【実施例】
【0023】
以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
【0024】
(実施例1)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2600gとなるように秤量した。
秤量組成(分子量比率):30Fe−30Pt−40C
さらに、実施例1では、平均粒径10μmのAl粉を上記重量の0.1%に相当する量である2.6g秤量した。
【0025】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1500°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0026】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてAlの分析を実施した。ICP−AES装置を用いて分析した結果、Alの含有量は1030質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。
このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は321個であった。
【0027】
(比較例1)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2600gとなるように秤量した。
秤量組成(分子量比率):30Fe−30Pt−40C
また、比較例1ではAl粉は添加しなかった。
【0028】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1500°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0029】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてAlの分析を実施した。ICP−AES装置を用いて分析した結果、Alの含有量は50質量ppm(検出下限)未満であった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は871個で、実施例1より増加した。
【0030】
(比較例2)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2600gとなるように秤量した。
秤量組成(分子量比率):30Fe−30Pt−40C
さらに、比較例2では、平均粒径10μmのAl粉を上記重量の1%に相当する量である26.0g秤量した。
【0031】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1500°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0032】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてAlの分析を実施した。ICP−AES装置を用いて分析した結果、Alの含有量は9960質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は538個で、実施例1より増加した。これはAlの添加量が多かったため、粗大な酸化物が形成されパーティクル源となったためと考えられる。
【0033】
(実施例2)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が3000gとなるように秤量した。
秤量組成(分子量比率):40Fe−40Pt−20C
さらに、実施例2では平均粒径100μmのFe
3Zr粉を上記重量の0.05%に相当する量である1.5g秤量した。
【0034】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0035】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてZrの分析を実施した。ICP−AES装置を用いて分析した結果、Zrの含有量は170質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は166個であった。
【0036】
(比較例3)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が3000gとなるように秤量した。
秤量組成(分子量比率):40Fe−40Pt−20C
また、比較例3ではFe
3Zr粉は添加しなかった。
【0037】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0038】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてZrの分析を実施した。ICP−AES装置を用いて分析した結果、Zrの含有量は50質量ppm(検出下限)未満であった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は410個で、実施例2より増加した。
【0039】
(比較例4)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が3000gとなるように秤量した。
秤量組成(分子量比率):40Fe−40Pt−20C
さらに、比較例4では平均粒径100μmのFe
3Zr粉を上記重量の2%に相当する量である60.0g秤量した。
【0040】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0041】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてZrの分析を実施した。ICP−AES装置を用いて分析した結果、Zrの含有量は7100質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は489個で、実施例2より増加した。これはZrの添加量が多かったため、粗大な酸化物が形成されパーティクル源となったためと考えられる。
【0042】
(実施例3)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が3000gとなるように秤量した。
秤量組成(分子量比率):37.5Fe−37.5Pt−25C
さらに、実施例3では、平均粒径40μmのTi粉を上記重量の0.1%に相当する量である3.0g秤量した。
【0043】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0044】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてTiの分析を実施した。ICP−AES装置を用いて分析した結果、Tiの含有量は1010質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は281個であった。
【0045】
(比較例5)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が3000gとなるように秤量した。
秤量組成(分子量比率):37.5Fe−37.5Pt−25C
また、比較例5ではTi粉は添加しなかった。
【0046】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0047】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてTiの分析を実施した。ICP−AES装置を用いて分析した結果、Tiの含有量は50質量ppm(検出下限)未満であった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は491個で、実施例3より増加した。
【0048】
(比較例6)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が3000gとなるように秤量した。
秤量組成(分子量比率):37.5Fe−37.5Pt−25C
さらに、比較例6では、平均粒径40μmのTi粉を上記重量の0.6%に相当する量である18.0g秤量した。
【0049】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0050】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてTiの分析を実施した。ICP−AES装置を用いて分析した結果、Tiの含有量は5960質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は454個で、実施例3より増加した。これはTiの添加量が多かったため、粗大な酸化物が形成されパーティクル源となったためと考えられる。
【0051】
(実施例4)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2800gとなるように秤量した。
秤量組成(分子量比率):35Fe−35Pt−30C
さらに、実施例4では、平均粒径50μmのFe
17Pr
2粉を上記重量の0.1%に相当する量である2.8g秤量した。
【0052】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1500°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0053】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてPrの分析を実施した。ICP−AES装置を用いて分析した結果、Prの含有量は230質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は378個であった。
【0054】
(比較例7)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2800gとなるように秤量した。
秤量組成(分子量比率):35Fe−35Pt−30C
また、比較例7ではFe
17Pr
2粉は添加しなかった。
【0055】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1500°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0056】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてPrの分析を実施した。ICP−AES装置を用いて分析した結果、Prの含有量は50質量ppm(検出下限)未満であった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は566個で、実施例4より増加した。
【0057】
(比較例8)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2800gとなるように秤量した。
秤量組成(分子量比率):35Fe−35Pt−30C
さらに、比較例8では、平均粒径50μmのFe
17Pr
2粉を上記重量の4.0%に相当する量である112g秤量した。
【0058】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1500°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0059】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてPrの分析を実施した。ICP−AES装置を用いて分析した結果、Prの含有量は9870質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は411個で、実施例4より増加した。これはPrの添加量が多かったため、粗大な酸化物が形成されパーティクル源となったためと考えられる。
【0060】
(実施例5)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2700gとなるように秤量した。
秤量組成(分子量比率):32.5Fe−32.5Pt−35C
さらに、実施例5では、平均粒径100μmのMg粉を上記重量の0.1%に相当する量である2.7g、平均粒径40μmのFe
3Zr粉を上記重量の0.2%に相当する量である5.4g、それぞれ秤量した。
【0061】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1500°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0062】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてMgとZrの分析を実施した。グロー放電質量分析装置を用いて分析した結果、Mgの含有量は1000質量ppm、Zrの含有量は700質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は275個であった。
【0063】
(比較例9)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2700gとなるように秤量した。
秤量組成(分子量比率):32.5Fe−32.5Pt−35C
また、比較例9ではMg粉もFe
3Zr粉も添加しなかった。
【0064】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1500°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0065】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてMgとZrの分析を実施した。グロー放電質量分析装置を用いて分析した結果、Mgは8質量ppm、Zrは17質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は720個で、実施例5より増加した。
【0066】
(比較例10)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2700gとなるように秤量した。
秤量組成(分子量比率):32.5Fe−32.5Pt−35C
さらに、比較例10では、平均粒径100μmのMg粉を上記重量の1.0%に相当する量である27g、平均粒径40μmのFe
3Zr粉を上記重量の0.4%に相当する量である10.8g、それぞれ秤量した。
【0067】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1500°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0068】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてMgとZrの分析を実施した。グロー放電質量分析装置を用いて分析した結果、Mgの含有量は9900質量ppm、Zrの含有量は1400質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は988個で、実施例5より増加した。これはMgとZrの添加量が多かったため、粗大な酸化物が形成されパーティクル源となったためと考えられる。
【0069】
(実施例6)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2400gとなるように秤量した。
秤量組成(分子量比率):27.5Fe−27.5Pt−45C
さらに、実施例6では、平均粒径10μmのAl粉を上記重量の0.2%に相当する量である4.8g、平均粒径40μmのTi粉を上記重量の0.2%に相当する量である4.8g、平均粒径100μmのFe
3Zr粉を上記重量の0.2%に相当する量である4.8g、それぞれ秤量した。
【0070】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1500°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0071】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてAlとTiとZrの分析を実施した。グロー放電質量分析装置を用いて分析した結果、Alの含有量は2000質量ppm、Tiの含有量は1900質量ppm、Zrの含有量は700質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は385個であった。
【0072】
(比較例11)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2400gとなるように秤量した。
秤量組成(分子量比率):27.5Fe−27.5Pt−45C
また、比較例11ではAl粉もTi粉もFe
3Zr粉も添加しなかった。
【0073】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1500°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0074】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてAlとTiとZrの分析を実施した。グロー放電質量分析装置を用いて分析した結果、Alは0.5質量ppm、Tiは0.4質量ppm、Zrは13質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は804個で、実施例6より増加した。
【0075】
(比較例12)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2400gとなるように秤量した。
秤量組成(分子量比率):27.5Fe−27.5Pt−45C
さらに、比較例12では、平均粒径10μmのAl粉を上記重量の0.3%に相当する量である7.2g、平均粒径40μmのTi粉を上記重量の0.3%に相当する量である7.2g、平均粒径100μmのFe
3Zr粉を上記重量の0.4%に相当する量である9.6g、それぞれ秤量した。
【0076】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1500°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0077】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてAlとTiとZrの分析を実施した。グロー放電質量分析装置を用いて分析した結果、Alの含有量は3100質量ppm、Tiの含有量は3000質量ppm、Zrの含有量は1400質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は485個で、実施例6より増加した。これはAlとTiとZrの添加量が多かったため、粗大な酸化物が形成されパーティクル源となったためと考えられる。
【0078】
(実施例8)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径5μmのTaC粉を用意した。そして以下の組成比で合計の重量が3200gとなるように秤量した。
秤量組成(分子量比率):46.20Fe−30.80Pt−23TaC
さらに、実施例8では、平均粒径100μmのMg粉を上記重量の0.2%に相当する量である6.4g秤量した。
【0079】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0080】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてMgの分析を実施した。ICP−AES装置を用いて分析した結果、Mgの含有量は2070質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は138個であった。
【0081】
(比較例15)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径5μmのTaC粉を用意した。そして以下の組成比で合計の重量が3200gとなるように秤量した。
秤量組成(分子量比率):46.20Fe−30.80Pt−23TaC
また、比較例15ではMg粉は添加しなかった。
【0082】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0083】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてMgの分析を実施した。ICP−AES装置を用いて分析した結果、Mgの含有量は50質量ppm(検出下限)未満であった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いてマグネトロンスパッタ装置に取り付け、実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は408個で、実施例8より増加した。
【0084】
(比較例16)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径5μmのTaC粉を用意した。そして以下の組成比で合計の重量が3200gとなるように秤量した。
秤量組成(分子量比率):46.20Fe−30.80Pt−23TaC
さらに、比較例16では、平均粒径100μmのMg粉を上記重量の1%に相当する量である32.0g秤量した。
【0085】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0086】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてMgの分析を実施した。ICP−AES装置を用いて分析した結果、Mgの含有量は10100質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は227個で、実施例8より増加した。これはMgの添加量が多かったため、粗大な酸化物が形成されパーティクル源となったためと考えられる。
【0087】
(実施例9)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのBN粉を用意した。そして以下の組成比で合計の重量が2400gとなるように秤量した。
秤量組成(分子量比率):35Fe−35Pt−30BN
さらに、実施例9では平均粒径40μmのTi粉を上記重量の0.02%に相当する量である0.48g秤量した。
【0088】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0089】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてTiの分析を実施した。ICP−AES装置を用いて分析した結果、Tiの含有量は190質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は178個であった。
【0090】
(比較例17)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのBN粉を用意した。そして以下の組成比で合計の重量が2400gとなるように秤量した。
秤量組成(分子量比率):35Fe−35Pt−30BN
また、比較例17ではTi粉は添加しなかった。
【0091】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0092】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてTi量の分析を実施した。ICP−AES装置を用いて分析した結果、Tiの含有量は50質量ppm(検出下限)未満であった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いてマグネトロンスパッタ装置に取り付け、実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は370個で、実施例9より増加した。
【0093】
(比較例18)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのBN粉を用意した。そして以下の組成比で合計の重量が2400gとなるように秤量した。
秤量組成(分子量比率):35Fe−35Pt−30BN
さらに、比較例18では、平均粒径40μmのTi粉を上記重量の1%に相当する量である24.0g秤量した。
【0094】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0095】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてTiの分析を実施した。ICP−AES装置を用いて分析した結果、Tiの含有量は10000質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は328個で、実施例9より増加した。
これはTiの添加量が多かったため、粗大な酸化物が形成されパーティクル源となったためと考えられる。
【0096】
(実施例10)
原料粉として平均粒径10μmのFe−Pt粉(分子量比率で50Fe−50Ptの組成)、平均粒径10μmのC粉(グラファイト粉)、平均粒径1μmのSiO
2粉を用意した。そして以下の組成比で合計の重量が2500gとなるように秤量した。
秤量組成(分子量比率):35Fe−35Pt−25C−5SiO
2
さらに、実施例10では、平均粒径50μmのFe
3Y粉を上記重量の0.1%に相当する量である2.5g秤量した。
【0097】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1150°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0098】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてYの分析を実施した。ICP−AES装置を用いて分析した結果、Yの含有量は350質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は113個であった。
【0099】
(比較例19)
原料粉として平均粒径10μmのFe−Pt粉(分子量比率で50Fe−50Ptの組成)、平均粒径10μmのC粉(グラファイト粉)、平均粒径1μmのSiO
2粉を用意した。そして以下の組成比で合計の重量が2500gとなるように秤量した。
秤量組成(分子量比率):35Fe−35Pt−25C−5SiO
2
また、比較例19ではFe
3Y粉は添加しなかった。
【0100】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1150°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0101】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてY量の分析を実施した。ICP−AES装置を用いて分析した結果、Yの含有量は50質量ppm(検出下限)未満であった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いてマグネトロンスパッタ装置に取り付け、実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は221個で、実施例10より増加した。
【0102】
(比較例20)
原料粉として平均粒径10μmのFe−Pt粉(分子量比率で50Fe−50Ptの組成)、平均粒径10μmのC粉(グラファイト粉)、平均粒径1μmのSiO
2粉を用意した。そして以下の組成比で合計の重量が2500gとなるように秤量した。
秤量組成(分子量比率):35Fe−35Pt−25C−5SiO
2
さらに、比較例20では平均粒径50μmのFe
3Y粉を上記重量の2%に相当する量である50g秤量した。
【0103】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1150°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0104】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてYの分析を実施した。ICP−AES装置を用いて分析した結果、Yの含有量は6910質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は351個で、実施例10より増加した。これはYの添加量が多かったため、粗大なY酸化物が形成されパーティクル源となったためと考えられる。
【0105】
(実施例11)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉、平均粒径1μmのSi
3N
4粉を用意した。そして以下の組成比で合計の重量が2600gとなるように秤量した。
秤量組成(分子量比率):38Fe−38Pt−20C−4Si
3N
4
さらに、実施例11では平均粒径10μmのAl粉を上記重量の0.05%に相当する量である1.3g、平均粒径40μmのTi粉を上記重量の0.05%に相当する量である1.3g、それぞれ秤量した。
【0106】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、窒素雰囲気、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0107】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてAlとTiの分析を実施した。グロー放電質量分析装置を用いて分析した結果、Alの含有量は520質量ppm、Tiの含有量は510質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は169個であった。
【0108】
(比較例21)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉、平均粒径1μmのSi
3N
4粉を用意した。そして以下の組成比で合計の重量が2600gとなるように秤量した。
秤量組成(分子量比率):38Fe−38Pt−20C−4Si
3N
4
また、比較例21ではAl粉もTi粉も添加しなかった。
【0109】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、窒素雰囲気、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0110】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてAlとTiの分析を実施した。グロー放電質量分析装置を用いて分析した結果、Alは0.4質量ppm、Tiは0.3質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は401個で、実施例11より増加した。
【0111】
(比較例22)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉、平均粒径1μmのSi
3N
4粉を用意した。そして以下の組成比で合計の重量が2600gとなるように秤量した。
秤量組成(分子量比率):38Fe−38Pt−20C−4Si
3N
4
さらに、比較例22では、平均粒径10μmのAl粉を上記重量の1%に相当する量である26.0g、平均粒径40μmのTi粉を上記重量の1%に相当する量である26.0g、それぞれ秤量した。
【0112】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、窒素雰囲気、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0113】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてAlとTiの分析を実施した。グロー放電質量分析装置を用いて分析した結果、Alの含有量は10000質量ppm、Tiの含有量は10000質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は456個で、実施例11より増加した。これはAlとTiの添加量が多かったため、粗大な酸化物が形成されパーティクル源となったためと考えられる。
【0114】
(実施例12)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径5μmのCu粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2500gとなるように秤量した。
秤量組成(分子量比率):27Fe−27Pt−6Cu−40C
さらに、実施例12では平均粒径200μmのFe
3Zr粉を上記重量の0.02%に相当する量である0.5g秤量した。
【0115】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0116】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてZrの分析を実施した。ICP−AES装置を用いて分析した結果、Zrの含有量は70質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は255個であった。
【0117】
(比較例23)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径5μmのCu粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2500gとなるように秤量した。
秤量組成(分子量比率):27Fe−27Pt−6Cu−40C
また、比較例23ではFe
3Zr粉は添加しなかった。
【0118】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0119】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてZr量の分析を実施した。ICP−AES装置を用いて分析した結果、Zrの含有量は50質量ppm(検出下限)未満であった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は438個で、実施例12より増加した。
【0120】
(比較例24)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径5μmのCu粉、平均粒径10μmのC粉(グラファイト粉)を用意した。そして以下の組成比で合計の重量が2500gとなるように秤量した。
秤量組成(分子量比率):27Fe−27Pt−6Cu−40C
さらに、比較例24では平均粒径200μmのFe
3Zr粉を上記重量の2%に相当する量である50.0g秤量した。
【0121】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0122】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてZrの分析を実施した。ICP−AES装置を用いて分析した結果、Zrの含有量は7210質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は464個で、実施例12より増加した。これはZrの添加量が多かったため、粗大な酸化物が形成されパーティクル源となったためと考えられる。
【0123】
(実施例13)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのBN粉、平均粒径2μmのCr
2O
3粉を用意した。そして以下の組成比で合計の重量が2500gとなるように秤量した。
秤量組成(分子量比率):38Fe−38Pt−20BN−4Cr
2O
3
さらに、実施例7では平均粒径100μmのMg粉を上記重量の0.5%に相当する量である12.5g秤量した。
【0124】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1150°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0125】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてMgの分析を実施した。ICP−AES装置を用いて分析した結果、Mgの含有量は4890質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は129個であった。
【0126】
(比較例25)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのBN粉、平均粒径2μmのCr
2O
3粉を用意した。そして以下の組成比で合計の重量が2500gとなるように秤量した。
秤量組成(分子量比率):38Fe−38Pt−20BN−4Cr
2O
3
また、比較例25ではMg粉は添加しなかった。
【0127】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1150°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0128】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてMg量の分析を実施した。ICP−AES装置を用いて分析した結果、Mgの含有量は50質量ppm(検出下限)未満であった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は546個で、実施例13より増加した。
【0129】
(比較例26)
原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのBN粉、平均粒径2μmのCr
2O
3粉を用意した。そして以下の組成比で合計の重量が2500gとなるように秤量した。
秤量組成(分子量比率):38Fe−38Pt−20BN−4Cr
2O
3
さらに、比較例26では平均粒径100μmのMg粉を上記重量の0.6%に相当する量である15.0g秤量した。
【0130】
次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1150°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
【0131】
次に作製した焼結体の一部を切り出し、切り出した小片を用いてMgの分析を実施した。ICP−AES装置を用いて分析した結果、Mgの含有量は5990質量ppmであった。さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は177個で、実施例13より増加した。これはMgの添加量が多かったため、粗大な酸化物が形成されパーティクル源となったためと考えられる。
【0132】
以上の通り、いずれの実施例においても、酸素1モルに対する酸化物の標準生成自由エネルギーがCO(一酸化炭素)のよりも低い元素を微量添加することで、スパッタリング時に発生するパーティクル量を低減することができ、成膜時の歩留まりを向上することができた。このように、CO(一酸化炭素)のよりも酸化物の標準生成自由エネルギーが低い酸化物を形成する元素を含有させることが、パーティクル発生の抑制に非常に重要な役割を有することが分かった。
【0133】
【表1】