(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0034】
以下、本発明を詳細に説明する。
[炭素繊維前駆体アクリル繊維用油剤]
本発明の炭素繊維前駆体アクリル繊維用油剤(以下、単に「油剤」とも表記する。)は、以下に記載のグループA、B、C、D、E、およびFからなる群より選ばれる2種以上の化合物を含み、アクリル繊維からなる油剤処理前の炭素繊維前駆体アクリル繊維束へ付与される。ここで、「2種以上の化合物」とは、異なる2つ以上のグループ(群)の中から化合物が選ばれることを意味する。なお、1つのグループ(群)の中からは1つの化合物が選ばれてもよいし、2つ以上の化合物が選ばれてもよい。
以下、本明細書中において、油剤処理前の炭素繊維前駆体アクリル繊維束を「前駆体繊維束」という。
【0035】
<グループA>
グループAに含まれる化合物Aは、ヒドロキシ安息香酸と、炭素数8〜20の1価の脂肪族アルコールとの縮合反応により得られる化合物(以下、「ヒドロキシ安息香酸エステル」ともいう。)である。
【0036】
ヒドロキシ安息香酸エステルは、耐炎化工程において十分な耐熱性を有しているうえに、ヒドロキシル基の水素結合による前駆体繊維束への定着性、またアルキル鎖により繊維と搬送ローラーやバーなどとの間の円滑性が保て、繊維束への損傷を低減することが可能となる。
また、ヒドロキシ安息香酸エステルは、後述する非イオン系界面活性剤を用い、乳化法によって水分中に安定に分散するため、前駆体繊維束に均一に付着しやすく、良好な機械的物性を有する炭素繊維束を得るための炭素繊維前駆体アクリル繊維束の製造に効果的である。
【0037】
ヒドロキシ安息香酸エステルの原料となるヒドロキシ安息香酸としては、2−ヒドロキシ安息香酸(サリチル酸)、3−ヒドロキシ安息香酸、4−ヒドロキシ安息香酸のいずれでもよいが、耐熱性、前駆体繊維素束に付与した際の繊維束と搬送ローラーやバーなどとの円滑性の観点で良好であることから4−ヒドロキシ安息香酸が好ましい。また、安息香酸のカルボキシル基は、炭素数1〜3の短鎖アルコールとのエステルであってもよい。炭素数1〜3の短鎖アルコールとしては、メタノール、エタノール、ノルマル又はイソプロパノールが挙げられる。
【0038】
ヒドロキシ安息香酸エステルの原料となるアルコールとしては、1価の脂肪族アルコールから選ばれる1種以上のアルコールを用いる。
1価の脂肪族アルコールの炭素数は8〜20である。炭素数が8以上であれば、ヒドロキシ安息香酸エステルの熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭素数が20以下であれば、ヒドロキシ安息香酸エステルの粘度が高くなりすぎず、固形化しにくいので、油剤であるヒドロキシ安息香酸エステルを含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。
1価の脂肪族アルコールの炭素数は11〜20が好ましく、14〜20がより好ましい。
【0039】
炭素数8〜20の1価の脂肪族アルコールとしては、例えばオクタノール、2−エチルヘキサノール、ノナノール、イソノニルアルコール、デカノール、イソデカノール、イソトリデカノール、テトラデカノール、ヘキサデカノール、ステアリルアルコール、イソステアリルアルコール、オクチルドデカノール等のアルキルアルコール;オクテニルアルコール、ノネニルアルコール、デセニルアルコール、2−エチルデセニルアルコール、ウンデセニルアルコール、ドデセニルアルコール、テトラデセニルアルコール、ペンタデセニルアルコール、ヘキサデセニルアルコール、ヘプタデセニルアルコール、オクタデセニルアルコール(オレイルアルコール)、ノナデセニルアルコール、イコセニルアルコール等のアルケニルアルコール;オクチニルアルコール、ノニニルアルコール、デシニルアルコール、ウンデシニルアルコール、ドデシニルアルコール、トリデシニルアルコール、テトラデシニルアルコール、ヘキサデシニルアルコール、オクタデシニルアルコール、ノナデシニルアルコール、エイコシニルアルコール等のアルキニルアルコールなどが挙げられる。中でも後述する油剤処理液の調製のし易さ、紡糸工程において繊維搬送ローラーへ付着した場合に搬送ローラーに繊維が巻き付くなどの工程障害が起こりにくく、かつ所望の耐熱性を有するという、ハンドリング・工程通過性・性能のバランスから、オクタデセニルアルコール(オレイルアルコール)が好ましい。
これら脂肪族アルコールは、1種単独で用いてもよく、2種以上を併用してもよい。
【0040】
ヒドロキシ安息香酸エステルとしては、下記式(1a)で示される構造の化合物が好ましい。
【0042】
式(1a)中、R
1aは炭素数8〜20の炭化水素基である。炭化水素基の炭素数が8以上であれば、ヒドロキシ安息香酸エステルの熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が20以下であれば、ヒドロキシ安息香酸エステルの粘度が高くなりすぎず、固形化しにくいので、油剤であるヒドロキシ安息香酸エステルを含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。炭化水素基の炭素数は11〜20が好ましい。
【0043】
上記式(1a)で示される構造の化合物は、ヒドロキシ安息香酸と、炭素数8〜20の1価の脂肪族アルコールとの縮合反応により得られるヒドロキシ安息香酸エステルである。
従って、式(1a)中のR
1aは、炭素数8〜20の1価の脂肪族アルコールに由来する。R
1aとしては、炭素数8〜20のアルキル基、アルケニル基、アルキニル基のいずれでもよく、直鎖状もしくは分岐鎖状であってもよい。R
1aは、11〜20が好ましく、14〜20がより好ましい。
アルキル基としては、例えばn−およびiso−オクチル基、2−エチルヘキシル基、n−およびiso−ノニル基、n−およびiso−デシル基、n−およびiso−ウンデシル基、n−およびiso−ドデシル基、n−およびiso−トリデシル基、n−およびiso−テトラデシル基、n−およびiso−ヘキサデシル基、n−およびiso−ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等が挙げられる。
アルケニル基としては、例えばオクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基等が挙げられる。
アルキニル基としては、例えば1−および2−オクチニル基、1−および2−ノニニル基、1−および2−デシニル基、1−および2−ウンデシニル基、1−および2−ドデシニル基、1−および2−トリデシニル基、1−および2−テトラデシニル基、1−および2−ヘキサデシニル基、1−および2−オクタデシニル基、1−および2−ノナデシニル基、1−および2−エイコシニル基等が挙げられる。
【0044】
ヒドロキシ安息香酸エステルは、ヒドロキシ安息香酸と、炭素数8〜20の1価の脂肪族アルコールとを、無触媒又は錫化合物、チタン化合物等の公知のエステル化触媒の存在下で縮合反応させることで得ることができる。縮合反応は、不活性ガス雰囲気中で行うことが好ましい。反応温度は、好ましくは160〜250℃、より好ましくは180〜230℃である。
縮合反応に供するヒドロキシ安息香酸とアルコール成分のモル比は、ヒドロキシ安息香酸1モルに対して、炭素数8〜20の1価の脂肪族アルコールが0.9〜1.3モルが好ましく、1.0〜1.2モルがより好ましい。なお、エステル化触媒を用いる場合は、縮合反応後、触媒を不活性化して、吸着剤により除去することが、ストランド強度の観点から好ましい。
【0045】
<グループB、C>
グループBに含まれる化合物Bは、カルボン酸成分として、シクロヘキサンジカルボン酸と、アルコール成分として、炭素数8〜22の1価の脂肪族アルコールとの縮合反応により得られる化合物(以下、「シクロヘキサンジカルボン酸エステルB」ともいう。)である。
一方、グループCに含まれる化合物Cは、カルボン酸成分として、シクロヘキサンジカルボン酸と、アルコール成分として、炭素数8〜22の1価の脂肪族アルコールと、炭素数2〜10の多価アルコールおよび/またはオキシアルキレン基の炭素数が2〜4のポリオキシアルキレングリコールとの縮合反応により得られる化合物(以下、「シクロヘキサンジカルボン酸エステルC」ともいう。)である。
以下、化合物Bと化合物Cとを総称して、「シクロヘキサンジカルボン酸エステル」ともいう。
【0046】
シクロヘキサンジカルボン酸エステルは、耐炎化工程において十分な耐熱性を有しているうえに、芳香環を有していないことから熱分解性にも優れ、炭素化工程において低分子化して炉内流通ガスと共に系外に排出されやすく、工程障害や品質低下の原因になりにくい。
また、シクロヘキサンジカルボン酸エステルは、後述する非イオン系界面活性剤を用い、乳化法によって水分中に分散しやすいため、前駆体繊維束に均一に付着しやすく、良好な機械的物性を有する炭素繊維束を得るための炭素繊維前駆体アクリル繊維束の製造に効果的である。
【0047】
シクロヘキサンジカルボン酸としては、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸のいずれでもよいが、合成のし易さ、耐熱性の点で1,4−シクロヘキサンジカルボン酸が好ましい。
シクロヘキサンジカルボン酸は、酸無水物であってもよく、炭素数1〜3の短鎖アルコールとのエステルであってもよい。炭素数1〜3の短鎖アルコールとしては、メタノール、エタノール、ノルマル又はイソプロパノールが挙げられる。
【0048】
シクロヘキサンジカルボン酸エステルの原料となるアルコールとしては、1価の脂肪族アルコール、多価アルコール、およびポリオキシアルキレングリコールからなる群より選ばれる1種以上のアルコールを用いる。
1価の脂肪族アルコールの炭素数は8〜22である。炭素数が8以上であれば、シクロヘキサンジカルボン酸エステルの熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭素数が22以下であれば、シクロヘキサンジカルボン酸エステルの粘度が高くなりすぎず、固形化しにくいので、油剤であるシクロヘキサンジカルボン酸エステルを含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。
1価の脂肪族アルコールの炭素数は、上記の観点から、12〜22が好ましく、15〜22がより好ましい。
【0049】
炭素数8〜22の1価の脂肪族アルコールとしては、例えばオクタノール、2−エチルヘキサノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、ヘンエイコサノール、ドコサノール等のアルキルアルコール;オクテニルアルコール、ノネニルアルコール、デセニルアルコール、ウンデセニルアルコール、ドデセニルアルコール、テトラデセニルアルコール、ペンタデセニルアルコール、ヘキサデセニルアルコール、ヘプタデセニルアルコール、オクタデセニルアルコール、ノナデセニルアルコール、イコセニルアルコール、ヘンイコセニルアルコール、ドコセニルアルコール、オレイルアルコール、ガドレイルアルコール、2−エチルデセニルアルコール等のアルケニルアルコール;オクチニルアルコール、ノニニルアルコール、デシニルアルコール、ウンデシニルアルコール、ドデシニルアルコール、トリデシニルアルコール、テトラデシニルアルコール、ヘキサデシニルアルコール、ステアリニルアルコール、ノナデシニルアルコール、エイコシニルアルコール、ヘンイコシニルアルコール、ドコシニルアルコール等のアルキニルアルコールなどが挙げられる。中でも後述する油剤処理液の調製のし易さ、紡糸工程において繊維搬送ローラーへ付着した場合に搬送ローラーに繊維が巻き付くなどの工程障害が起こりにくく、かつ所望の耐熱性を有するという、ハンドリング・工程通過性・性能のバランスから、オレイルアルコールが好ましい。
これら脂肪族アルコールは、1種単独で用いてもよく、2種以上を併用してもよい。
【0050】
多価アルコールの炭素数は2〜10である。炭素数が2以上であれば、シクロヘキサンジカルボン酸エステルの熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭素数が10以下であれば、シクロヘキサンジカルボン酸エステルの粘度が高くなりすぎず、固形化しにくいので、油剤であるシクロヘキサンジカルボン酸エステルを含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。
多価アルコールの炭素数は、上記の観点から、5〜10が好ましく、5〜8がより好ましい。
【0051】
炭素数2〜10の多価アルコールは、脂肪族アルコールでもよいし、芳香族アルコールでもよく、飽和アルコールであっても不飽和アルコールであってもよい。
このような多価アルコールとしては、例えばエチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、2−メチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、1,5−ヘキサンジオール、2−メチル−1,8−オクタンジオール、ネオペンチルグリコール、2−イソプロピル−1,4−ブタンジオール、2−エチル−1,6−ヘキサンジオール、2,4−ジメチル−1,5−ペンタンジオール、2,4−ジエチル−1,5−ペンタンジオール、1,3−ブタンジオール、2−エチル−1,3−ヘキサンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール等の2価アルコール;トリメチロールエタン、トリメチロールプロパン、ヘキサントリオール、グリセリン等の3価アルコールなどが挙げられるが、油剤組成物を低粘度下し、均一に油剤を前駆体繊維束に付着させる観点から、2価アルコールが好ましい。
【0052】
ポリオキシアルキレングリコールは、オキシアルキレン基の炭素数が2〜4の繰り返し単位を有し、2つの水酸基を有する。水酸基は両末端に有することが好ましい。
オキシアルキレン基の炭素数が2以上であれば、シクロヘキサンジカルボン酸エステルの熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、オキシアルキレン基の炭素数が4以下であれば、シクロヘキサンジカルボン酸エステルの粘度が高くなりすぎず、固形化しにくいので、油剤であるシクロヘキサンジカルボン酸エステルを含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着させることが可能となる。
【0053】
ポリオキシアルキレングリコールとしては、例えばポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール、ポリオキシブチレングリコールなどが挙げられる。オキシアルキレン基の平均モル数は、油剤組成物を低粘度下し、均一に油剤を繊維に付着させる観点から、1〜15が好ましく、1〜10がより好ましく、2〜8が更に好ましい。
炭素数2〜10の多価アルコールとオキシアルキレン基の炭素数が2〜4のポリオキシアルキレングリコールとは、両方用いてもよく、いずれか一方用いてもよい。
【0054】
シクロヘキサンジカルボン酸エステルBとしては、下記式(1b)で示される構造の化合物が好ましく、シクロヘキサンジカルボン酸エステルCとしては、下記式(2b)で示される構造の化合物が好ましい。
【0057】
式(1b)中、R
1bおよびR
2bはそれぞれ独立して、炭素数8〜22の炭化水素基である。炭化水素基の炭素数が8以上であれば、シクロヘキサンジカルボン酸エステルBの熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が22以下であれば、シクロヘキサンジカルボン酸エステルBの粘度が高くなりすぎず、固形化しにくいので、油剤であるシクロヘキサンジカルボン酸エステルBを含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。炭化水素基の炭素数は、上記の観点から、それぞれ独立して、12〜22好ましく、15〜22が更に好ましい。
R
1bおよびR
2bは、同じ構造であってもよいし、個々に独立した構造であってもよい。
【0058】
式(1b)で示される構造の化合物は、シクロヘキサンジカルボン酸と、炭素数8〜22の1価の脂肪族アルコールとの縮合反応により得られるシクロヘキサンジカルボン酸エステルである。従って、式(1b)中のR
1bおよびR
2bは、脂肪族アルコールに由来する。R
1bおよびR
2bとしては、炭素数8〜22のアルキル基、アルケニル基、アルキニル基のいずれでもよく、直鎖状もしくは分岐鎖状であってもよい。
アルキル基としては、例えばn−およびiso−オクチル基、2−エチルヘキシル基、n−およびiso−ノニル基、n−およびiso−デシル基、n−およびiso−ウンデシル基、n−およびiso−ドデシル基、n−およびiso−トリデシル基、n−およびiso−テトラデシル基、n−およびiso−ヘキサデシル基、n−およびiso−ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘンエイコシル、並びにドコシル基等が挙げられる。
アルケニル基としては、例えばオクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ヘンイコセニル基、ドコセニル基、オレイル基、ガドレイル基、並びに2−エチルデセニル基等が挙げられる。
アルキニル基としては、例えば1−および2−オクチニル基、1−および2−ノニニル基、1−および2−デシニル基、1−および2−ウンデシニル基、1−および2−ドデシニル基、1−および2−トリデシニル基、1−および2−テトラデシニル基、1−および2−ヘキサデシニル基、1−および2−ステアリニル基、1−および2−ノナデシニル基、1−および2−エイコシニル基、1−および2−ヘンイコシニル基、並びに1−および2−ドコシニル基等が挙げられる。
【0059】
シクロヘキサンジカルボン酸エステルBは、シクロヘキサンジカルボン酸と、炭素数8〜22の1価の脂肪族アルコールとを、無触媒又は錫化合物、チタン化合物等の公知のエステル化触媒の存在下で縮合反応させることで得ることができる。縮合反応は、不活性ガス雰囲気中で行うことが好ましい。
反応温度は、好ましくは160〜250℃、より好ましくは180〜230℃である。
縮合反応に供するカルボン酸成分とアルコール成分のモル比は、シクロヘキサンジカルボン酸1モルに対して、炭素数8〜22の1価の脂肪族アルコールが1.8〜2.2モルが好ましく、1.9〜2.1モルがより好ましい。
なお、エステル化触媒を用いる場合は、縮合反応後、触媒を不活性化して、吸着剤により除去することが、ストランド強度の観点から好ましい。
【0060】
一方、式(2b)中、R
3bおよびR
5bはそれぞれ独立して、炭素数8〜22の炭化水素基であり、R
4bは炭素数2〜10の炭化水素基またはオキシアルキレン基の炭素数が2〜4であるポリオキシアルキレングリコールから2つの水酸基を除去した2価の残基である。
R
3bおよびR
5bの場合、炭化水素基の炭素数が8以上であれば、シクロヘキサンジカルボン酸エステルCの熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が22以下であれば、シクロヘキサンジカルボン酸エステルCの粘度が高くなりすぎず、固形化しにくいので、油剤であるシクロヘキサンジカルボン酸エステルCを含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。R
3bおよびR
5bの炭化水素基の炭素数は、それぞれ独立して、12〜22好ましく、15〜22が更に好ましい。
R
3bおよびR
5bは、同じ構造であってもよいし、個々に独立した構造であってもよい。
【0061】
また、R
4bの場合、炭化水素基の炭素数が2以上、またはオキシアルキレン基の炭素数が2以上であれば、シクロヘキシル環に付加されたカルボン酸とエステル化し、シクロヘキシル環の間に架橋をかけ、熱的安定性の高い物質を得ることが容易となる。一方、炭化水素基の炭素数が10以下、またはオキシアルキレン基の炭素数が4以下であれば、シクロヘキサンジカルボン酸エステルCの粘度が高くなりすぎず、固形化しにくいので、油剤であるシクロヘキサンジカルボン酸エステルCを含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着させることが可能となる。
R
4bが炭化水素基の場合、炭素数は5〜10が好ましく、ポリアルキレングリコールから2つの水酸基を除去した残基の場合、オキシアルキレン基の炭素数は4が好ましい。
【0062】
式(2b)で示される構造の化合物は、シクロヘキサンジカルボン酸と、炭素数8〜22の1価の脂肪族アルコールと、炭素数2〜10の多価アルコールとの縮合反応又は、シクロヘキサンジカルボン酸と、炭素数8〜22の1価の脂肪族アルコールと、オキシアルキレン基の炭素数2〜4であるポリオキシアルキレングリコールとの縮合反応により得られるシクロヘキサンジカルボン酸エステルである。従って、式(2b)中のR
3bおよびR
5bは、脂肪族アルコールに由来する。R
3bおよびR
5bとしては、アルキル基、アルケニル基、アルキニル基のいずれでもよく、直鎖状もしくは分岐鎖状であってもよい。これらアルキル基、アルケニル基、アルキニル基としては、式(1b)のR
1bおよびR
2bの説明において先に例示したアルキル基、アルケニル基、アルキニル基が挙げられる。
R
3bおよびR
5bは、同じ構造であってもよいし、個々に独立した構造であってもよい。
【0063】
一方、R
4bは、炭素数2〜10の多価アルコールまたはオキシアルキレン基の炭素数2〜4であるポリオキシアルキレングリコールに由来する。
R
4bが炭素数2〜10の多価アルコールに由来する場合、R
4bは、直鎖状もしくは分岐鎖状の飽和又は不飽和の2価の炭化水素基が好ましく、具体的には、アルキル基、アルケニル基、アルキニル基の任意の炭素原子から水素を1つ取除いた置換基が好ましく挙げられる。炭素数は、前述のとおり、5〜10が好ましく、5〜8がより好ましい。
アルキル基としては、例えばエチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、n−およびiso−ヘプチル基、n−およびiso−オクチル基、2−エチルヘキシル基、n−およびiso−ノニル基、n−およびiso−デシル基等が挙げられる。
アルケニル基としては、例えばエテニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基等が挙げられる。
アルキニル基としては、例えばエチニル基、プロピニル基、ブチニル基、ペンチニル基、へキシニル基、へプチニル基、オクチニル基、ノニニル基、デシニル基等が挙げられる。
一方、R
4bがポリオキシアルキレングリコールに由来する場合、R
4bは、ポリオキシアルキレングリコールから2つの水酸基を除去した二価の残基であり、具体的には、−(OA)
pb−1−A−で表わされる(ここで、OAは炭素数2〜4のオキシアルキレン基、Aは炭素数2〜4のアルキレン基、pbは平均モル数を示す。)。pbは、1〜15が好ましく、1〜10がより好ましく、2〜8が更に好ましい。
オキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、オキシテトラメチレン基、オキシブチレン基などが挙げられる。
【0064】
シクロヘキサンジカルボン酸エステルCの縮合反応の条件は、前記のものと同じである。
縮合反応に供するカルボン酸成分とアルコール成分のモル比は、副反応を抑制する観点から、シクロヘキサンジカルボン酸1モルに対して、炭素数8〜22の1価の脂肪族アルコールを0.8〜1.6モル、且つ炭素数2〜10の多価アルコール及び/又はポリオキシアルキレングリコールを0.2〜0.6モル用いるのが好ましく、炭素数8〜22の1価の脂肪族アルコールが0.9〜1.4モル、且つ炭素数2〜10の多価アルコール及び/又はポリオキシアルキレングリコールを0.3〜0.55モル用いるのがより好ましく、炭素数8〜22の1価の脂肪族アルコールを0.9〜1.2モル、且つ炭素数2〜10の多価アルコール及び/又はポリオキシアルキレングリコールを0.4〜0.55モル用いるのが更に好ましい。
また、縮合反応に供するアルコール成分中、炭素数8〜22の1価の脂肪族アルコールと、炭素数2〜10の多価アルコールとポリオキシアルキレングリコールとの合計モル比は、炭素数8〜22の1価の脂肪族アルコール1モルに対して、炭素数2〜10の多価アルコールとポリオキシアルキレングリコールとの合計0.1〜0.6モルが好ましく、0.2〜0.6モルがより好ましく、0.4〜0.6モルが更に好ましい。
【0065】
グループB、Cの中から化合物を選択する場合は、耐炎化工程において飛散せずに安定して前駆体繊維束の表面に残存しやすい点で、上記式(2b)で示される構造のシクロヘキサンジカルボン酸エステルが特に好ましい。
なお、1分子中のシクロヘキシル環の数は、油剤組成物としたときの粘度が低く、水中に分散し易くなるうえに、エマルションの安定性が良好なため、1または2が好ましい。
【0066】
<グループD、E>
グループDに含まれる化合物Dは、シクロヘキサンジメタノールおよび/またはシクロヘキサンジオールと、炭素数8〜22の脂肪酸との縮合反応により得られる化合物、すなわちシクロヘキサンジメタノールエステルまたはシクロヘキサンジオールエステル(以下、これらを総称して「エステル(I)」とも表記する。)である。
一方、グループEに含まれる化合物Eは、シクロヘキサンジメタノールおよび/またはシクロヘキサンジオールと、炭素数8〜22の脂肪酸と、ダイマー酸との縮合反応により得られる化合物、すなわちシクロヘキサンジメタノールエステルまたはシクロヘキサンジオールエステル(以下、これらを総称して「エステル(II)」とも表記する。)である。
【0067】
エステル(I)およびエステル(II)は、後述する非イオン系界面活性剤を用い、乳化法によって水分中に分散しやすいため、前駆体繊維束に均一に付着しやすく、良好な機械的物性を有する炭素繊維束を得るための炭素繊維前駆体アクリル繊維束の製造に効果的である。
また、これらエステル(I)およびエステル(II)は脂肪族エステルであるため、熱分解性にも優れ、炭素化工程において低分子化して炉内流通ガスと共に系外に排出されやすく、工程障害や品質低下の原因になりにくい。
【0068】
エステル(I)は、シクロヘキサンジメタノールおよび/またはシクロヘキサンジオールと、炭素数8〜22の脂肪酸との縮合反応により得られる。
シクロヘキサンジメタノールとしては、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノールのいずれでもよいが、合成のし易さ、耐熱性の点で1,4−シクロヘキサンジメタノールが好ましい。
一方、シクロヘキサンジオールとしては、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオールのいずれでもよいが、合成のし易さ、耐熱性の点で1,4−シクロヘキサンジオールが好ましい。
【0069】
エステル(I)の原料となる脂肪酸の炭素数は8〜22である。すなわち、該脂肪酸の炭化水素基部分は、炭素数が7〜21である。
炭化水素基の炭素数が7以上であれば、エステル(I)の熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が21以下であれば、エステル(I)の粘度が高くなりすぎず、油剤であるエステル(I)を含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。
炭化水素基の炭素数は、上記の観点から11〜21が好ましく、15〜21が更に好ましい。すなわち、炭素数12〜22の脂肪酸が好ましく、炭素数16〜22の脂肪酸が更に好ましい。
炭素数8〜22の脂肪酸は炭素数1〜3の短鎖アルコールとのエステルであってもよい。炭素数1〜3の短鎖アルコールとしては、メタノール、エタノール、ノルマル又はイソプロパノールが挙げられる。
【0070】
炭素数8〜22の脂肪酸としては、例えばカプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、ツベルクロステアリン酸、アラキジン酸、アラキドン酸、ベヘン酸などが挙げられる。中でも後述する油剤処理液調製の際に水中へ分散しやすくなり、紡糸工程において繊維搬送ローラーへ付着した場合に起こりうる搬送ローラーに繊維が巻き付く工程障害が起こりにくく、かつ所望の耐熱性を有するという、ハンドリング性、工程通過性、性能のバランスから、オレイン酸が好ましい。
これら脂肪酸は、1種単独で用いてもよく、2種以上を併用してもよい。
【0071】
エステル(I)としては、下記式(1c)で示される構造の化合物が好ましい。
【0073】
式(1c)中、R
1cおよびR
2cはそれぞれ独立して、炭素数7〜21の炭化水素基である。炭化水素基の炭素数が7以上であれば、エステル(I)の熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が21以下であれば、エステル(I)の粘度が高くなりすぎず、油剤であるエステル(I)を含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。R
1cおよびR
2cの炭化水素基の炭素数は、上記の観点から、それぞれ独立して、11〜21が好ましく、15〜21が更に好ましい。
R
1cおよびR
2cは、同じ構造であってもよいし、個々に独立した構造であってもよい。
【0074】
R
1cおよびR
2cは、脂肪酸の炭化水素基に由来し、アルキル基、アルケニル基、アルキニル基のいずれでもよく、直鎖状もしくは分岐鎖状であってもよい。
アルキル基としては、例えばn−およびiso−ヘプチル基、n−およびiso−オクチル基、2−エチルヘキシル基、n−およびiso−ノニル基、n−およびiso−デシル基、n−およびiso−ウンデシル基、n−およびiso−ドデシル基、n−およびiso−トリデシル基、n−およびiso−テトラデシル基、n−およびiso−ヘキサデシル基、n−およびiso−ヘプタデシル基、ステアリル基、ノナデシル基、エイコシル基、並びにヘンエイコシル基等が挙げられる。
アルケニル基としては、例えばヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、オレイル基、ガドレイル基、並びに2−エチルデセニル基等が挙げられる。
アルキニル基としては、例えば1−および2−ドデシニル基、1−および2−トリデシニル基、1−および2−テトラデシニル基、1−および2−ヘキサデシニル基、1−および2−ステアリニル基、1−および2−ノナデシニル基、並びに1−および2−エイコシニル基等が挙げられる。
【0075】
式(1c)中、ncはそれぞれ独立して、0または1である。
エステル(I)の原料として、1,4−シクロヘキサンジメタノールを使用する場合、ncは1となり、1,4−シクロヘキサンジオールを使用する場合、ncは0となる。
【0076】
エステル(I)は、シクロヘキサンジメタノールおよび/またはシクロヘキサンジオールと、炭素数8〜22の脂肪酸とを、無触媒又は錫化合物、チタン化合物等の公知のエステル化触媒の存在下で縮合反応させることで得ることができる。縮合反応は、不活性ガス雰囲気中で行うことが好ましい。
反応温度は、好ましくは160〜250℃、より好ましくは180〜230℃である。
縮合反応に供するカルボン酸成分とアルコール成分のモル比は、シクロヘキサンジメタノールとシクロヘキサンジオールとの合計1モルに対して、炭素数8〜22の脂肪酸1.8〜2.2モルが好ましく、1.9〜2.1モルがより好ましい。
なお、エステル化触媒を用いる場合は、縮合反応後、触媒を不活性化して、吸着剤により除去することが、ストランド強度の観点から好ましい。
【0077】
一方、エステル(II)は、シクロヘキサンジメタノールおよび/またはシクロヘキサンジオールと、炭素数8〜22の脂肪酸と、ダイマー酸との縮合反応により得られる。
シクロヘキサンジメタノール、およびシクロヘキサンジオールとしては、エステル(I)の説明において先に例示したシクロヘキサンジメタノール、およびシクロヘキサンジオールが挙げられる。
【0078】
エステル(II)の原料となる脂肪酸の炭素数は8〜22である。すなわち、該脂肪酸の炭化水素基部分は、炭素数が7〜21である。
炭化水素基の炭素数が7以上であれば、エステル(II)の熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が21以下であれば、エステル(II)の粘度が高くなりすぎず、油剤であるエステル(II)を含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。
炭化水素基の炭素数は、上記の観点から11〜21が好ましく、15〜21が更に好ましい。すなわち、炭素数12〜22の脂肪酸が好ましく、炭素数16〜22の脂肪酸が更に好ましい。
炭素数8〜22の脂肪酸としては、エステル(I)の説明において先に例示した脂肪酸が挙げられる。
【0079】
ダイマー酸は、不飽和脂肪酸を二量化したものである。
ダイマー酸としては、炭素数16〜20の不飽和脂肪酸を二量化して得られる炭素数32〜40のジカルボン酸(HOOC−R
4c’−COOH)が好ましい。
この場合、R
4c’は炭素数30〜38の炭化水素基となる。炭化水素基の炭素数が30以上であれば、エステル(II)の熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が38以下であれば、エステル(II)の粘度が高くなりすぎず、油剤であるエステル(II)を含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。
これらの観点から、R
4c’は炭素数30〜38が好ましく、34が好ましい。すなわち、ダイマー酸としては炭素数32〜40のジカルボン酸が好ましく、36のジカルボン酸がより好ましい。
炭素数8〜22の脂肪酸及びダイマー酸は、前述のように、炭素数1〜3の短鎖アルコールとのエステルであってもよい。
【0080】
R
4c’としては、具体的に、炭素数30〜38のアルカン、アルケン、またはアルキンの任意の炭素原子から水素を2つ取除いた二価の置換基が挙げられる。このような二価の置換基としては、炭素数30〜38のアルキル基、アルケニル基、アルキニル基の任意の炭素原子から水素を1つ取除いた置換基が挙げられる。
【0081】
エステル(II)としては、下記式(2c)で示される構造の化合物が好ましい。
【0083】
式(2c)中、R
3cおよびR
5cはそれぞれ独立して、炭素数7〜21の炭化水素基であり、R
4cは炭素数30〜38の炭化水素基である。R
3cおよびR
5cの炭化水素基の炭素数が7以上、R
4cの炭化水素基の炭素数が30以上であれば、エステル(II)の熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、R
3cおよびR
5cの炭化水素基の炭素数が21以下、R
4cの炭化水素基の炭素数が38以下であれば、エステル(II)の粘度が高くなりすぎず、油剤であるエステル(II)を含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。
R
3cおよびR
5cの炭化水素基の炭素数は、それぞれ独立して、11〜21が好ましく、15〜21が更に好ましく、R
4cの炭化水素基の炭素数は34が好ましい。
【0084】
R
3cおよびR
5cは、脂肪酸の炭化水素基に由来し、アルキル基、アルケニル基、アルキニル基のいずれでもよく、直鎖状もしくは分岐鎖状であってもよい。これらアルキル基、アルケニル基、アルキニル基としては、式(1c)で示される化合物のR
1cおよびR
2cの説明において先に例示したアルキル基、アルケニル基、アルキニル基が挙げられる。
R
3cおよびR
5cは、同じ構造であってもよいし、個々に独立した構造であってもよい。
【0085】
一方、R
4cは、ダイマー酸の炭化水素基に由来し、アルカン、アルケン、またはアルキンの任意の炭素原子から水素を2つ取除いた二価の置換基である。R
4cは、直鎖状もしくは分岐鎖状であってもよい。
R
4cとしては、ダイマー酸の説明において先に例示したR
4c’と同じ二価の置換基が挙げられる。
【0086】
式(2c)中、mcはそれぞれ独立して、0または1である。
エステル(II)の原料として、1,4−シクロヘキサンジメタノールを使用する場合、mcは1となり、1,4−シクロヘキサンジオールを使用する場合、mcは0となる。
【0087】
エステル(II)の縮合反応の条件は、エステル(I)と同じである。
縮合反応に供するカルボン酸成分とアルコール成分のモル比は、副反応を抑制し、低粘度化する観点から、シクロヘキサンジメタノールとシクロヘキサンジオールとの合計1モルに対して、炭素数8〜22の脂肪酸を0.8〜1.6モル、且つダイマー酸を0.2〜0.6モル用いるのが好ましく、炭素数8〜22の脂肪酸を0.9〜1.4モル、且つダイマー酸を0.3〜0.55モル用いるのがより好ましく、炭素数8〜22の脂肪酸を1.0〜1.4モル、且つダイマー酸を0.3〜0.5モル用いるのが更に好ましい。
また、縮合反応に供するカルボン酸成分中、炭素数8〜22の脂肪酸とダイマー酸とのモル比は、炭素数8〜22の脂肪酸1モルに対して、ダイマー酸が0.1〜0.6モルが好ましく、0.1〜0.5モルがより好ましく、0.2〜0.4モルが更に好ましい。
【0088】
グループD、Eの中から化合物を選択する場合は、機械的物性に優れる炭素繊維束が得られやすい点で、上記式(2c)で示される構造のシクロヘキサンジメタノールエステルが特に好ましい。
【0089】
<グループF>
グループFに含まれる化合物Fは、3−イソシアナトメチル−3,5,5−トリメチルシクロヘキシル=イソシアネート(イソホロンジイソシアネート)と、炭素数8〜22の1価の脂肪族アルコールおよびそのポリオキシアルキレンエーテル化合物からなる群より選ばれる1種以上の化合物との反応により得られる化合物(以下、「イソホロンジイソシアネート−脂肪族アルコール付加物」ともいう。)である。
【0090】
イソホロンジイソシアネート−脂肪族アルコール付加物は、耐炎化工程において十分な耐熱性を有しているうえに、芳香環を有していないことから熱分解性にも優れ、炭素化工程において低分子化して炉内流通ガスと共に系外に排出されやすく、工程障害や品質低下の原因になりにくい。
また、イソホロンジイソシアネート−脂肪族アルコール付加物は、後述する非イオン系界面活性剤を用い、乳化法によって水分中に分散しやすいため、前駆体繊維束に均一に付着しやすく、良好な機械的物性を有する炭素繊維束を得るための炭素繊維前駆体アクリル繊維束の製造に効果的である。
【0091】
イソホロンジイソシアネート−脂肪族アルコール付加物の原料となるアルコールとしては、1種以上の1価の脂肪族アルコールを用いる。
1価の脂肪族アルコールの炭素数は8〜22である。炭素数が8以上であれば、イソホロンジイソシアネート−脂肪族アルコール付加物の熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭素数が22以下であれば、イソホロンジイソシアネート−脂肪族アルコール付加物の粘度が高くなりすぎず、固形化しにくいので、油剤成分であるイソホロンジイソシアネート−脂肪族アルコール付加物を含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。
1価の脂肪族アルコールの炭素数は11〜22が好ましく、15〜22がより好ましい。
【0092】
炭素数8〜22の1価の脂肪族アルコールとしては、例えばオクタノール、2−エチルヘキサノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、ヘンエイコサノール、ドコサノール等のアルキルアルコール;オクテニルアルコール、ノネニルアルコール、デセニルアルコール、ウンデセニルアルコール、ドデセニルアルコール、テトラデセニルアルコール、ペンタデセニルアルコール、ヘキサデセニルアルコール、ヘプタデセニルアルコール、オクタデセニルアルコール(オレイルアルコール)、ノナデセニルアルコール、イコセニルアルコール、ヘンイコセニルアルコール、ドコセニルアルコール、2−エチルデセニルアルコール等のアルケニルアルコール;オクチニルアルコール、ノニニルアルコール、デシニルアルコール、ウンデシニルアルコール、ドデシニルアルコール、トリデシニルアルコール、テトラデシニルアルコール、ヘキサデシニルアルコール、オクタデシニルアルコール、ノナデシニルアルコール、エイコシニルアルコール、ヘンイコシニルアルコール、ドコシニルアルコール等のアルキニルアルコールなどが挙げられる。中でも後述する油剤処理液の調製のし易さ、紡糸工程において繊維搬送ローラーへ付着した場合に搬送ローラーに繊維が巻き付くなどの工程障害が起こりにくく、かつ所望の耐熱性を有するという、ハンドリング・工程通過性・性能のバランスから、オクタデセニルアルコール(オレイルアルコール)が好ましい。
これら脂肪族アルコールは、1種単独で用いてもよく、2種以上を併用してもよい。
【0093】
イソホロンジイソシアネート−脂肪族アルコール付加物の原料となる脂肪族アルコールは、上述した炭素数8〜22の1価の脂肪族アルコールに、アルキレンオキサイドを付加した、ポリオキシアルキレンエーテル化合物であってもよい。
炭素数8〜22の1価の脂肪族アルコールは、炭素数が8以上であれば、最終的に油剤とした際に熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭素数が22以下であれば、油剤の粘度が高くなりすぎず、固形化しにくいので、油剤を含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。脂肪族アルコールの炭素数は11〜22が好ましく、15〜22がより好ましい。
【0094】
アルキレンオキサイドは油剤の親水性、前駆体繊維束に付与した時の繊維との親和性に寄与する。
アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドが挙げられ、好ましくはエチレンオキサイド、プロピレンオキサイドである。
また、アルキレンオキサイドの平均付加モル数は、脂肪族アルコールの炭素数とのバランスで決定されるが、脂肪族アルコールの炭素数が上記の好ましい範囲にある場合、アルキレンオキサイドの付加量は0〜5モルが好ましく、0〜3モルがより好ましい。
【0095】
このようなポリオキシアルキレンエーテルとしては、オクタノールのポリオキシエチレン4モル付加物(以下、「POE(4)オクチルエーテル」のように表記する。)、POE(3)ドデシルエーテル、ドデカノールのポリオキシプロピレン3モル付加物(以下、「POP(3)ドデシルエーテル」のように表記する。)、POE(2)オクタデシルエーテル、POP(1)オクタデシルエーテル等のポリオキシアルキレンアルキルエーテル;POE(2)ドデセニルエーテル、POP(2)ドデセニルエーテル、POE(2)オクタデセニルエーテル、POP(1)オクタデセニルエーテル等のポリオキシアルキレンアルケニルエーテル;POE(2)ドデシニルエーテル、POE(2)オクタデシニルエーテル、POP(1)オクタデシニルエーテル等のポリオキシアルキニルエーテルなどが挙げられる。なお、カッコ内の数は、平均付加モル数である。
【0096】
イソホロンジイソシアネート−脂肪族アルコール付加物としては、下記式(1d)で示される構造の化合物が好ましい。
【0098】
式(1d)中、R
1dおよびR
4dはそれぞれ独立して炭素数8〜22の炭化水素基である。R
2dおよびR
3dはそれぞれ独立して炭素数2〜4の炭化水素基である。ndおよびmdは、平均付加モル数を意味し、それぞれ独立して0〜5、好ましくは0〜3の数である。
R
1dおよびR
4dの炭素数が8以上であれば、イソホロンジイソシアネート−脂肪族アルコール付加物の熱的安定性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が22以下であれば、イソホロンジイソシアネート−脂肪族アルコール付加物の粘度が高くなりすぎず、固形化しにくいので、油剤であるイソホロンジイソシアネート−脂肪族アルコール付加物を含む油剤組成物のエマルションを容易に調製でき、油剤が前駆体繊維束に均一に付着する。炭化水素基の炭素数は11〜22が好ましく、15〜22がより好ましい。
【0099】
上記式(1d)で示される構造の化合物は、イソホロンジイソシアネートと、炭素数8〜22の1価の脂肪族アルコールまたはそのポリオキシアルキレンエーテルとの反応により得られるイソホロンジイソシアネート−脂肪族アルコール付加物である。
従って、式(1d)中のR
1dおよびR
4dは、炭素数8〜22の1価の脂肪族アルコールに由来し、炭素数8〜22のアルキル基、アルケニル基、アルキニル基のいずれでもよく、直鎖状もしくは分岐鎖状であってもよい。
アルキル基としては、例えばn−およびiso−オクチル基、2−エチルヘキシル基、n−およびiso−ノニル基、n−およびiso−デシル基、n−およびiso−ウンデシル基、n−およびiso−ドデシル基、n−およびiso−トリデシル基、n−およびiso−テトラデシル基、n−およびiso−ヘキサデシル基、n−およびiso−ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘンエイコシル、並びにドコシル基等が挙げられる。
アルケニル基としては、例えばオクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ヘンイコセニル基、ドコセニル基、ガドレイル基、並びに2−エチルデセニル基等が挙げられる。
アルキニル基としては、例えば1−および2−オクチニル基、1−および2−ノニニル基、1−および2−デシニル基、1−および2−ウンデシニル基、1−および2−ドデシニル基、1−および2−トリデシニル基、1−および2−テトラデシニル基、1−および2−ヘキサデシニル基、1−および2−オクタデシニル基、1−および2−ノナデシニル基、1−および2−エイコシニル基、1−および2−ヘンイコシニル基、並びに1−および2−ドコシニル基等が挙げられる。
R
1dおよびR
4dは、同じ構造であってもよいし、個々に独立した構造であってもよい。
【0100】
一方、式(1d)中の−R
2dO−および−R
3dO−は、ポリオキシアルキレンエーテルのアルキレンオキサイドに由来し、ndおよびmdは、アルキレンオキサイドの付加モル数に由来する。
R
2dおよびR
3dは、炭素数2〜4のアルキレン基である。具体的にはエチレン基、プロピレン基、ブチレン基である。好ましくはエチレン基、プロピレン基である。R
2dおよびR
3dは、同じ構造であってもよいし、個々に独立した構造であってもよい。
ndおよびmdは、上述したようにアルキレンオキサイドの付加量を示すものである。ポリアルキレンオキサイド構造は必須の構造ではなく、すなわちndおよびmdは0であっても差し支えない。親水性、繊維との親和性を向上させる目的で導入する場合は、ndおよびmdは各々5モルまで入れることができる。
【0101】
イソホロンジイソシアネート−脂肪族アルコール付加物は、3−イソシアナトメチル−3,5,5−トリメチルシクロヘキシル=イソシアネート(イソホロンジイソシアネート)と、炭素数8〜22の1価の脂肪族アルコールおよびそのポリオキシアルキレンエーテル化合物からなる群より選ばれる1種以上の化合物とを、無触媒又は公知のウレタン結合の触媒の存在下で反応させることで得ることができる。反応は、不活性ガス雰囲気中で行うことが好ましい。反応温度は、好ましくは70〜150℃、より好ましくは80〜130℃である。
反応に供するイソホロンジイソシアネートと、炭素数8〜22の1価の脂肪族アルコールおよびそのポリオキシアルキレンエーテル化合物からなる群より選ばれる1種以上の化合物とのモル比は、イソホロンジイソシアネート1モルに対して、前記化合物が1.8〜2.2モルが好ましく、1.9〜2.1モルがより好ましい。
【0102】
<組み合わせ>
本発明の油剤は、前述のグループA、B、C、D、E、およびFからなる群より選ばれる2種以上の化合物を含むが、これらの中でもグループAから選ばれる化合物Aおよび/またはグループFから選ばれる化合物Fを必須として含むことが、得られる炭素繊維束のストランド強度の観点から好ましい。より好ましい組み合わせとしては、炭素繊維束のストランド強度の観点から、化合物Aと化合物B、化合物Aと化合物C、化合物Aと化合物E、化合物Aと化合物F、化合物Fと化合物B、化合物Fと化合物C、化合物Fと化合物D、化合物Fと化合物Eを含む組み合わせが挙げられる。
また、本発明の油剤は、耐炎化工程において飛散せずに安定して前駆体繊維束の表面に残存しやすい点で、グループCを含むことが好ましく、機械的物性に優れる炭素繊維束が得られやすい点で、グループEを含むことが好ましい。
これらの観点から、グループA、C、E、およびFからなる群から選ばれる2種以上の化合物を含むことがより好ましい。この場合も、同様に異なる2つ以上のグループの中から化合物が選ばれることを意味する。
本発明の油剤が2種の化合物を含む場合、選ばれた2種の化合物の質量比は、得られる炭素繊維束のストランド強度の観点から1/3〜3/1が好ましく、1/2〜2/1がより好ましい。
本発明の油剤は、2〜4種の化合物を含むことが好ましく、2〜3種の化合物を含むことがより好ましい。
【0103】
<油剤の使用形態>
本発明の油剤は、界面活性剤などと混合して油剤組成物とし、該油剤組成物を水中に分散させた形態で前駆体繊維束に付与されるのが好ましく、より均一に油剤を前駆体繊維束に付与できる。
【0104】
[炭素繊維前駆体アクリル繊維用油剤組成物]
本発明の炭素繊維前駆体アクリル繊維用油剤組成物(以下、単に「油剤組成物」とも表記する。)は、上述した本発明の油剤と、非イオン系界面活性剤とを含有する。
非イオン系界面活性剤の含有量は、油剤100質量部に対し、20〜150質量部が好ましく、20〜100質量部がより好ましい。非イオン系界面活性剤の含有量が20質量部以上であれば乳化しやすく、乳化物の安定性が良好となる。一方、非イオン系界面活性剤の含有量が150質量部以下であれば、油剤組成物が付着した前駆体繊維束の集束性が低下するのを抑制できる。加えて、該前駆体繊維束を焼成して得られる炭素繊維束の機械的物性が低下しにくい。
【0105】
非イオン系界面活性剤としては公知の様々な物質を用いることができる。例えば高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪族エチレンオキサイド付加物、多価アルコール脂肪族エステルエチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、脂肪族アミドエチレンオキサイド付加物、油脂のエチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物などのポリエチレングリコール型非イオン性界面活性剤;グリセロールの脂肪族エステル、ペンタエリストールの脂肪族エステル、ソルビトールの脂肪族エステル、ソルビタンの脂肪族エステル、ショ糖の脂肪族エステル、多価アルコールのアルキルエーテル、アルカノールアミン類の脂肪酸アミドなどの多価アルコール型非イオン性界面活性剤等が挙げられる。
これら非イオン系界面活性剤は1種単独で用いてもよく、2種以上を併用してもよい。
【0106】
非イオン系界面活性剤としては、下記式(1e)で示されるプロピレンオキサイド(PO)ユニットとエチレンオキサイド(EO)ユニットからなるブロック共重合型ポリエーテル、および/または、下記式(2e)で示されるEOユニットからなるポリオキシエチレンアルキルエーテルが特に好ましい。
【0109】
式(1e)中、R
1eおよびR
2eはそれぞれ独立して、水素原子、炭素数1〜24の炭化水素基である。炭化水素基は直鎖状であってもよく分岐鎖状であってもよい。
R
1eおよびR
2eは、EO、POとの均衡、その他の油剤組成物成分を考慮して決定されるが、水素原子、あるいは炭素数1〜5の直鎖状または分岐鎖状のアルキル基が好ましく、より好ましくは水素原子である。
【0110】
式(1e)中、xおよびzはEOの平均付加モル数を示し、yはPOの平均付加モル数を示す。
x、y、zはそれぞれ独立して、1〜500であり、20〜300が好ましい。
また、xおよびzの合計と、yとの比(x+z:y)が90:10〜60:40であることが好ましい。
【0111】
また、ブロック共重合型ポリエーテルは、数平均分子量が3000〜20000であることが好ましい。数平均分子量が上記範囲内であれば、油剤組成物として要求される熱的安定性と水への分散性を共に有することが可能となる。
さらに、ブロック共重合型ポリエーテルは、100℃における動粘度が300〜15000mm
2/sであることが好ましい。動粘度が上記範囲内であれば、油剤組成物の過剰な繊維内部への浸透を防ぎ、かつ前駆体繊維束に付与した後の乾燥工程において、油剤組成物の粘性により搬送ローラー等に単繊維が取られて巻きつくなどの工程障害が起こりにくくなる。
【0112】
なお、ブロック共重合型ポリエーテルの動粘度は、JIS−Z−8803に規定されている“液体の粘度−測定方法”、あるいはASTM D 445−46Tに準拠して測定される値であり、例えばウッベローデ粘度計を用いて測定できる。
【0113】
一方、式(2e)中、R
3eは炭素数10〜20の炭化水素基である。炭素数が10未満であると、油剤組成物の熱的安定性が低下しやすくなると共に、適切な親油性を発現しにくくなる。一方、炭素数が20を超えると、油剤組成物の粘度が高くなったり、油剤組成物が固形化したりして、操業性が低下する場合がある。また、親水基とのバランスが悪くなり、乳化性能が低下する場合がある。
【0114】
R
3eの炭化水素基としては、飽和鎖式炭化水素基や飽和環式炭化水素基等の飽和炭化水素基が好ましく、具体的にはデシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等が挙げられる。
これらの中でも、油剤組成物を効率よく乳化するために、その他の油剤組成物成分に馴染みやすい適度な親油性を付与できる点でドデシル基が特に好ましい。
【0115】
式(2e)中、rはEOの平均付加モル数を示し、3〜20であり、5〜15が好ましく、5〜10がより好ましい。rが3未満であると、水と馴染みにくくなり、乳化性能が得られにくくなる。一方、rが20を超えると、粘性が高くなり、油剤組成物の構成成分として用いた場合、得られる油剤組成物が付着した前駆体繊維束の分繊性が低下しやすくなる。
なお、R
3eは油剤組成物の親油性に関与する要素であり、rは油剤組成物の親水性に関与する要素である。従って、rの値は、R
3eとの組み合わせにより適宜決定される。
【0116】
非イオン系界面活性剤としては、市販品を用いることができ、例えば前記式(1e)で示される非イオン系界面活性剤として三洋化成工業株式会社製の「ニューポールPE−128」;前記式(2e)で示される非イオン系界面活性剤として花王株式会社の「エマルゲン109P」などが好適である。
【0117】
本発明の油剤組成物は、酸化防止剤をさらに含有するのが好ましい。
酸化防止剤の含有量は、油剤100質量部に対し、1〜5質量部が好ましく、1〜3質量部がより好ましい。酸化防止剤の含有量が1質量部以上であれば酸化防止効果が十分に得られる。一方、酸化防止剤の含有量が5質量部以下であれば、酸化防止剤が油剤組成物中に均一に分散しやすくなる。
【0118】
酸化防止剤は公知の様々な物質を用いることができるが、フェノール系、硫黄系の酸化防止剤が好適である。
フェノール系酸化防止剤の具体例としては、2,6−ジ−t−ブチル−p−クレゾール、4,4’−ブチリデンビス−(6−t−ブチル−3−メチルフェノール)、2,2’−メチレンビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス−(4−エチル−6−t−ブチルフェノール)、2,6−ジ−t−ブチル−4−エチルフェノール、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、テトラキス〔メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕メタン、トリエチレングリコールビス〔3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート〕、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート等が挙げられる。
硫黄系の酸化防止剤の具体例としては、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジトリデシルチオジプロピオネート等が挙げられる。
これら酸化防止剤は1種単独で用いてもよく、2種以上を併用してもよい。
【0119】
さらに、本発明の油剤組成物は、その特性向上を目的として、必要に応じて帯電防止剤を含有してもよい。
帯電防止剤としては公知の物質を用いることができる。帯電防止剤はイオン型と非イオン型に大別され、イオン型としてはアニオン系、カチオン系及び両性系があり、非イオン型ではポリエチレングリコール型、多価アルコール型がある。帯電防止の観点からイオン型が好ましく、中でも脂肪族スルホン酸塩、高級アルコール硫酸エステル塩、高級アルコールエチレンオキシド付加物硫酸エステル塩、高級アルコールリン酸エステル塩、高級アルコールエチレンオキシド付加物硫酸リン酸エステル塩、第4級アンモニウム塩型カチオン界面活性剤、ベタイン型両性界面活性剤、高級アルコールエチレンオキシド付加物ポリエチレングリコール脂肪酸エステル、多価アルコール脂肪酸エステルなどが好ましく用いられる。
これら帯電防止剤は、1種単独で用いてもよく、2種以上を併用してもよい。
【0120】
さらに、本発明の油剤組成物は、前駆体繊維束に付着させるための設備や使用環境によって、工程の安定性や油剤組成物の安定性、付着特性を向上させることを目的として、消泡剤、防腐剤、抗菌剤、浸透剤などの添加物を含有してもよい。
なお、本発明の油剤組成物は、本発明の効果を損なわない範囲内で、本発明の油剤以外の公知の油剤(例えば脂肪族エステルやアミノ変性シリコーンなど)を含有してもよい。ただし、ケイ素化合物の生成を抑制することを考慮すると、アミノ変性シリコーンなどのシリコーン系油剤は含有しないのが好ましい。全油剤中、本発明の油剤の含有量は60質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、実質100質量%が特に好ましい。
【0121】
以上説明した本発明の油剤組成物は、特定のヒドロキシ安息香酸エステル(化合物A)、特定のシクロヘキサンジカルボン酸エステル(化合物B、C)、特定のシクロヘキサンジメタノールエステルおよび/またはシクロヘキサンジオールエステル(化合物D、E)、特定のイソホロンジイソシアネート−脂肪族アルコール付加物(化合物F)からなる群より選ばれる2種以上の化合物を含む本発明の油剤を含有するので、耐炎化工程での集束性を維持しつつ、単繊維間の融着を効果的に防止できる。加えて、ケイ素化合物の生成やシリコーン分解物の飛散を抑制できるので、操業性、工程通過性が著しく改善され、工業的な生産性を維持できる。よって、機械的物性に優れた炭素繊維束を、安定な連続操業によって得ることを可能とする。
このように、本発明の油剤および油剤組成物によれば、従来のシリコーンを主成分とする油剤組成物の問題と、シリコーンの含有率を低減した、あるいは非シリコーン成分のみの油剤組成物の問題を共に解決できる。
【0122】
本発明の油剤組成物は、水中に分散させた形態で前駆体繊維束に付与されるのが好ましい。
以下、本発明の油剤組成物を用いて前駆体繊維束を油剤処理し、炭素繊維前駆体アクリル繊維束を製造する方法の一例について説明する。
【0123】
<炭素繊維前駆体アクリル繊維束の製造方法>
炭素繊維前駆体アクリル繊維束は、例えば本発明の油剤組成物を、水膨潤状態の前駆体繊維束に付与し(油剤処理)、ついで油剤処理された前駆体繊維束を乾燥緻密化することで得られる。
【0124】
本発明に用いる前駆体繊維束としては、公知技術により紡糸されたアクリル繊維束を用いることができる。具体的には、アクリロニトリル系重合体を紡糸して得られるアクリル繊維束が挙げられる。
アクリロニトリル系重合体は、アクリロニトリルを主な単量体とし、これを重合して得られる重合体である。アクリロニトリル系重合体は、アクリロニトリルのみから得られるホモポリマーであってもよく、主成分であるアクリロニトリルに加えて他の単量体を併用したアクリロニトリル系共重合体であってもよい。
【0125】
アクリロニトリル系共重合体におけるアクリロニトリル単位の含有量は、96.0〜98.5質量%であることが焼成工程での繊維の熱融着防止、共重合体の耐熱性、紡糸原液の安定性、および炭素繊維にした際の品質の観点でより好ましい。アクリロニトリル単位が96質量%以上の場合は、炭素繊維に転換する際の焼成工程で繊維の熱融着を招くことなく、炭素繊維の優れた品質および性能を維持できるので好ましい。また、共重合体自体の耐熱性が低くなることもなく、前駆体繊維を紡糸する際、繊維の乾燥あるいは加熱ローラーや加圧水蒸気による延伸のような工程において、単繊維間の接着を回避できる。一方、アクリロニトリル単位が98.5質量%以下の場合には、溶剤への溶解性が低下することもなく、紡糸原液の安定性を維持できると共に共重合体の析出凝固性が高くならず、前駆体繊維の安定した製造が可能となるので好ましい。
【0126】
共重合体を用いる場合のアクリロニトリル以外の単量体としては、アクリロニトリルと共重合可能なビニル系単量体から適宣選択することができ、耐炎化反応を促進する作用を有するアクリル酸、メタクリル酸、イタコン酸、または、これらのアルカリ金属塩もしくはアンモニウム塩、アクリルアミド等の単量体から選択すると、耐炎化を促進できるので好ましい。
アクリロニトリルと共重合可能なビニル系単量体としては、アクリル酸、メタクリル酸、イタコン酸等のカルボキシル基含有ビニル系単量体がより好ましい。アクリロニトリル系共重合体におけるカルボキシル基含有ビニル系単量体単位の含有量は0.5〜2.0質量%が好ましい。
これらビニル系単量体は、1種単独で用いてもよく、2種以上を併用してもよい。
【0127】
紡糸の際には、アクリロニトリル系重合体を溶剤に溶解し、紡糸原液とする。このときの溶剤には、ジメチルアセトアミドあるいはジメチルスルホキシド、ジメチルホルムアミド等の有機溶剤、または塩化亜鉛やチオシアン酸ナトリウム等の無機化合物水溶液等、公知のものから適宜選択して使用することができる。これらの中でも、生産性向上の観点から凝固速度が早いジメチルアセトアミド、ジメチルスルホキシドおよびジメチルホルムアミドが好ましく、ジメチルアセトアミドがより好ましい。
【0128】
また、緻密な凝固糸を得るためには、紡糸原液の重合体濃度がある程度以上になるように紡糸原液を調製することが好ましい。具体的には、紡糸原液中の重合体濃度が17質量%以上になるように調製することが好ましく、より好ましくは19質量%以上である。
なお、紡糸原液は適正な粘度・流動性を必要とするため、重合体濃度は25質量%を超えない範囲が好ましい。
【0129】
紡糸方法は、上述した紡糸原液を直接凝固浴中に紡出する湿式紡糸法、空気中で凝固する乾式紡糸法、および一旦空気中に紡出した後に浴中凝固させる乾湿式紡糸法など公知の紡糸方法を適宜採用できるが、より高い性能を有する炭素繊維束を得るには湿式紡糸法または乾湿式紡糸法が好ましい。
【0130】
湿式紡糸法または乾湿式紡糸法による紡糸賦形は、紡糸原液を円形断面の孔を有するノズルより凝固浴中に紡出することで行うことができる。凝固浴としては、紡糸原液に用いられる溶剤を含む水溶液を用いるのが溶剤回収の容易さの観点から好ましい。
凝固浴として溶剤を含む水溶液を用いる場合、水溶液中の溶剤濃度は、ボイドがなく緻密な構造を形成させ高性能な炭素繊維束を得られ、かつ延伸性が確保でき生産性に優れる等の理由から、50〜85質量%、凝固浴の温度は10〜60℃が好ましい。
【0131】
重合体あるいは共重合体を溶剤に溶解し、紡糸原液として凝固浴中に吐出して繊維化して得た凝固糸には、凝固浴中または延伸浴中で延伸する浴中延伸を行うことができる。あるいは、一部空中延伸した後に、浴中延伸してもよく、延伸の前後あるいは延伸と同時に水洗を行って水膨潤状態の前駆体繊維束を得ることができる。
浴中延伸は、通常50〜98℃の水浴中で1回あるいは2回以上の多段に分割するなどして行い、空中延伸と浴中延伸の合計倍率が2〜10倍になるように凝固糸を延伸するのが、得られる炭素繊維束の性能の点から好ましい。
【0132】
前駆体繊維束への油剤の付与には、本発明の油剤を含有する油剤組成物が水中で分散している、炭素繊維前駆体アクリル繊維用油剤処理液(以下、単に「油剤処理液」とも表記する。)を用いるのが好ましい。分散時の乳化粒子の平均粒子径は、0.01〜0.3μmが好ましい。
乳化粒子の平均粒子径が上記範囲内であれば、前駆体繊維束の表面に油剤をより均一に付与できる。
なお、油剤処理液中の乳化粒子の平均粒子径は、レーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、「LA−910」)を用いて測定することができる。
【0133】
油剤処理液は、例えば以下のようにして調製できる。
本発明の油剤と非イオン系界面活性剤などを混合して油剤組成物とし、これを攪拌しながら水を加え、油剤組成物が水に分散したエマルション(水系乳化液)を得る。
酸化防止剤を含有させる場合は、酸化防止剤を予め油剤に溶解しておくことが好ましい。
各成分の混合または水中分散は、プロペラ攪拌、ホモミキサー、ホモジナイザー等を使用して行うことができる。特に、高粘度の油剤組成物を用いて水系乳化液を調製する場合には、150MPa以上に加圧可能な超高圧ホモジナイザーを用いることが好ましい。
【0134】
水系乳化液中の油剤組成物の濃度は、2〜40質量%が好ましく、10〜30質量%がより好ましく、20〜30質量%が特に好ましい。油剤組成物の濃度が2質量%以上であれば、必要な量の油剤を水膨潤状態の前駆体繊維束に付与し易くなる。一方、油剤組成物の濃度が40質量%以下であれば、水系乳化液の安定性が優れる。
【0135】
得られた水系乳化液は、そのまま油剤処理液として用いることもできるが、水系乳化液を所定の濃度になるまでさらに希釈したものを油剤処理液として用いるのが好ましい。
なお、「所定の濃度」は油剤処理時の前駆体繊維束の状態によって調整される。
【0136】
油剤の前駆体繊維束への付与は、上述した浴中延伸後の水膨潤状態にある前駆体繊維束に油剤処理液を付着することにより行うことができる。
浴中延伸の後に洗浄を行う場合は、浴中延伸および洗浄を行った後に得られる水膨潤状態にある繊維束に油剤処理液を付着することもできる。
【0137】
油剤処理液を水膨潤状態の前駆体繊維束に付着させる方法としては、ローラーの下部を油剤処理液に浸漬させ、そのローラーの上部に前駆体繊維束を接触させるローラー付着法、ポンプで一定量の油剤処理液をガイドから吐出し、そのガイド表面に前駆体繊維束を接触させるガイド付着法、ノズルから一定量の油剤処理液を前駆体繊維束に噴射するスプレー付着法、油剤処理液の中に前駆体繊維束を浸漬した後にローラー等で絞って余分な油剤処理液を除去するディップ付着法等の公知の方法を用いることができる。
これらの方法の中でも、均一付着の観点から、前駆体繊維束に十分に油剤処理液を浸透させ、余分な処理液を除去するディップ付着法が好ましい。より均一に付着するためには油剤処理の工程を2つ以上の多段にし、繰り返し付与することも有効である。
【0138】
油剤が付与された前駆体繊維束は、続く乾燥工程で乾燥緻密化される。
乾燥緻密化の温度は、繊維のガラス転移温度を超えた温度で行う必要があるが、実質的には含水状態から乾燥状態によって異なることもある。例えば温度が100〜200℃程度の加熱ローラーによる方法にて緻密乾燥化するのが好ましい。このとき加熱ローラーの個数は、1個でもよく、複数個でもよい。
【0139】
緻密乾燥化した前駆体繊維束には、加熱ローラーにより加圧水蒸気延伸処理を施すのが好ましい。該加圧水蒸気延伸処理により、得られる炭素繊維前駆体アクリル繊維束の緻密性や配向度をさらに高めることができる。
ここで、加圧水蒸気延伸とは、加圧水蒸気雰囲気中で延伸を行う方法である。加圧水蒸気延伸は、高倍率の延伸が可能であることから、より高速で安定な紡糸が行えると同時に、得られる繊維の緻密性や配向度向上にも寄与する。
【0140】
加圧水蒸気延伸処理においては、加圧水蒸気延伸装置直前の加熱ローラーの温度を120〜190℃、加圧水蒸気延伸における水蒸気圧力の変動率を0.5%以下に制御することが好ましい。このように加熱ローラーの温度および水蒸気圧力の変動率を制御することにより、繊維束になされる延伸倍率の変動、およびそれによって発生するトウ繊度の変動を抑制することができる。加熱ローラーの温度が120℃未満では前駆体繊維束の温度が十分に上がらず延伸性が低下しやすくなる。
【0141】
加圧水蒸気延伸における水蒸気の圧力は、加熱ローラーによる延伸の抑制や加圧水蒸気延伸法の特徴が明確に現れるようにするため、200kPa・g(ゲージ圧、以下同じ。)以上が好ましい。この水蒸気圧は、処理時間との兼ね合いで適宜調節することが好ましいが、高圧にすると水蒸気の漏れが増大したりする場合があるので、工業的には600kPa・g程度以下が好ましい。
【0142】
乾燥緻密化処理および加熱ローラーによる二次延伸処理を経て得られる炭素繊維前駆体アクリル繊維束は、室温のローラーを通し、常温の状態まで冷却した後にワインダーでボビンに巻き取られる、あるいはケンスに振込まれて収納される。
【0143】
このようにして得られる炭素繊維前駆体アクリル繊維束は、油剤組成物が乾燥繊維質量に対して0.3〜2.0質量%付着していることが好ましく、より好ましくは0.6〜1.5質量%である。油剤組成物本来の機能を十分に発現するためには、油剤組成物の付着量は0.3質量%以上が好ましく、過剰に付着した油剤組成物が、焼成工程において高分子化して、単繊維間の接着の誘因を抑制する観点から、油剤組成物の付着量は2.0質量%以下が好ましい。
ここで、「乾燥繊維質量」とは、乾燥緻密化処理された後の前駆体繊維束の乾燥繊維質量のことである。
【0144】
油剤組成物の付着量は、以下のようにして求められる。
メチルエチルケトンによるソックスレー抽出法に準拠し、90℃に加熱気化したメチルエチルケトンを還流させながら炭素繊維前駆体アクリル繊維束と8時間接触させ、油剤組成物を抽出し、抽出前に105℃で2時間乾燥した炭素繊維前駆体アクリル繊維束の質量W
1、および抽出後に105℃で2時間乾燥した炭素繊維前駆体アクリル繊維束の質量W
2をそれぞれ測定し、下記式(i)により油剤組成物の付着量を求める。
油剤組成物の付着量(質量%)=(W
1−W
2)/W
1×100 ・・・(i)
【0145】
また、炭素繊維前駆体アクリル繊維束は、フィラメント数が1000〜300000本であることが好ましく、より好ましくは3000〜200000本であり、さらに好ましくは12000〜100000本である。フィラメント数が1000本より少ないと、生産効率が悪くなる傾向にある。一方、フィラメント数が300000本より多いと、均一な炭素繊維前駆体アクリル繊維束を得ることが困難となる場合がある。
【0146】
また、炭素繊維前駆体アクリル繊維束は、単繊維繊度が大きいほど、得られる炭素繊維束の繊維径が大きくなり、複合材料の強化繊維として用いた場合の圧縮応力下での座屈変形を抑制できるので、圧縮強度向上の観点からは単繊維繊度が大きい方が好ましい。ただし、単繊維繊度が大きいほど、後述する耐炎化工程において焼成斑を起こすため、均一性の観点からは好ましくない。これらの兼ね合いで、炭素繊維前駆体アクリル繊維束の単繊維繊度は、0.6〜3dTexであることが好ましく、より好ましくは0.7〜2.5dTexであり、さらに好ましくは0.8〜2.0dTexである。
【0147】
炭素繊維前駆体アクリル繊維束は、焼成工程へと移され、耐炎化、炭素化、必要に応じて黒鉛化、表面処理を施し、炭素繊維束となる。
耐炎化工程では、炭素繊維前駆体アクリル繊維束を酸化性雰囲気下で加熱処理して耐炎化繊維束に転換する。
耐炎化条件としては、酸化性雰囲気中200〜300℃の緊張下、密度が好ましくは1.28〜1.42g/cm
3、より好ましくは1.29〜1.40g/cm
3になるまで加熱するのがよい。密度が1.28g/cm
3未満であると、次の工程である炭素化工程の際に単繊維間接着が起こりやすく、炭素化工程で糸切れが発生する。また、密度が1.42g/cm
3より大きくするためには、耐炎化工程が長くなり、経済性の面から好ましくない。雰囲気については、空気、酸素、二酸化窒素など公知の酸化性雰囲気を採用できるが、経済性の面から空気が好ましい。
【0148】
耐炎化処理を行なう装置としては特に限定されないが、従来公知の熱風循環炉や加熱固体表面に接触させる方法を採用できる。通常、耐炎化炉(熱風循環炉)では、耐炎化炉に入った炭素繊維前駆体アクリル繊維束を一旦耐炎化炉の外部に出した後、耐炎化炉の外部に配設された折り返しロールによって折り返して耐炎化炉に繰り返し通過させる方法が採られる。また、加熱固体表面に接触させる方法では、間欠的に接触させる方法が採られる。
【0149】
耐炎化繊維束は連続して炭素化工程に導かれる。
炭素化工程では、耐炎化繊維束を不活性雰囲気下で炭素化して炭素繊維束を得る。
炭素化は最高温度が1000℃以上の不活性雰囲気で行う。不活性雰囲気を形成するガスとしては、窒素、アルゴン、ヘリウムなどのいずれの不活性ガスでも差し支えないが、経済面から窒素を用いることが好ましい。
炭素化工程の初期の段階、すなわち処理温度300〜400℃では、繊維の成分であるポリアクリロニトリル共重合体の切断および架橋反応が起きる。この温度領域においては300℃/分以下の昇温速度で緩やかに繊維の温度を上げることが、最終的に得られる炭素繊維束の機械的物性を向上させるために好ましい。
また、処理温度400〜900℃においてはポリアクリロニトリル共重合体の熱分解が起こり、次第に炭素構造が構築される。この炭素構造を構築する段階においては、炭素構造の規則配向が促されるため、緊張下で延伸をかけながら処理するのが好ましい。よって、900℃以下における温度勾配や延伸(張力)をコントロールするために、最終的な炭素化工程とは別に前工程(前炭素化工程)を設置することがより好ましい。
【0150】
処理温度900℃以上においては、残存していた窒素原子が脱離し、炭素質構造が発達することにより繊維全体としては収縮する。このような高温域での熱処理においても、最終的な炭素繊維の良好な機械的物性を発現させるためには、緊張下で処理することが好ましい。
【0151】
このようにして得られた炭素繊維束には、必要に応じて黒鉛化処理を施してもよい。黒鉛化処理することで、炭素繊維束の弾性がより高まる。
黒鉛化の条件としては、最高温度が2000℃以上の不活性雰囲気中、伸長率3〜15%の範囲で伸長しながら行うことが好ましい。伸長率が3%未満の場合は十分な機械的物性を有する高弾性の炭素繊維束(黒鉛化繊維束)が得られにくい。これは、所定の弾性率を有する炭素繊維束を得ようとする場合に、伸長率の低い条件ほどより高い処理温度が必要であるためである。一方、伸長率が15%を超える場合は、表層と内部において、伸長による炭素構造の成長促進効果の差が大きくなり、不均一な炭素繊維束を形成し、物性が低下する。
【0152】
上記の焼成工程後の炭素繊維束には、最終用途に適合するように表面処理を施すのが好ましい。
表面処理の方法に制限はないが、電解質溶液中で電解酸化する方法が好ましい。電解酸化は、炭素繊維束の表面で酸素を発生させることで表面に含酸素官能基を導入し、表面改質処理をするものである。
電解質としては、硫酸、塩酸、硝酸などの酸やそれらの塩類を用いることができる。
電解酸化の条件として、電解液の温度は室温以下、電解質濃度は1〜15質量%、電気量は100クーロン/g以下が好ましい。
【0153】
上述した方法により得られる炭素繊維前駆体アクリル繊維束は、本発明の油剤が付着しているので、集束性に優れる。さらに、焼成工程において単繊維間の融着を防止し、かつケイ素化合物の生成やシリコーン分解物の飛散を抑制できるので、操業性、工程通過性が著しく改善され、工業的な生産性を維持できる。従って、機械的物性に優れた炭素繊維束を生産性よく得ることができる。
また、この炭素繊維前駆体アクリル繊維束を焼成して得られる炭素繊維束は、機械的物性に優れ、高品質であり、様々な構造材料に用いられる繊維強化樹脂複合材料に用いる強化繊維として好適である。
【実施例】
【0154】
以下、本発明を実施例によりさらに具体的に説明する。ただし、本発明はこれらによって限定されるものではない。
本実施例に用いた各成分、および各種測定方法、評価方法は以下の通りである。
【0155】
[成分]
<ヒドロキシ安息香酸エステル>
・A−1:4−ヒドロキシ安息香酸とオレイルアルコール(モル比1.0:1.0)からなるエステル化合物(前記式(1a)の構造で、R
1aがオクタデセニル基(オレイル基)であるエステル化合物)
【0156】
(A−1の合成方法)
1Lの四つ口フラスコに、4−ヒドロキシ安息香酸207g(1.5モル)と、オレイルアルコール486g(1.8モル)と、触媒としてオクチル酸スズ0.69g(0.1質量%)を秤取り、窒素吹き込み下、200℃で6時間、さらに220℃で5時間エステル化反応を行った。
その後、230℃、666.61Paの減圧下でスチームを吹き込みながら過剰のアルコール除去を行い、70〜80℃まで冷却し、85質量%リン酸0.43gを加え30分攪拌を続けた後、濾過を行い、A−1を得た。
【0157】
<シクロヘキサンジカルボン酸エステル>
・B―1:1,4−シクロヘキサンジカルボン酸とオレイルアルコール(モル比1.0:2.0)からなるエステル化合物(前記式(1b)の構造で、R
1bおよびR
2bが共にオレイル基であるエステル化合物)
・C−1:1,4−シクロヘキサンジカルボン酸とオレイルアルコールと3−メチル1,5−ペンタンジオール(モル比2.0:2.0:1.0)からなるエステル化合物(前記式(2b)の構造で、R
3bおよびR
5bが共にオレイル基であり、R
4bが−CH
2CH
2CHCH
3CH
2CH
2−であるエステル化合物)
【0158】
(B−1、C−1の合成方法)
B−1;
1Lの四つ口フラスコに、1,4−シクロヘキサンジカルボン酸メチル(小倉合成工業株式会社製)180g(0.9モル)と、オレイルアルコール(新日本理化株式会社製、商品名:リカコール90B)486g(1.8モル)と、触媒としてジブチルスズオキシド(和光純薬工業株式会社製)0.33gを秤取り、窒素吹き込み下、200〜205℃で脱メタノール反応を行った。このときのメタノール留出量は57gであった。
その後、70〜80℃まで冷却し、85質量%リン酸(和光純薬工業株式会社製)0.34gを加え30分攪拌を続け、反応系が白濁したことを確認し、さらに吸着剤(協和化学工業株式会社製、商品名:キョーワード600S)1.1gを加え30分間攪拌した後、濾過を行い、B−1を得た。
【0159】
C−1;
1Lの四つ口フラスコに、1,4−シクロヘキサンジカルボン酸メチル(小倉合成工業株式会社製)240g(1.2モル)と、オレイルアルコール(新日本理化株式会社製、商品名:リカコール90B)324g(1.2モル)と、3−メチル−1,5−ペンタンジオール(和光純薬工業株式会社製)70.8g(0.6モル)と、触媒としてジブチルスズオキシド(和光純薬工業株式会社製)0.32gを秤取り、窒素吹き込み下、200〜205℃で脱メタノール反応を行った。このときのメタノール留出量は76gであった。
その後、70〜80℃まで冷却し、85質量%リン酸(和光純薬工業株式会社製)0.33gを加え30分攪拌を続け、反応系が白濁した事を確認し、さらに吸着剤(協和化学工業株式会社製、商品名:キョーワード600S)1.1gを加え30分間攪拌した後、濾過を行い、C−1を得た。
なお、上述したB−1、C−1は、脱メタノール反応によるエステル交換反応法で合成したが、1,4−シクロヘキサンジカルボン酸とアルコールからのエステル化反応でも得ることができる。
【0160】
<シクロヘキサンジメタノールエステル/シクロヘキサンジオールエステル>
・D−1:1,4−シクロヘキサンジメタノールと、オレイン酸(モル比1.0:2.0)から成るエステル化合物(前記式(1c)の構造で、R
1cおよびR
2cが共に炭素数17のアルケニル基(ヘプタデセニル基)であり、ncが1であるエステル化合物)
・E−1:1,4−シクロヘキサンジメタノールと、オレイン酸と、オレイン酸を二量化したダイマー酸(モル比1.0:1.25:0.375)から成るエステル化合物(前記式(2c)の構造で、R
3cおよびR
5cが共に炭素数17のアルケニル基(ヘプタデセニル基)であり、R
4cが炭素数34のアルケニル基(テトラトリアコンテニル基)の炭素原子から水素を1つ取除いた置換基であり、mcが1であるエステル化合物)
・D−2:1,4−シクロヘキサンジメタノールとオレイン酸とカプリル酸(モル比1.0:0.5:1.5)から成るエステル化合物(前記式(1c)の構造で、R
1cが炭素数17のアルケニル基(ヘプタデセニル基)と炭素数7のアルキル基(n−ヘプチル基)の混合であり、R
2cがヘプタデセニル基とn−ヘプチル基の混合であり、ncが1であるエステル化合物)
【0161】
(D−1、D−2、E−1の合成方法)
D−1;
1Lの四つ口フラスコに、1,4−シクロヘキサンジメタノール(和光純薬工業株式会社製)144g(1.0モル)と、オレイン酸(花王株式会社製、商品名:ルナックOA)580g(2.0モル)と、触媒としてジブチルスズオキシド(和光純薬工業株式会社製)0.35gを秤取り、窒素吹き込み下、220〜230℃で脱水エステル化反応を行った。反応は、反応系の酸価が10mgKOH/g以下になるまで続けた。
その後、70〜80℃まで冷却し、85質量%リン酸(和光純薬工業株式会社製)0.36gを加え30分攪拌を続けて、反応系が白濁したことを確認し、さらに吸着剤(協和化学工業株式会社製、商品名:キョーワード600S)1.3gを加え30分間攪拌した後、濾過を行い、化合物D−1を得た。
【0162】
D−2;
1,4−シクロヘキサンジメタノール(和光純薬工業株式会社製)144g(1.0モル)と、オレイン酸(花王株式会社製、商品名:ルナックOA)145g(0.5モル)と、カプリル酸(和光純薬工業株式会社製、商品名:オクタン酸)216g(1.5モル)と、触媒としてジブチルスズオキシド(和光純薬工業株式会社製)0.35gを秤取り、窒素吹き込み下、D−1と同様の条件でD−2を得た。
【0163】
E−1;
1Lの四つ口フラスコに、1,4−シクロヘキサンジメタノール(和光純薬工業株式会社製)144g(1.0モル)と、オレイン酸(花王株式会社製、商品名:ルナックOA)350g(1.25モル)と、ダイマー酸(シグマアルドリッチジャパン株式会社製)213.8g(0.375モル)と、触媒としてジブチルスズオキシド(和光純薬工業株式会社製)0.35gを秤取り、窒素吹き込み下、D−1と同様の条件でE−1を得た。
【0164】
<イソホロンジイソシアネート−脂肪族アルコール付加物>
・F−1:3−イソシアナトメチル−3,5,5−トリメチルシクロヘキシル=イソシアネートとオレイルアルコール(モル比1.0:2.0)からなる化合物(上記式(1d)の構造で、R
1dおよびR
4dが共にオクタデセニル基(オレイル基)、ndおよびmdが共に0である化合物)
【0165】
(F−1の合成方法)
3Lの四つ口フラスコに、オレイルアルコール1970g(7.2モル)を秤取り、窒素雰囲気下、攪拌しながら3−イソシアナトメチル−3,5,5−トリメチルシクロヘキシル=イソシアネート800g(3.6モル)を、室温で滴下ロートを用いて滴下した。その後100℃で10時間反応させ、F−1を得た。
【0166】
<芳香族エステル>
・K−1:トリイソデシルトリメリテート(花王株式会社製、商品名:トリメックスT−10)
・K−2:ポリオキシエチレンビスフェノールAラウリン酸エステル(花王株式会社製、商品名:エキセパールBP−DL)
【0167】
<鎖状脂肪族エステル>
・G−1:ペンタエリトリトールテトラステアラート(東京化成工業株式会社製、製品コード:P0739)
【0168】
<非イオン系界面活性剤>
・H−1:上記式(1e)の構造で、x≒75、y≒30、z≒75、R
1eおよびR
2eが共に水素原子であるPO/EOブロック共重合型ポリエーテル(三洋化成工業株式会社製、商品名:ニューポールPE−68)
・H−2:上記式(2e)の構造で、r≒9、R
3eがラウリル基であるポリオキシエチレンラウリルエーテル(和光純薬工業株式会社、商品名:ニッコールBL−9EX)
・H−3:上記式(2e)の構造で、r≒7、R
3eがラウリル基であるポリオキシエチレンラウリルエーテル(日本エマルジョン株式会社、商品名:EMALEX707)
【0169】
<アミノ変性シリコーン>
・I−1:1級側鎖アミノ変性シリコーン(信越化学工業株式会社製、商品名:KF−865)
・I−2:両末端アミノ変性シリコーン(信越化学工業株式会社製、商品名:KF−8012)
【0170】
<帯電防止剤>
・J−1:ジアルキルエチルメチルアンモニウムエトサルフェート(ライオン・アクゾ株式会社製、商品名:アーカード2HT−50ES)
・J−2:ラウリルトリメチルアンモニウムクロライド(花王株式会社製、商品名:コータミン24P)
・J−3:N−エチルN,N−ジメチル−9−オクタデセン−1−アミニウム・(硫酸エチル)アニオン(Hangzou Sage Chemical Co.,Ltd.)
【0171】
[測定・評価]
<油剤付着量の測定>
炭素繊維前駆体アクリル繊維束を105℃で1時間乾燥させた後、メチルエチルケトンによるソックスレー抽出法に準拠し、90℃に加熱気化したメチルエチルケトンを還流させながら炭素繊維前駆体アクリル繊維束と8時間接触させ、付着した油剤組成物を溶媒抽出した。メチルエチルケトンは、炭素繊維前駆体アクリル繊維束に付着した油剤組成物が抽出できる十分な量を用いればよい。
抽出前に105℃で2時間乾燥した炭素繊維前駆体アクリル繊維束の質量W
1、および抽出後に105℃で2時間乾燥した炭素繊維前駆体アクリル繊維束の質量W
2をそれぞれ測定し、上記式(i)により油剤組成物の付着量を求めた。なお、油剤付着量の測定は、油剤組成物がその効力を発現する適正な範囲で前駆体繊維束に付与されていることを確認するものである。
【0172】
<集束性の評価>
炭素繊維前駆体アクリル繊維束の製造過程の最終ローラー、すなわち該繊維束をボビンに巻き取る直前のローラー上での炭素繊維前駆体アクリル繊維束の状態を目視にて観察し、以下の評価基準にて集束性を評価した。なお、集束性の評価は、炭素繊維前駆体アクリル繊維束の生産性、続く炭素化工程におけるハンドリング性を考慮した炭素繊維前駆体アクリル繊維束の品質を評価するものである。
A:集束しており、トウ幅が一定で、隣接する繊維束と接触しない。
B:集束しているが、トウ幅が一定ではない、あるいはトウ幅が広い。
C:繊維束中に空間があり、集束していない。
【0173】
<操業性の評価>
炭素繊維前駆体アクリル繊維束を24時間連続して製造したときに、搬送ローラーへ単繊維が巻き付き、除去した頻度により操業性を評価した。評価基準は以下の通りとした。なお、操業性の評価は、炭素繊維前駆体アクリル繊維束の安定生産の目安となる指標である。
A:除去回数(回/24時間)が1回以下。
B:除去回数(回/24時間)が2〜5回。
C:除去回数(回/24時間)が6回以上。
【0174】
<単繊維間融着数の測定>
炭素繊維束を長さ3mmに切断し、アセトン中に分散させ、10分間攪拌した後の全単繊維数と、単繊維同士が融着している数(融着数)を計数し、単繊維100本当たりの融着数を算出し、以下の評価基準にて評価した。なお、単繊維間融着数の測定は、炭素繊維束の品質を評価するものである。
A:融着数(個/100本)が1個以下。
C:融着数(個/100本)が1個超。
【0175】
<ストランド強度の測定>
炭素繊維束の製造を開始し、定常安定化した状態で炭素繊維束のサンプリングを行い、JIS−R−7608に規定されているエポキシ樹脂含浸ストランド法に準じて、炭素繊維束のストランド強度を測定した。なお、測定回数は10回とし、その平均値を評価の対象とした。
【0176】
<Si飛散量の測定>
耐炎化工程におけるシリコーン由来のケイ素化合物飛散量は、炭素繊維前駆体アクリル繊維束と、それを耐炎化した耐炎化繊維束のケイ素(Si)含有量をICP発光分析法により測定し、それらの差から計算されるSi量の変化を耐炎化工程で飛散したSi量(Si飛散量)とし、評価の指標とした。
具体的には、炭素繊維前駆体アクリル繊維束および耐炎化繊維束をそれぞれ鋏で細かく粉砕した試料を密閉るつぼに50mg秤量し、粉末状としたNaOH、KOHを各0.25g加え、マッフル炉にて210℃で150分間加熱分解した。これを蒸留水で溶解し、100mLに定容したものを測定試料として用い、ICP発光分析法にて各測定試料のSi含有量を求め、下記式(ii)によりSi飛散量を求めた。ICP発光分析装置には、サーモエレクトロン株式会社製の「IRIS Advantage AP」を用いた。
Si飛散量(mg/kg)=炭素繊維前駆体アクリル繊維束のSi含有量−耐炎化繊維束のSi含有量 ・・・(ii)
【0177】
[実施例1]
<油剤組成物および油剤処理液の調製>
エステル化合物(A−1)とエステル化合物(B−1)を混合攪拌して油剤を調製した。そこに非イオン系界面活性剤(H−1、H−3)を加え、混合攪拌し、油剤組成物を調製した。
十分に攪拌した後、油剤組成物の濃度が30質量%になるようにイオン交換水をさらに加え、ホモミキサーで乳化した。この状態でのミセルの平均粒子径をレーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、商品名:LA−910)を用いて測定したところ、3.0μm程度であった。
その後、さらに高圧ホモジナイザーにより、ミセルの平均粒子径が0.3μm以下になるまで分散し、油剤組成物の水系乳化液(エマルション)を得た。得られた水系乳化液をイオン交換水でさらに希釈し、油剤組成物の濃度が1.3質量%の油剤処理液を調製した。
油剤組成物中の各成分の種類と配合量(質量%)を表1に示す。
【0178】
<炭素繊維前駆体アクリル繊維束の製造>
油剤を付着させる前駆体繊維束は、次の方法で調製した。アクリロニトリル系共重合体(組成比:アクリロニトリル/アクリルアミド/メタクリル酸=96.5/2.7/0.8(質量比))を21質量%の割合でジメチルアセトアミドに分散し、加熱溶解して紡糸原液を調製し、濃度67質量%のジメチルアセトアミド水溶液を満たした38℃の凝固浴中に孔径(直径)50μm、孔数50000の紡糸ノズルより吐出し凝固糸とした。凝固糸は水洗槽中で脱溶媒するとともに3倍に延伸して水膨潤状態の前駆体繊維束とした。
先に得られた油剤処理液を満たした油剤処理槽に水膨潤状態の前駆体繊維束を導き、油剤を付与させた。
その後、油剤が付与された前駆体繊維束を表面温度150℃のローラーにて乾燥緻密化した後に、圧力0.3MPaの水蒸気中で5倍延伸を施し、炭素繊維前駆体アクリル繊維束を得た。得られた炭素繊維前駆体アクリル繊維束のフィラメント数は50000本、単繊維繊度は1.3dTexであった。
製造工程における集束性および操業性を評価し、得られた炭素繊維前駆体アクリル繊維束の油剤付着量を測定した。結果を表1に示す。
【0179】
<炭素繊維束の製造>
得られた炭素繊維前駆体アクリル繊維束を、220〜260℃の温度勾配を有する耐炎化炉に40分かけて通して耐炎化し、耐炎化繊維束とした。
引き続き、該耐炎化繊維束を窒素雰囲気中で400〜1400℃の温度勾配を有する炭素化炉を3分間かけて通過させて焼成し、炭素繊維束とした。
耐炎化工程におけるSi飛散量を測定した。また、得られた炭素繊維束の単繊維間融着数、およびストランド強度を測定した。これらの結果を表1に示す。
【0180】
[実施例2〜7]
油剤組成物を構成する各成分の種類と配合量を表1に示すように変更した以外は、実施例1と同様にして油剤組成物および油剤処理液を調製し、炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表1に示す。
なお、帯電防止剤を添加する場合は、エマルション化し、所定の粒子径まで微細化した後に添加した。
【0181】
【表1】
【0182】
表1から明らかなように、各実施例の場合、油剤付着量は適正な量であった。また、炭素繊維前駆体アクリル繊維束の集束性、その製造過程の操業性は良好であり、全ての実施例において、炭素繊維束を連続的に製造していく上で、工程上、何ら問題がない状況であった。
【0183】
また、各実施例で得られた炭素繊維束は、単繊維間の融着数が実質的に無く、ストランド強度が高い数値を示し、機械的物性に優れていた。また、シリコーンを全く含有しないことから、焼成工程におけるSi飛散量は実質的に無く、焼成工程における工程負荷が少なく良好であった。
【0184】
なお、炭素繊維束のストランド強度は、油剤組成物の成分の種類や配合量により差が見られた。具体的には、エステル化合物(A−1)とエステル化合物(C−1)を各々30質量%含有した実施例3、エステル化合物(A−1)とエステル化合物(B−1)を各々25質量%含有した実施例6、エステル化合物(A−1)とエステル化合物(C−1)を各々25質量%含有した実施例7は、炭素繊維束のストランド強度が特に高かった。
【0185】
[実施例8]
<油剤組成物および油剤処理液の調製>
エステル化合物(A−1)とエステル化合物(D−1)を混合攪拌して油剤を調製した。そこに非イオン系界面活性剤(H−1、H−3)を加え、混合攪拌し、油剤組成物を調製した。
十分に攪拌した後、油剤組成物の濃度が30質量%になるようにイオン交換水をさらに加え、ホモミキサーで乳化した。この状態でのミセルの平均粒子径をレーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、商品名:LA−910)を用いて測定したところ、3.0μm程度であった。
その後、さらに高圧ホモジナイザーにより、ミセルの平均粒子径が0.3μm以下になるまで分散し、油剤組成物の水系乳化液(エマルション)を得た。得られた水系乳化液をイオン交換水でさらに希釈し、油剤組成物の濃度が1.3質量%の油剤処理液を調製した。
油剤組成物中の各成分の種類と配合量(質量%)を表2に示す。
得られた油剤処理液を用いた以外は、実施例1と同様にして炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表2に示す。
【0186】
[実施例9〜15]
油剤組成物を構成する各成分の種類と配合量を表2に示すように変更した以外は、実施例8と同様にして油剤組成物および油剤処理液を調製し、炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表2に示す。
なお、帯電防止剤を添加する場合は、エマルション化し、所定の粒子径まで微細化した後に添加した。
【0187】
【表2】
【0188】
表2から明らかなように、各実施例の場合、油剤付着量は適正な量であった。また、炭素繊維前駆体アクリル繊維束の集束性、その製造過程の操業性は良好であり、全ての実施例において、炭素繊維束を連続的に製造していく上で、工程上、何ら問題がない状況であった。
【0189】
また、各実施例で得られた炭素繊維束は、単繊維間の融着数が実質的に無く、ストランド強度が高い数値を示し、機械的物性に優れていた。また、シリコーンを全く含有しないことから、焼成工程におけるSi飛散量は実質的に無く、焼成工程における工程負荷が少なく良好であった。
【0190】
なお、炭素繊維束のストランド強度は、油剤組成物の成分の種類や配合量により差が見られた。具体的には、エステル化合物(A−1)とエステル化合物(E−1)を各々30質量%含有した実施例10、エステル化合物(A−1)とエステル化合物(D−1)を各々25質量%含有した実施例13、エステル化合物(A−1)とエステル化合物(E−1)を各々25質量%含有した実施例14、エステル化合物(A−1)とエステル化合物(D−2)を各々25質量%含有した実施例15は、炭素繊維束のストランド強度が特に高かった。
【0191】
[実施例16]
<油剤組成物および油剤処理液の調製>
エステル化合物(A−1)とエステル化合物(B−1)とイソホロンジイソシアネート−脂肪族アルコール付加物(F−1)を混合攪拌して油剤を調製した。そこに非イオン系界面活性剤(H−1、H−3)を加え、混合攪拌し、油剤組成物を調製した。
十分に攪拌した後、油剤組成物の濃度が30質量%になるようにイオン交換水をさらに加え、ホモミキサーで乳化した。この状態でのミセルの平均粒子径をレーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、商品名:LA−910)を用いて測定したところ、3.0μm程度であった。
その後、さらに高圧ホモジナイザーにより、ミセルの平均粒子径が0.3μm以下になるまで分散し、油剤組成物の水系乳化液(エマルション)を得た。得られた水系乳化液をイオン交換水でさらに希釈し、油剤組成物の濃度が1.3質量%の油剤処理液を調製した。
油剤組成物中の各成分の種類と配合量(質量%)を表3に示す。
得られた油剤処理液を用いた以外は、実施例1と同様にして炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表3に示す。
【0192】
[実施例17〜22]
油剤組成物を構成する各成分の種類と配合量を表3に示すように変更した以外は、実施例16と同様にして油剤組成物および油剤処理液を調製し、炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表3に示す。
なお、帯電防止剤を添加する場合は、エマルション化し、所定の粒子径まで微細化した後に添加した。
【0193】
【表3】
【0194】
表3から明らかなように、各実施例の場合、油剤付着量は適正な量であった。また、炭素繊維前駆体アクリル繊維束の集束性、その製造過程の操業性は良好であり、全ての実施例において、炭素繊維束を連続的に製造していく上で、工程上、何ら問題がない状況であった。
【0195】
また、各実施例で得られた炭素繊維束は、単繊維間の融着数が実質的に無く、ストランド強度が高い数値を示し、機械的物性に優れていた。また、シリコーンを全く含有しないことから、焼成工程におけるSi飛散量は実質的に無く、焼成工程における工程負荷が少なく良好であった。
【0196】
なお、炭素繊維束のストランド強度は、油剤組成物の成分の種類や配合量により差が見られた。具体的には、エステル化合物(A−1)とイソホロンジイソシアネート−脂肪族アルコール付加物(F−1)が同量の配合量である実施例19〜22は、炭素繊維束のストランド強度が高かった。その中でも帯電防止剤(J−3)を5質量%含有した実施例20の炭素繊維束のストランド強度が特に高かった。
【0197】
[実施例23]
<油剤組成物および油剤処理液の調製>
エステル化合物(A−1)とエステル化合物(D−1)とイソホロンジイソシアネート−アルコール付加物(F−1)を混合攪拌して油剤を調製した。そこに非イオン系界面活性剤(H−1、H−3)を加え、混合攪拌し、油剤組成物を調製した。
十分に攪拌した後、油剤組成物の濃度が30質量%になるようにイオン交換水をさらに加え、ホモミキサーで乳化した。この状態でのミセルの平均粒子径をレーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、商品名:LA−910)を用いて測定したところ、5.0μm程度であった。
その後、さらに高圧ホモジナイザーにより、ミセルの平均粒子径が0.3μm以下になるまで分散し、油剤組成物の水系乳化液(エマルション)を得た。得られた水系乳化液をイオン交換水でさらに希釈し、油剤組成物の濃度が1.3質量%の油剤処理液を調製した。
油剤組成物中の各成分の種類と配合量(質量%)を表4に示す。
得られた油剤処理液を用いた以外は、実施例1と同様にして炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表4に示す。
【0198】
[実施例24〜29]
油剤組成物を構成する各成分の種類と配合量を表4に示すように変更した以外は、実施例23と同様にして油剤組成物および油剤処理液を調製し、炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表4に示す。
なお、帯電防止剤を添加する場合は、エマルション化し、所定の粒子径まで微細化した後に添加した。
【0199】
【表4】
【0200】
表4から明らかなように、各実施例の場合、油剤付着量は適正な量であった。また、炭素繊維前駆体アクリル繊維束の集束性、その製造過程の操業性は良好であり、全ての実施例において、炭素繊維束を連続的に製造していく上で、工程上、何ら問題がない状況であった。
【0201】
また、各実施例で得られた炭素繊維束は、単繊維間の融着数が実質的に無く、ストランド強度が高い数値を示し、機械的物性に優れていた。また、シリコーンを全く含有しないことから、焼成工程におけるSi飛散量は実質的に無く、焼成工程における工程負荷が少なく良好であった。
【0202】
なお、炭素繊維束のストランド強度は、油剤組成物の成分の種類や配合量により差が見られた。具体的には、エステル化合物(A−1)とイソホロンジイソシアネート−アルコール付加物(F−1)が同量の配合量であり、エステル化合物(D−1)、エステル化合物(E−1)、エステル化合物(D−2)の何れかがエステル化合物(A−1)およびイソホロンジイソシアネート・アルコール付加物(F−1)と同量以上の配合量である実施例25〜29は、炭素繊維束のストランド強度が高かった。その中でも、更に非イオン系界面活性剤の含有量が多く、帯電防止剤(J−3)を5質量%含有した実施例27の炭素繊維束のストランド強度が特に高かった。
【0203】
[実施例30]
<油剤組成物および油剤処理液の調製>
イソホロンジイソシアネート−アルコール付加物(F−1)とエステル化合物(B−1)を混合攪拌して油剤を調製した。そこに非イオン系界面活性剤(H−1、H−3)を加え、混合攪拌し、油剤組成物を調製した。
十分に攪拌した後、油剤組成物の濃度が30質量%になるようにイオン交換水をさらに加え、ホモミキサーで乳化した。この状態でのミセルの平均粒子径をレーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、商品名:LA−910)を用いて測定したところ、5.0μm程度であった。
その後、さらに高圧ホモジナイザーにより、ミセルの平均粒子径が0.3μm以下になるまで分散し、油剤組成物の水系乳化液(エマルション)を得た。得られた水系乳化液をイオン交換水でさらに希釈し、油剤組成物の濃度が1.3質量%の油剤処理液を調製した。
油剤組成物中の各成分の種類と配合量(質量%)を表5に示す。
得られた油剤処理液を用いた以外は、実施例1と同様にして炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表5に示す。
【0204】
[実施例31〜36]
油剤組成物を構成する各成分の種類と配合量を表5に示すように変更した以外は、実施例30と同様にして油剤組成物および油剤処理液を調製し、炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表5に示す。
なお、帯電防止剤を添加する場合は、エマルション化し、所定の粒子径まで微細化した後に添加した。
【0205】
【表5】
【0206】
表5から明らかなように、各実施例の場合、油剤付着量は適正な量であった。また、炭素繊維前駆体アクリル繊維束の集束性、その製造過程の操業性は良好であり、全ての実施例において、炭素繊維束を連続的に製造していく上で、工程上、何ら問題がない状況であった。
【0207】
また、各実施例で得られた炭素繊維束は、単繊維間の融着数が実質的に無く、ストランド強度が高い数値を示し、機械的物性に優れていた。また、シリコーンを全く含有しないことから、焼成工程におけるSi飛散量は実質的に無く、焼成工程における工程負荷が少なく良好であった。
【0208】
なお、炭素繊維束のストランド強度は、油剤組成物の成分の種類や配合量により差が見られた。具体的には、イソホロンジイソシアネート−アルコール付加物(F−1)とエステル化合物(C−1)を各々30質量%含有した実施例32、イソホロンジイソシアネート−アルコール付加物(F−1)とエステル化合物(B−1)を各々25質量%含有した実施例35、イソホロンジイソシアネート−アルコール付加物(F−1)とエステル化合物(C−1)を各々25質量%含有した実施例36は、炭素繊維束のストランド強度が特に高かった。
【0209】
[実施例37]
<油剤組成物および油剤処理液の調製>
イソホロンジイソシアネート−アルコール付加物(F−1)とエステル化合物(D−1)を混合攪拌して油剤を調製した。そこに非イオン系界面活性剤(H−1、H−3)を加え、混合攪拌し、油剤組成物を調製した。
十分に攪拌した後、油剤組成物の濃度が30質量%になるようにイオン交換水をさらに加え、ホモミキサーで乳化した。この状態でのミセルの平均粒子径をレーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、商品名:LA−910)を用いて測定したところ、5.0μm程度であった。
その後、さらに高圧ホモジナイザーにより、ミセルの平均粒子径が0.3μm以下になるまで分散し、油剤組成物の水系乳化液(エマルション)を得た。得られた水系乳化液をイオン交換水でさらに希釈し、油剤組成物の濃度が1.3質量%の油剤処理液を調製した。
油剤組成物中の各成分の種類と配合量(質量%)を表6に示す。
得られた油剤処理液を用いた以外は、実施例1と同様にして炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表6に示す。
【0210】
[実施例38〜44]
油剤組成物を構成する各成分の種類と配合量を表6に示すように変更した以外は、実施例37と同様にして油剤組成物および油剤処理液を調製し、炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表6に示す。
なお、帯電防止剤を添加する場合は、エマルション化し、所定の粒子径まで微細化した後に添加した。
【0211】
【表6】
【0212】
表6から明らかなように、各実施例の場合、油剤付着量は適正な量であった。また、炭素繊維前駆体アクリル繊維束の集束性、その製造過程の操業性は良好であり、全ての実施例において、炭素繊維束を連続的に製造していく上で、工程上、何ら問題がない状況であった。
【0213】
また、各実施例で得られた炭素繊維束は、単繊維間の融着数が実質的に無く、ストランド強度が高い数値を示し、機械的物性に優れていた。また、シリコーンを全く含有しないことから、焼成工程におけるSi飛散量は実質的に無く、焼成工程における工程負荷が少なく良好であった。
【0214】
なお、炭素繊維束のストランド強度は、油剤組成物の成分の種類や配合量により差が見られた。具体的には、イソホロンジイソシアネート−アルコール付加物(F−1)とエステル化合物(E−1)を各々30質量%含有した実施例39、イソホロンジイソシアネート−アルコール付加物(F−1)とエステル化合物(E−1)を各々25質量%含有した実施例43、イソホロンジイソシアネート−アルコール付加物(F−1)とエステル化合物(D−2)を各々25質量%含有した実施例44は、炭素繊維束のストランド強度が特に高かった。
【0215】
[比較例1〜8]
<油剤組成物および油剤処理液の調製>
油剤組成物を構成する各成分の種類と配合量を表7に示すように変更した以外は、実施例1と同様にして油剤組成物および油剤処理液を調製した。
なお、帯電防止剤を添加する場合は、エマルション化し、所定の粒子径まで微細化した後に添加した。
また、アミノ変性シリコーンを用いる場合は、エステル化合物に非イオン系界面活性剤を攪拌混合した後に加えた。また、アミノ変性シリコーンを用い、エステル化合物を用いない比較例7、8の場合は、アミノ変性シリコーンに非イオン系界面活性剤を入れ混合攪拌した後に、イオン交換水を加えた。
このようにして調製した油剤処理液を用いた以外は、実施例1と同様にして炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表7に示す。
【0216】
【表7】
【0217】
表7から明らかなように、芳香族環を1つ有するエステル化合物(K−1)、芳香族環を2つ有するエステル化合物(K−2)、鎖状脂肪族エステル化合物(G−1)を用い、かつアミノ変性シリコーンを用いなかった比較例1、2の場合、各実施例に比べて炭素繊維束のストランド強度が低かった。
アミノ変性シリコーンを15〜20質量%含有し、上記エステル化合物(K−1)、(K−2)、(G−1)を合計で40〜60質量%含有した比較例3〜6の場合、融着数は少なく良好であったが、操業安定性に問題があった。
【0218】
また、アミノ変性シリコーンを含有させた場合(比較例3〜8)、製造された炭素繊維束の融着が無く、ストランド強度も良好であった。しかし、シリコーンを用いたことにより発生する耐炎化工程でのケイ素飛散量が多く、工業的に連続して生産するためには焼成工程への負荷が大きいという問題があった。