行方向D1に沿って複数配置される。また、水平データバス26は、第1信号出力回路15内に1つのみ設けられる。水平データバス26は、各々のカラムADC25の出力と接続されており、カラムアンプ22およびカラムADC25で処理された後の画像信号を行単位で外部に出力する。
【0025】
次に、図3を参照しつつ、第1信号出力回路15の詳細な回路構成例を説明する。簡単のため、図3では、1本の垂直信号線14に対応する要素のうち、画素PXからカラムADC25までの構成例を示す。
【0026】
図3に示すように、第1信号出力回路15では、1本の垂直信号線14ごとに、定電流源19、クリップ部21、カラムアンプ22、サンプルホールド部23、検出部24、カラムADC25がそれぞれ設けられている。
【0027】
クリップ部21は、カラムアンプ22の入力側で垂直信号線14に接続されている。このクリップ部21は、画素PXから暗信号を読み出すときに、所定電圧外の暗信号をクリップする。
【0028】
例えば、クリップ部21は、カスコード接続されたクリップ電圧生成トランジスタMCL1とクリップ電圧制御トランジスタMCL2とを有している。トランジスタMCL1は、ドレインが電源電圧VDDに接続され、ソースがトランジスタMCL2のドレインに接続され、ゲートでクリップ電圧Vrefdclpを受けている。また、トランジスタMCL2のソースは垂直信号線14に接続され、トランジスタMCL2のゲートは制御信号φDclp_ENを受けている。なお、制御信号φDclp_ENが高レベルであるときに、クリップ部21は、接続されている垂直信号線14の電圧を所定値にクリップする。なお、クリップ部21の電源電圧は、第1電圧であってもよい。
【0029】
カラムアンプ22は、画素PXから垂直信号線14に読み出された信号を列ごとに反転増幅する反転増幅器である。カラムアンプ22は、垂直信号線14に一端が接続された入力容量Ciと、演算増幅器OPと、帰還容量Cf1,Cf2と、スイッチAZSW,SW1,SW2とを有している。
【0030】
演算増幅器OPの非反転入力端子(+)には、PGA基準電圧Vrefpgaが供給される。一方、演算増幅器OPの反転入力端子(−)は、入力容量Ciの他端と接続されている。なお、演算増幅器OPの出力端子は、後段のサンプルホールド部23に接続される。
【0031】
また、スイッチAZSWは、一端が演算増幅器OPの出力端子に接続され、他端が演算増幅器OPの反転入力端子に接続されている。スイッチAZSWは、制御信号φPGA_AZが高レベルのときにオンとなり、スイッチAZSWのオンによりカラムアンプ22のリセットが行われる。
【0032】
また、帰還容量Cf1は、一端が演算増幅器OPの出力端子に接続され、他端がスイッチSW1を介して演算増幅器OPの反転入力端子に接続されている。また、帰還容量Cf2は、一端が演算増幅器OPの出力端子に接続され、他端がスイッチSW2を介して演算増幅器OPの反転入力端子に接続されている。スイッチSW1,SW2は、カラムアンプ22のゲインを調整するためのスイッチであり、それぞれ制御信号φPGAga1,φPGAga2が高レベルのときにオンとなる。そして、帰還容量Cf1、Cf2は、スイッチSW1,SW2のオンオフに応じて可変する合成容量を形成する。
【0033】
サンプルホールド部23は、入力されたアナログ信号を所定のタイミングでサンプリングし、サンプリングしたアナログ信号を所定の期間ホールドして後段のカラムADC25に出力する。このサンプルホールド部23は、明信号選択スイッチMS1と、明信号出力スイッチMS2と、暗信号選択スイッチMN1と、暗信号出力スイッチMN2と、容量CTS,CTDと、サンプルホールドアンプSHAとを有している。
【0034】
例えば、明信号選択スイッチMS1は、制御信号φSH_S_inが高レベルの期間にオンし、カラムアンプ22から入力された明信号(受光成分およびノイズ成分を含む画像信号)を容量CTSに出力する。また、明信号出力スイッチMS2は、制御信号φSH_S_oが高レベルの期間にオンし、容量CTSに保持された電圧をサンプルホールドアンプSHAに出力する。
【0035】
一方、例えば、暗信号選択スイッチMN1は、制御信号φSH_D_inが高レベルの期間にオンし、カラムアンプ22から入力された暗信号を容量CTDに出力する。また、暗信号出力スイッチMN2は、制御信号φSH_D_oが高レベルの期間にオンし、容量CTDに保持された電圧をサンプルホールドアンプSHAに出力する。
【0036】
また、サンプルホールドアンプSHAは、非リセット時に明信号または暗信号の電圧をホールドして出力するアンプである。このサンプルホールドアンプSHAのリセットは、制御信号φSH_RSTが高レベルになったときに行われる。なお、サンプルホールドアンプSHAの出力は、検出部24およびカラムADC25にそれぞれ接続されている。
【0037】
検出部24は、カラムアンプ22で増幅後の暗信号のレベルが閾値以上であるかを検出する回路であって、コンパレータCOMとラッチ回路LAとを有する。
【0038】
コンパレータCOMは、サンプルホールドアンプSHAの暗信号の出力と、黒レベルの閾値となる基準電圧(黒基準電圧Vrefdcomp)とを比較し、暗信号の出力が黒基準電圧Vrefdcompよりも大きいときに報知信号を出力する。また、ラッチ回路LAは、制御信号φDarkcomp_ENの高レベルのときに、コンパレータCOMの出力をラッチし、ラッチした電圧をカラムADC25に出力する。
【0039】
なお、リセット動作時のインジェクションやフィードスルーを考慮すると、一般的に暗信号は、カラムアンプ22のPGA基準電圧Vrefpgaよりも高い電圧となる。つまり、暗信号のレベルを判定するためには、黒基準電圧VrefdcompとしてPGA基準電圧Vrefpgaよりも若干高い電圧をコンパレータCOMに供給する必要がある。一の実施形態でのバイアス回路18は、抵抗分割により黒基準電圧Vrefdcompを生成する。
【0040】
一例として、図4に、バイアス回路18における電圧生成部の構成例を示す。電圧生成部は、抵抗器群27と、調整部28とを有している。抵抗器群27は、電源電圧VDDとPGA基準電圧Vrefpgaとの間に複数の抵抗器を直列接続して形成される。抵抗器群27の各抵抗器間では、抵抗分割のレベルがそれぞれ異なっている。また、調整部28は、各抵抗器間の接続点のうちから任意の接続点を選択し、黒基準電圧Vrefdcompの出力と接続するセレクタである。上記の調整部28により、抵抗器群27との接続点が切り替わることで抵抗分割比が変化し、黒基準電圧Vrefdcompが調整される。かかる構成により、セレクタの設定のみで黒基準電圧Vrefdcompを所望の値に調整できる。
【0041】
図3に戻って、カラムADC25は、入力された明信号および暗信号をA/D変換する。また、カラムADC25は、A/D変換後に明信号のレベルから暗信号のレベルを減算し、ノイズ成分を除去した画素値の情報を水平データバス26に出力する。なお、一の実施形態でのカラムADC25は、検出部24から報知信号を受信したときには、カラムアンプ22からの出力に拘わらず、画素値の情報として白レベルに相当するコード(最終的な画素値となる階調範囲での最大値を示すコード)を出力する。
【0042】
以下、図5のタイミングチャートを参照しつつ、一の実施形態での固体撮像素子の動作例を説明する。図5では、固体撮像素子の任意のカラム(列)において、垂直ブランギング期間(1H)での各制御信号の挙動を示す。また、図5では、制御信号の変化とともに、垂直信号線の出力波形の一例と、カラムアンプ22からの出力波形の一例とを併せて示す。
【0043】
(タイミングT0):画素PXのリセットトランジスタRSTのゲートにリセット信号φRSTが入力され、画素PXのフローティングディフュージョンFDがリセット電圧にリセットされる。また、画素PXの選択トランジスタSELのゲートに選択信号φSELが入力され、フローティングディフュージョンFDに蓄積されている電荷は、増幅トランジスタAMPを介して垂直信号線14に読み出される。
【0044】
(タイミングT1):リセット信号φRSTが低レベルになってフローティングディフュージョンFDのリセットが解除された後、制御信号φDclip_ENが高レベルとなる。これにより、垂直信号線14のクリップが行われる。
【0045】
なお、T1の段階で、制御信号φSH_D_in,φSH_S_in,φSH_D_o,φSH_S_oはいずれも低レベルであり、制御信号φSH_RSTは高レベルである。
【0046】
(タイミングT2):制御信号φPGA_AZが高レベルとなり、カラムアンプ22のスイッチAZSWがオンされる。これにより、帰還容量Cf1,Cf2が短絡されてカラムアンプ22がリセット状態となり、カラムアンプ22の出力はPGA基準電圧Vrefpgaに等しくなる。なお、カラムアンプ22がリセットされている期間は、制御信号φPGA_AZが高レベルの期間である。
【0047】
(タイミングT3):制御信号φPGA_AZが低レベルになってカラムアンプ22のリセットが解除された後、制御信号φSH_D_inが高レベルになる。これにより、カラムアンプ22によって垂直信号線14に読み出された暗信号が増幅された後、サンプルホールド部23の容量CTDへ暗信号が蓄積されることとなる。
【0048】
(タイミングT4):制御信号φSH_D_inが低レベルとなって、容量CTDへの暗信号の蓄積が終了する。このとき、制御信号φDclip_ENが低レベルとなって、垂直信号線14のクリップが解除される。
【0049】
(タイミングT5):画素PXの転送トランジスタTXのゲートに転送信号φTXが入力され、フォトダイオードPDに蓄積されている信号電荷がフローティングディフュージョンFDに転送される。このとき、フローティングディフュージョンFDの電圧は、フォトダイオードPDから転送される電荷量に応じて低下し、増幅トランジスタAMPおよび選択トランジスタSELを介して垂直信号線14に読み出される信号電圧も低下する。
【0050】
(タイミングT6):制御信号φSH_S_inが高レベルとなる。これにより、カラムアンプ22によって垂直信号線14に読み出された明信号が増幅された後、サンプルホールド部23の容量CTSへ明信号が蓄積されることとなる。なお、サンプルホールド部23の容量CTSへ明信号が蓄積される期間は、制御信号φSH_S_inが高レベルの期間である。
【0051】
(タイミングT7):制御信号φSH_S_inが低レベルとなった後、制御信号φSH_RSTが低レベルとなり、サンプルホールドアンプSHAのリセットが解除される。このとき、制御信号φSH_D_oが高レベルとなり、容量CTDに保持された電圧がサンプルホールドアンプSHAに出力される。これにより、カラムADC25および検出部24に暗信号が出力される。なお、検出部24のコンパレータCOMは、暗信号の出力と黒基準電圧Vrefdcompとを比較し、暗信号の出力が黒基準電圧Vrefdcompよりも大きいときに報知信号(例えば高レベルの信号)を出力する。
【0052】
(タイミングT8):制御信号φSH_S_oが高レベルの期間において、制御信号φDarkcomp_ENが高レベルとなる。これにより、検出部24のラッチ回路LAは、コンパレータCOMの出力電圧をラッチしてカラムADC25に出力する。
【0053】
(タイミングT9):制御信号φSH_S_oが低レベルとなった後、制御信号φSH_RSTが高レベルとなり、サンプルホールドアンプSHAが再びリセットされる。
【0054】
(タイミングT10):制御信号φSH_RSTが低レベルとなり、サンプルホールドアンプSHAのリセットが解除された後、制御信号φSH_S_oが高レベルとなり、容量CTSに保持された電圧がサンプルホールドアンプSHAに出力される。これにより、カラムADC25に明信号が出力される。
【0055】
そして、カラムADC25は、上記の期間(1H)に読み出された画素の信号を、次の画素の信号読み出し期間中にA/D変換する。また、カラムADC25は、A/D変換後に明信号から暗信号を減算して画素値の情報を取得する。なお、上記のタイミングT8でラッチされた報知信号が高レベルであるときには、カラムADC25は、カラムアンプ22からの出力に拘わらず、画素値の情報として白レベルに相当するコードを出力する。
【0056】
次に、一の実施形態の固体撮像素子に、高輝度の光が入射した場合について説明する。
【0057】
固体撮像素子11に高輝度の光が入射すると、画素PXの転送トランジスタTXがオフであってもフローティングディフュージョンFDに電荷がオーバーフローする場合がある。このとき、フローティングディフュージョンFDの電圧は低下し、暗信号を読み出すときの垂直信号線14の電圧も徐々に低下していく。上記のケースでは、通常、カラムアンプ22の入力側に接続されたクリップ部21の動作によって所定電圧外の暗信号がクリップされるため、カラムアンプ22から出力される暗信号は小さな値となる(なお、この場合の垂直信号線およびカラムアンプの波形は、図5中破線で示す)。つまり、明信号から暗信号を減算した後の画素値はほぼ正常な値となり、画像上において被写体の明るい部分は明るく、暗い部分は暗く表現される。
【0058】
しかし、例えば、カラムアンプ22のゲインが高倍率の場合、垂直信号線14で扱う信号は比較的小振幅の信号(例えば0.1〜0.5V以下)となり、かつ上記の撮影環境下で発生するオーバーフローは比較的小さなレベルとなる可能性がある。一方、アナログのクリップ回路には不感帯が必ず存在する。
【0059】
よって、カラムアンプ22のゲインが高倍率であるときに、クリップ部21の不感帯にかかる暗信号が高いゲインで増幅されると、暗信号のレベルが本来のレベルよりも非常に大きくなってしまう(この場合の垂直信号線およびカラムアンプの波形は、図5中実線で示す)。つまり、かかるケースでは、明信号から暗信号をそのまま減算して画素値を求めると、高輝度被写体であっても画素値が小さくなって、画像上での高輝度被写体が黒く表現されてしまう。
【0060】
上記の対策として、一の実施形態の固体撮像素子11では、暗信号の出力が黒基準電圧Vrefdcompよりも大きいときに検出部24が報知信号を出力する。そして、カラムADC25は、報知信号を受信したときに、画素値の情報として白レベルに相当するコードを出力する。これにより、一の実施形態では、暗信号の出力が浮き上がるケースにおいて画素値が白レベルになるので、高輝度被写体が黒く表現されることを防止できる。
【0061】
特に、一の実施形態では、信号読みだしの高速化のために撮像素子の周辺回路を低電圧駆動させた場合にも、カラムアンプ22の入力側に接続されたクリップ部21で対処しきれない高輝度被写体の黒化現象を防止できる。
【0062】
<他の実施形態の説明>
図6は、他の実施形態での第1信号出力回路15の回路構成例を示す図である。図6は、上述した一の実施形態における図4の構成に対応する。そのため、他の実施形態において、一の実施形態と共通する要素については同一符号を付して重複説明を省略する。
【0063】
他の実施形態の構成はデジタルCDS(相関二重サンプリング)を行う場合の回路構成例である。図6に示す第1信号出力回路15は、サンプルホールド部23がなく、カラムアンプ22の出力が検出部24およびカラムADC25に接続される点で図4の例と相違する。また、図6の例では、カラムADC25の入力側にはスイッチADC_inが設けられている。スイッチADC_inは、制御信号φADC_inが高レベルのときにオンとなり、カラムアンプ22の出力をカラムADC25に入力する。なお、他の実施形態でのカラムADC25は、検出部24から報知信号を受信したときには、暗信号の階調値を予め設定された黒基準値に置換する。この黒基準値は、例えば通常の撮影条件下で得られる暗信号のレベルに相当する値であって、比較的小さな値である。
【0064】
以下、図7のタイミングチャートを参照しつつ、他の実施形態での固体撮像素子の動作例を説明する。なお、図7に示すタイミングT11〜T13の説明は、図5の例でのタイミングT0〜T2の説明とそれぞれ共通であるので、重複説明は省略する。
【0065】
(タイミングT14):制御信号φPGA_AZが低レベルになってカラムアンプ22のリセットが解除された後、制御信号φADC_inが高レベルになる。これにより、垂直信号線14に読み出された暗信号は、カラムアンプ22によって増幅された後、カラムADC25に入力される。
【0066】
なお、上記の暗信号は検出部24にも入力される。そのため、検出部24のコンパレータCOMは、暗信号の出力と黒基準電圧Vrefdcompとを比較し、暗信号の出力が黒基準電圧Vrefdcompよりも大きいときに報知信号(例えば高レベルの信号)を出力する。
【0067】
(タイミングT15):暗信号読み出し時(制御信号φADC_inが高レベルの期間)において、制御信号φDarkcomp_ENが高レベルとなる。これにより、検出部24のラッチ回路LAは、コンパレータCOMの出力電圧をラッチしてカラムADC25に出力する。
【0068】
(タイミングT16):制御信号φADC_inが低レベルとなって、カラムADC25への暗信号の入力が終了する。このとき、制御信号φDclip_ENが低レベルとなって、垂直信号線14のクリップが解除される。
【0069】
T16の後に、カラムADC25は暗信号のA/D変換を実行し、上記の暗信号をラッチして保持する。なお、上記のタイミングT15でラッチされた報知信号が高レベルであるときには、カラムADC25は入力された暗信号の出力を使用せず、暗信号の階調値を予め設定された黒基準値に置換する。
【0070】
(タイミングT17):画素PXの転送トランジスタTXのゲートに転送信号φTXが入力され、フォトダイオードPDに蓄積されている信号電荷がフローティングディフュージョンFDに転送される。このとき、フローティングディフュージョンFDの電圧は、フォトダイオードPDから転送される電荷量に応じて低下し、増幅トランジスタAMPおよび選択トランジスタSELを介して垂直信号線14に読み出される信号電圧も低下する。
【0071】
(タイミングT18):制御信号φADC_inが高レベルになり、垂直信号線14に読み出された明信号は、カラムアンプ22によって増幅された後、カラムADC25に入力される。
【0072】
なお、T18から所定期間経過後に制御信号φADC_inは低レベルとなる。その後にカラムADC25は明信号のA/D変換を実行し、上記の明信号をラッチして保持する。
【0073】
そして、他の実施形態の第1信号出力回路15では、各カラムADC25に保持された画素PXの明信号および暗信号が水平データバス26によって行方向D1に走査される。そして、水平データバス26の一端に設けられた差動アンプにより、画素ごとに明信号から暗信号が減算される。これにより、第1信号出力回路15から画素値の情報が出力される。
【0074】
他の実施形態においては、暗信号の出力が黒基準電圧Vrefdcompよりも大きく、暗信号の出力が浮き上がるケースにおいて、カラムADC25が暗信号を小さな値の黒基準値に置換する。上記のケースでは明信号は非常に大きな値となるので、置換後の暗信号を明信号から減算すると、画素値の情報としては白レベルに相当するコードが出力されることとなる。
【0075】
したがって、他の実施形態の構成によっても、一の実施形態とほぼ同様の効果を得ることができる。
【0076】
<撮像装置の構成例>
図8は、撮像装置の一例である電子カメラの構成例を示す図である。
【0077】
電子カメラは、撮像光学系31と、上述した一の実施形態または他の実施形態の固体撮像素子32と、アナログフロントエンド回路33(AFE回路)と、画像処理部34と、モニタ35と、記録I/F36と、制御部37と、操作部38とを有している。ここで、固体撮像素子32、アナログフロントエンド回路33、画像処理部34、操作部38はそれぞれ制御部37と接続されている。
【0078】
撮像光学系31は、例えばズームレンズやフォーカスレンズを含む複数のレンズで構成されている。なお、簡単のため、図8では撮像光学系31を1枚のレンズで図示する。
【0079】
固体撮像素子32は、撮像光学系31を通過した光束による被写体の結像を撮像する。この撮像素子の出力はアナログフロントエンド回路33に接続されている。
【0080】
電子カメラの撮影モードにおいて、固体撮像素子32は、操作部38の入力に応じて、不揮発性の記憶媒体(39)への記録を伴う記録用静止画像や動画像を撮影する。また、固体撮像素子32は、記録用静止画像の撮影待機時にも所定間隔ごとに観測用の画像(スルー画像)を連続的に撮影する。時系列に取得されたスルー画像のデータ(あるいは上記の動画像のデータ)は、モニタ35での動画表示や制御部37による各種の演算処理に使用される。なお、動画撮影時に、電子カメラはスルー画像を記録するようにしてもよい。
【0081】
アナログフロントエンド回路33は、パイプライン式に入力される画像信号に対して、アナログ信号処理、A/D変換処理を順次施す回路である。アナログフロントエンド回路33の出力は画像処理部34に接続される。
【0082】
画像処理部34は、アナログフロントエンド回路33から入力されるデジタルの画像信号に対して画像処理(色補間処理、階調変換処理、輪郭強調処理、ホワイトバランス調整など)を行う。なお、画像処理部34には、モニタ35および記録I/F36が接続される。
【0083】
モニタ35は、各種の画像を表示する表示デバイスである。例えば、モニタ35は、制御部37の制御により、撮影モード下でのスルー画像の動画表示(ビューファインダ表示)を行う。
【0084】
記録I/F36は、不揮発性の記憶媒体39を接続するためのコネクタを有している。そして、記録I/F36は、コネクタに接続された記憶媒体39に対してデータの書き込み/読み込みを実行する。上記の記憶媒体39は、ハードディスクや、半導体メモリを内蔵したメモリカードなどで構成される。なお、図8では記憶媒体39の一例としてメモリカードを図示する。
【0085】
制御部37は、電子カメラの動作を統括的に制御するプロセッサである。操作部38は、記録用静止画像の取得指示(例えばレリーズ釦の全押し操作)をユーザから受け付ける。
【0086】
上記の電子カメラは、上述した一の実施形態または他の実施形態の固体撮像素子32を用いるので、低電圧駆動による高速な信号読み出しを行いつつ、高輝度被写体が黒く表現されることを防止できる。
【0087】
<実施形態の補足事項>
(補足1):上記した他の実施形態において、カラムADC25が明信号と暗信号との減算を水平走査の前に行うようにしてもよい。
【0088】
(補足2):上記の各実施形態において、第1信号出力回路15、第2信号出力回路16にそれぞれ全ての垂直信号線を接続してもよい。このとき、第1信号出力回路15、第2信号出力回路16にそれぞれカラムセレクタを設け、第1信号出力回路15、第2信号出力回路16との間で、奇数列の読み出しと偶数列の読み出しとを1行毎に交互に切り替えてもよい。この場合、例えば、緑画素(Gr、Gb)の信号を、同じカラムアンプ22を介して読み出すことができるので、緑画素(Gr、Gb)の信号のレベル差を小さくできる。
【0089】
(補足3):上記実施形態では、1画素が4つのトランジスタで構成される例を説明した。しかし、本発明の固体撮像素子は、リセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELを複数の画素間で共有するもの(例えば、2画素で5つのトランジスタを有する2.5Tr構成、または4画素で7つのトランジスタを有する1.75Tr構成)であってもよい。
【0090】
図9は、画素PXの変形例を示している。図9に示した画素PXの構成は、増幅トランジスタAMP、選択トランジスタSEL、リセットトランジスタRSTおよびフローティングディフュージョンFDが、画素アレイの列方向D2に隣接する2画素(PX1〜PX2)で共用されている点を除いて、上述した図2の画素PXと同様である。なお、図に示す画素PXについて、列方向D2に隣接する複数のフローティングディフュージョンFDをスイッチで接続し、さらに列方向D2での加算読み出しを可能としてもよい(この場合の図示は省略する)。
【0091】
図10は、画素PXの変形例を示している。図10に示した画素PXの構成は、増幅トランジスタAMP、選択トランジスタSEL、リセットトランジスタRSTおよびフローティングディフュージョンFDが、画素アレイの列方向D2に隣接する4画素(PX1〜PX4)で共用されている点を除いて、上述した図2の画素PXと同様である。
【0092】
(補足4):上記実施形態では、撮像装置の一例として電子カメラの構成を説明した。しかし、本発明の撮像装置は、固体撮像素子と各種の信号処理回路とをオンチップで一体化したものであってもよい。
【0093】
(補足5):上記実施形態において、固体撮像素子のカラーフィルタアレイはベイヤ配列に限定されることなく、他のカラーフィルタアレイ(例えば、マゼンタ、グリーン、シアンおよびイエローを用いる補色系カラーフィルタなど)であってもよい。
【0094】
以上の詳細な説明により、実施形態の特徴点および利点は明らかになるであろう。これは、特許請求の範囲が、その精神および権利範囲を逸脱しない範囲で前述のような実施形態の特徴点および利点にまで及ぶことを意図する。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良および変更に容易に想到できるはずであり、発明性を有する実施形態の範囲を前述したものに限定する意図はなく、実施形態に開示された範囲に含まれる適当な改良物および均等物によることも可能である。
【符号の説明】
【0095】
11…固体撮像素子、12…画素アレイ、13…水平制御信号線、14…垂直信号線、15…第1信号出力回路、16…第2信号出力回路、17…駆動回路、18…バイアス回路、19…定電流源、21…クリップ部、22…カラムアンプ、23…サンプルホールド部、24…検出部、25…カラムA/D変換部(カラムADC)、26…水平データバス、27…抵抗器群、28…調整部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10