(58)【調査した分野】(Int.Cl.,DB名)
被加工物を保持する被加工物保持手段と、該被加工物保持手段に保持された被加工物にパルスレーザー光線を照射するレーザー光線照射手段とを具備するレーザー加工装置であって、
該レーザー光線照射手段から被加工物にレーザー光線が照射されることによって発生するプラズマの波長を検出するプラズマ検出手段と、該プラズマ検出手段からの検出信号に基づいて該レーザー光線照射手段を制御する制御手段とを具備し、
該プラズマ検出手段は、第1の材料が発するプラズマの波長のみを通過させるバンドパスフィルターと、該バンドパスフィルターを通過した光を受光して光強度信号を該制御手段に出力するホトデテクターとを具備しており、
該制御手段は、該レーザー光線照射手段を作動して被加工物にパルスレーザー光線を照射し被加工物の第1の部材から第2の部材に達するレーザー加工を実施する際に、該ホトデテクターから出力される第1の部材に係る光強度信号に基づいて、パルスレーザー光線のショット数に対する光強度の振幅を検出し、該光強度の振幅が所定値に低下した時点から所定数のパルスレーザー光線を照射することにより第2の部材が露出した後にパルスレーザー光線の照射を停止するように該レーザー光線照射手段を制御する、
ことを特徴とするレーザー加工装置。
【発明を実施するための形態】
【0014】
以下、本発明によるレーザー加工装置の好適な実施形態について、添付図面を参照して、更に詳細に説明する。
【0015】
図1には、本発明に従って構成されたレーザー加工装置の斜視図が示されている。
図1に示すレーザー加工装置1は、静止基台2と、該静止基台2に矢印Xで示す加工送り方向(X軸方向)に移動可能に配設され被加工物を保持するチャックテーブル機構3と、静止基台2にX軸方向と直交する矢印Yで示す割り出し送り方向(Y軸方向)に移動可能に配設されたレーザー光線照射ユニット支持機構4と、該レーザー光線照射ユニット支持機構4に矢印Zで示す集光点位置調整方向(Z軸方向)に移動可能に配設されたレーザー光線照射ユニット5とを具備している。
【0016】
上記チャックテーブル機構3は、静止基台2上にX軸方向に沿って平行に配設された一対の案内レール31、31と、該案内レール31、31上にX軸方向に移動可能に配設された第1の滑動ブロック32と、該第1の滑動ブロック32上にY軸方向に移動可能に配設された第2の滑動ブロック33と、該第2の滑動ブロック33上に円筒部材34によって支持されたカバーテーブル35と、被加工物保持手段としてのチャックテーブル36を具備している。このチャックテーブル36は多孔性材料から形成された吸着チャック361を具備しており、吸着チャック361上に被加工物である例えば円盤状の半導体ウエーハを図示しない吸引手段によって保持するようになっている。このように構成されたチャックテーブル36は、円筒部材34内に配設された図示しないパルスモータによって回転せしめられる。なお、チャックテーブル36には、後述する環状のフレームを固定するためのクランプ362が配設されている。
【0017】
上記第1の滑動ブロック32は、その下面に上記一対の案内レール31、31と嵌合する一対の被案内溝321、321が設けられているとともに、その上面にY軸方向に沿って平行に形成された一対の案内レール322、322が設けられている。このように構成された第1の滑動ブロック32は、被案内溝321、321が一対の案内レール31、31に嵌合することにより、一対の案内レール31、31に沿ってX軸方向に移動可能に構成される。図示の実施形態におけるチャックテーブル機構3は、第1の滑動ブロック32を一対の案内レール31、31に沿ってX軸方向に移動させるためのX軸方向移動手段(加工送り手段37)を具備している。この加工送り手段37は、上記一対の案内レール31と31の間に平行に配設された雄ネジロッド371と、該雄ネジロッド371を回転駆動するためのパルスモータ372等の駆動源を含んでいる。雄ネジロッド371は、その一端が上記静止基台2に固定された軸受ブロック373に回転自在に支持されており、その他端が上記パルスモータ372の出力軸に伝動連結されている。なお、雄ネジロッド371は、第1の滑動ブロック32の中央部下面に突出して設けられた図示しない雌ネジブロックに形成された貫通雌ネジ穴に螺合されている。従って、パルスモータ372によって雄ネジロッド371を正転および逆転駆動することにより、第1の滑動ブロック32は案内レール31、31に沿ってX軸方向に移動せしめられる。
【0018】
図示の実施形態におけるレーザー加工装置は、上記チャックテーブル36の加工送り量即ちX軸方向位置を検出するためのX軸方向位置検出手段374を備えている。X軸方向位置検出手段374は、案内レール31に沿って配設されたリニアスケール374aと、第1の滑動ブロック32に配設され第1の滑動ブロック32とともにリニアスケール374aに沿って移動する読み取りヘッド374bとからなっている。このX軸方向位置検出手段374の読み取りヘッド374bは、図示の実施形態においては1μm毎に1パルスのパルス信号を後述する制御手段に送る。そして後述する制御手段は、入力したパルス信号をカウントすることにより、チャックテーブル36の加工送り量即ちX軸方向の位置を検出する。なお、上記加工送り手段37の駆動源としてパルスモータ372を用いた場合には、パルスモータ372に駆動信号を出力する後述する制御手段の駆動パルスをカウントすることにより、チャックテーブル36の加工送り量即ちX軸方向の位置を検出することもできる。また、上記加工送り手段37の駆動源としてサーボモータを用いた場合には、サーボモータの回転数を検出するロータリーエンコーダが出力するパルス信号を後述する制御手段に送り、制御手段が入力したパルス信号をカウントすることにより、チャックテーブル36の加工送り量即ちX軸方向の位置を検出することもできる。
【0019】
上記第2の滑動ブロック33は、その下面に上記第1の滑動ブロック32の上面に設けられた一対の案内レール322、322と嵌合する一対の被案内溝331、331が設けられており、この被案内溝331、331を一対の案内レール322、322に嵌合することにより、Y軸方向に移動可能に構成される。図示の実施形態におけるチャックテーブル機構3は、第2の滑動ブロック33を第1の滑動ブロック32に設けられた一対の案内レール322、322に沿ってY軸方向に移動させるための第1のY軸方向移動手段(第1の割り出し送り手段38)を具備している。この第1の割り出し送り手段38は、上記一対の案内レール322と322の間に平行に配設された雄ネジロッド381と、該雄ネジロッド381を回転駆動するためのパルスモータ382等の駆動源を含んでいる。雄ネジロッド381は、その一端が上記第1の滑動ブロック32の上面に固定された軸受ブロック383に回転自在に支持されており、その他端が上記パルスモータ382の出力軸に伝動連結されている。なお、雄ネジロッド381は、第2の滑動ブロック33の中央部下面に突出して設けられた図示しない雌ネジブロックに形成された貫通雌ネジ穴に螺合されている。従って、パルスモータ382によって雄ネジロッド381を正転および逆転駆動することにより、第2の滑動ブロック33は案内レール322、322に沿ってY軸方向に移動せしめられる。
【0020】
図示の実施形態におけるレーザー加工装置は、上記第2の滑動ブロック33の割り出し加工送り量即ちY軸方向位置を検出するためのY軸方向位置検出手段384を備えている。このY軸方向位置検出手段384は、案内レール322に沿って配設されたリニアスケール384aと、第2の滑動ブロック33に配設され第2の滑動ブロック33とともにリニアスケール384aに沿って移動する読み取りヘッド384bとからなっている。このY軸方向位置検出手段384の読み取りヘッド384bは、図示の実施形態においては1μm毎に1パルスのパルス信号を後述する制御手段に送る。そして後述する制御手段は、入力したパルス信号をカウントすることにより、チャックテーブル36の割り出し送り量即ちY軸方向の位置を検出する。なお、上記第1の割り出し送り手段38の駆動源としてパルスモータ382を用いた場合には、パルスモータ382に駆動信号を出力する後述する制御手段の駆動パルスをカウントすることにより、チャックテーブル36の割り出し送り量即ちY軸方向の位置を検出することもできる。また、上記第1の割り出し送り手段38の駆動源としてサーボモータを用いた場合には、サーボモータの回転数を検出するロータリーエンコーダが出力するパルス信号を後述する制御手段に送り、制御手段が入力したパルス信号をカウントすることにより、チャックテーブル36の割り出し送り量即ちY軸方向の位置を検出することもできる。
【0021】
上記レーザー光線照射ユニット支持機構4は、静止基台2上にY軸方向に沿って平行に配設された一対の案内レール41、41と、該案内レール41、41上に矢印Yで示す方向に移動可能に配設された可動支持基台42を具備している。この可動支持基台42は、案内レール41、41上に移動可能に配設された移動支持部421と、該移動支持部421に取り付けられた装着部422とからなっている。装着部422は、一側面にZ軸方向に延びる一対の案内レール423、423が平行に設けられている。図示の実施形態におけるレーザー光線照射ユニット支持機構4は、可動支持基台42を一対の案内レール41、41に沿ってY軸方向に移動させるための第2のY軸方向移動手段(第2の割り出し送り手段43)を具備している。この第2の割り出し送り手段43は、上記一対の案内レール41、41の間に平行に配設された雄ネジロッド431と、該雄ネジロッド431を回転駆動するためのパルスモータ432等の駆動源を含んでいる。雄ネジロッド431は、その一端が上記静止基台2に固定された図示しない軸受ブロックに回転自在に支持されており、その他端が上記パルスモータ432の出力軸に伝動連結されている。なお、雄ネジロッド431は、可動支持基台42を構成する移動支持部421の中央部下面に突出して設けられた図示しない雌ネジブロックに形成された雌ネジ穴に螺合されている。このため、パルスモータ432によって雄ネジロッド431を正転および逆転駆動することにより、可動支持基台42は案内レール41、41に沿ってY軸方向に移動せしめられる。
【0022】
図示の実施形態におけるレーザー光線照射ユニット5は、ユニットホルダ51と、該ユニットホルダ51に取り付けられたレーザー光線照射手段52を具備している。ユニットホルダ51は、上記装着部422に設けられた一対の案内レール423、423に摺動可能に嵌合する一対の被案内溝511、511が設けられており、この被案内溝511、511を上記案内レール423、423に嵌合することにより、Z軸方向に移動可能に支持される。
【0023】
図示の実施形態におけるレーザー光線照射ユニット5は、ユニットホルダ51を一対の案内レール423、423に沿ってZ軸方向に移動させるためのZ軸方向移動手段(集光点位置調整手段53)を具備している。集光点位置調整手段53は、一対の案内レール423、423の間に配設された雄ネジロッド(図示せず)と、該雄ネジロッドを回転駆動するためのパルスモータ532等の駆動源を含んでおり、パルスモータ532によって図示しない雄ネジロッドを正転および逆転駆動することにより、ユニットホルダ51およびレーザー光線照射手段52を案内レール423、423に沿ってZ軸方向に移動せしめる。なお、図示の実施形態においてはパルスモータ532を正転駆動することによりレーザー光線照射手段52を上方に移動し、パルスモータ532を逆転駆動することによりレーザー光線照射手段52を下方に移動するようになっている。
【0024】
上記レーザー光線照射手段52は、実質上水平に配置された円筒形状のケーシング521と、
図2に示すようにケーシング521内に配設されたパルスレーザー光線発振手段6と、パルスレーザー光線発振手段6が発振したレーザー光線の光軸を加工送り方向(X軸方向)に偏向する光偏向手段としての音響光学偏向手段7と、該音響光学偏向手段7を通過したパルスレーザー光線を上記チャックテーブル36に保持された被加工物Wに照射する集光器8を具備している。
【0025】
上記パルスレーザー光線発振手段6は、YAGレーザー発振器或いはYVO4レーザー発振器からなるパルスレーザー光線発振器61と、これに付設された繰り返し周波数設定手段62とから構成されている。パルスレーザー光線発振器61は、繰り返し周波数設定手段62によって設定された所定周波数のパルスレーザー光線(LB)を発振する。繰り返し周波数設定手段62は、パルスレーザー光線発振器61が発振するパルスレーザー光線の繰り返し周波数を設定する。
【0026】
上記音響光学偏向手段7は、レーザー光線発振手段6が発振したレーザー光線(LB)の光軸を加工送り方向(X軸方向)に偏向する音響光学素子71と、該音響光学素子71に印加するRF(radio frequency)を生成するRF発振器72と、該RF発振器72によって生成されたRFのパワーを増幅して音響光学素子71に印加するRFアンプ73と、RF発振器72によって生成されるRFの周波数を調整する偏向角度調整手段74と、RF発振器72によって生成されるRFの振幅を調整する出力調整手段75を具備している。上記音響光学素子71は、印加されるRFの周波数に対応してレーザー光線の光軸を偏向する角度を調整することができるとともに、印加されるRFの振幅に対応してレーザー光線の出力を調整することができる。なお、光偏向手段としては上記音響光学偏向手段7に代えて電子光学素子を用いた電子光学偏向手段を使用してもよい。上述した偏向角度調整手段74および出力調整手段75は、後述する制御手段によって制御される。
【0027】
また、図示の実施形態におけるレーザー光線照射手段52は、上記音響光学素子71に所定周波数のRFが印加された場合に、
図2において破線で示すように音響光学素子71によって偏向されたレーザー光線を吸収するためのレーザー光線吸収手段76を具備している。
【0028】
上記集光器8はケーシング521の先端に装着されており、上記音響光学偏向手段7によって偏向されたパルスレーザー光線を下方に向けて方向変換する方向変換ミラー81と、該方向変換ミラー81によって方向変換されたレーザー光線を集光するテレセントリックレンズからなる集光レンズ82を具備している。
【0029】
図示の実施形態におけるレーザー光線照射手段52は以上のように構成されており、以下その作用について
図2を参照して説明する。
音響光学偏向手段7の偏向角度調整手段74に後述する制御手段から例えば5Vの電圧が印加され、音響光学素子71に5Vに対応する周波数のRFが印加された場合には、パルスレーザー光線発振手段6から発振されたパルスレーザー光線は、その光軸が
図2において1点鎖線で示すように偏向され集光点Paに集光される。また、偏向角度調整手段74に後述する制御手段から例えば10Vの電圧が印加され、音響光学素子71に10Vに対応する周波数のRFが印加された場合には、パルスレーザー光線発振手段6から発振されたパルスレーザー光線は、その光軸が
図2において実線で示すように偏向され、上記集光点Paから加工送り方向(X軸方向)に
図2において左方に所定量変位した集光点Pbに集光される。一方、偏向角度調整手段74に後述する制御手段から例えば15Vの電圧が印加され、音響光学素子71に15Vに対応する周波数のRFが印加された場合には、パルスレーザー光線発振手段6から発振されたパルスレーザー光線は、その光軸が
図2において2点鎖線で示すように偏向され、上記集光点Pbから加工送り方向(X軸方向)に
図2において左方に所定量変位した集光点Pcに集光される。また、音響光学偏向手段7の偏向角度調整手段74に後述する制御手段から例えば0Vの電圧が印加され、音響光学素子71に0Vに対応する周波数のRFが印加された場合には、パルスレーザー光線発振手段6から発振されたパルスレーザー光線は、
図2において破線で示すようにレーザー光線吸収手段76に導かれる。このように、音響光学素子71によって偏向されたレーザー光線は、偏向角度調整手段74に印加される電圧に対応して加工送り方向(X軸方向)に偏向せしめられる。
【0030】
図1に戻って説明を続けると、図示の実施形態におけるレーザー加工装置は、レーザー光線照射ユニット5を構成するレーザー光線照射手段52のケーシング521に取り付けられ、レーザー光線照射手段52から被加工物にレーザー光線が照射されることによって発生するプラズマを検出するプラズマ検出手段9を備えている。このプラズマ検出手段9は、
図3に示すようにレーザー光線照射手段52の集光器8から照射されるレーザー光線がチャックテーブル36に保持された被加工物Wに照射されることによって発生するプラズマを受光するプラズマ受光手段91と、該プラズマ受光手段91によって受光されたプラズマ光を第1の光路92aと第2の光路92bに分光するダイクロイックミラー92と、第1の光路92aに配設され波長が第1の設定波長(後述する被加工物の第1の部材を形成する第1の材料が発する波長)の光のみを通過させる第1のバンドパスフィルター93と、該第1のバンドパスフィルター93を通過した光を受光して光強度信号を出力する第1のホトデテクター94と、第2の光路92bに配設された方向変換ミラー95と、該方向変換ミラー95によって方向変換されたプラズマ光の波長が第2の設定波長(後述する被加工物の第2の部材を形成する第2の材料が発する波長)の光のみを通過させる第2のバンドパスフィルター96と、該第2のバンドパスフィルター96を通過した光を受光して光強度信号を出力する第2のホトデテクター97とを具備している。上記プラズマ受光手段91は、集光レンズ911と、該集光レンズ911を収容するレンズケース912とからなり、レンズケース912が
図1に示すようにレーザー光線照射手段52のケーシング521に取り付けられる。また、
図1に示すようにレンズケース912には角度調整用ツマミ913が配設されており、集光レンズ911の設置角度を調整することができるようになっている。なお、上記第1のバンドパスフィルター93は、図示の実施形態においてはリチウムタンタレートのプラズマ光の波長(670nm)のみを通過させるために波長が660〜680nmの範囲の光を通過させるようになっている。また、上記第2のバンドパスフィルター96は図示の実施形態においては銅のプラズマ光の波長(515nm)のみを通過させるために波長が500〜540nmの範囲の光を通過させるようになっている。図示の実施形態におけるプラズマ検出手段9は以上のように構成されており、第1のバンドパスフィルター93を通過した光を受光した第1のホトデテクター94および第2のバンドパスフィルター96を通過した光を受光した第2のホトデテクター97は、それぞれ受光した光の強度に対応する電圧信号を後述する制御手段に出力する。なお、上述したプラズマ検出手段9においては、プラズマ受光手段91によって受光されたプラズマ光を第1の光路92aと第2の光路92bに分光するためにダイクロイックミラー92を用いた例を示したが、ダイクロイックミラー92に替えてビームスプリッターを用いてもよい。
【0031】
図1に戻って説明を続けると、図示の実施形態におけるレーザー加工装置は、ケーシング521の前端部に配設され上記レーザー光線照射手段52によってレーザー加工すべき加工領域を撮像する撮像手段11を備えている。この撮像手段11は、可視光線によって撮像する通常の撮像素子(CCD)の外に、被加工物に赤外線を照射する赤外線照明手段と、該赤外線照明手段によって照射された赤外線を捕らえる光学系と、該光学系によって捕らえられた赤外線に対応した電気信号を出力する撮像素子(赤外線CCD)等で構成されており、撮像した画像信号を後述する制御手段に送る。
【0032】
図示の実施形態におけるレーザー加工装置は、
図4に示す制御手段20を具備している。制御手段20はコンピュータによって構成されており、制御プログラムに従って演算処理する中央処理装置(CPU)201と、制御プログラム等を格納するリードオンリメモリ(ROM)202と、後述する制御マップや被加工物の設計値のデータや演算結果等を格納する読み書き可能なランダムアクセスメモリ(RAM)203と、カウンター204と、入力インターフェース205および出力インターフェース206とを備えている。制御手段20の入力インターフェース205には、上記X軸方向位置検出手段374、Y軸方向位置検出手段384、プラズマ検出手段9の第1のホトデテクター94および第2のホトデテクター97、撮像手段11等からの検出信号が入力される。そして、制御手段20の出力インターフェース206からは、上記パルスモータ372、パルスモータ382、パルスモータ432、パルスモータ532、レーザー光線照射手段52、表示手段200等に制御信号を出力する。なお、上記ランダムアクセスメモリ(RAM)203は、被加工物を形成する物質とプラズマの波長との関係を記憶する第1の記憶領域203aや後述するウエーハの設計値のデータを記憶する第2の記憶領域203bや後述する光強度の振幅の所定値を記憶する第3の記憶領域203cや他の記憶領域を備えている。
【0033】
図示の実施形態におけるレーザー加工装置は以上のように構成されており、以下その作用について説明する。
図5にはレーザー加工される被加工物としてのウエーハ30の平面図が示されている。
図5に示すウエーハ30は、図示の実施形態においては厚みが300μmのリチウムタンタレート基板300(第1の部材)の表面300aに格子状に配列された複数の分割予定ライン301によって複数の領域が区画され、この区画された領域にデバイス302がそれぞれ形成されている。この各デバイス302は、全て同一の構成をしている。デバイス302の表面にはそれぞれ
図6に示すように複数のボンディングパッド303(303a〜303j)(第2の部材)が形成されている。この第2の部材としてのボンディングパッド303(303a〜303j)は、図示の実施形態においては銅によって形成されている。なお、図示の実施形態においては、303aと303f、303bと303g、303cと303h、303dと303i、303eと303jは、X方向位置が同一である。この複数のボンディングパッド303(303a〜303j)にそれぞれ裏面300bからボンディングパッド303に達する加工穴(ビアホール)が形成される。各デバイス302におけるボンディングパッド303(303a〜303j)のX方向(
図6おいて左右方向)の間隔A、および各デバイス302に形成されたボンディングパッド303における分割予定ライン301を挟んでX方向(
図5において左右方向)に隣接するボンディングパッド即ちボンディングパッド303eとボンディングパッド303aとの間隔Bは、図示の実施形態においては同一間隔に設定されている。また、各デバイス302におけるボンディングパッド303(303a〜303j)のY方向(
図6において上下方向)の間隔C、および各デバイス302に形成されたボンディングパッド303における分割予定ライン301を挟んでY方向(
図6において上下方向)に隣接するボンディングパッド即ちボンディングパッド303fとボンディングパッド303aおよびボンディングパッド303jとボンディングパッド303eとの間隔Dは、図示の実施形態においては同一間隔に設定されている。このように構成されたウエーハ30について、
図5に示す各行E1・・・・Enおよび各列F1・・・・Fnに配設されたデバイス302の個数と上記各間隔A,B,C,DおよびX,Y座標値は、その設計値のデータが上記ランダムアクセスメモリ(RAM)203の第2の記憶領域203bに格納されている。
【0034】
上述したレーザー加工装置を用い、ウエーハ30に形成された各デバイス302のボンディングパッド303(303a〜303j)部にレーザー加工孔(ビアホール)を形成するレーザー加工の実施形態について説明する。
ウエーハ30は、
図7に示すように環状のフレーム40に装着されたポリオレフィン等の合成樹脂シートからなる保護テープ50に表面300aを貼着する。従って、ウエーハ30は、裏面300bが上側となる。このようにして環状のフレーム40に保護テープ50を介して支持されたウエーハ30は、
図1に示すレーザー加工装置のチャックテーブル36上に保護テープ50側を載置する。そして、図示しない吸引手段を作動することによりウエーハ30は、保護テープ50を介してチャックテーブル36上に吸引保持される。従って、ウエーハ30は、裏面300bを上側にして保持される。また、環状のフレーム40は、クランプ362によって固定される。
【0035】
上述したようにウエーハ30を吸引保持したチャックテーブル36は、加工送り手段37によって撮像手段11の直下に位置付けられる。チャックテーブル36が撮像手段11の直下に位置付けられると、チャックテーブル36上のウエーハ30は、
図8に示す座標位置に位置付けられた状態となる。この状態で、チャックテーブル36に保持されたウエーハ30に形成されている格子状の分割予定ライン301がX軸方向とY軸方向に平行に配設されているか否かのアライメント作業を実施する。即ち、撮像手段11によってチャックテーブル36に保持されたウエーハ30を撮像し、パターンマッチング等の画像処理を実行してアライメント作業を行う。このとき、ウエーハ30の分割予定ライン301が形成されている表面300aは下側に位置しているが、ウエーハ30を形成するリチウムタンタレート基板300は透明体であるため、ウエーハ30の裏面300bから透かして分割予定ライン301を撮像することができる。
【0036】
次に、チャックテーブル36を移動して、ウエーハ30に形成されたデバイス302における最上位の行E1の
図8において最左端のデバイス302を撮像手段11の直下に位置付ける。そして、更にデバイス302に形成された電極303(303a〜303j)における
図8において左上の電極303aを撮像手段11の直下に位置付ける。この状態で撮像手段11が電極303aを検出したならばその座標値(a1)を第1の加工送り開始位置座標値として制御手段20に送る。そして、制御手段20は、この座標値(a1)を第1の加工送り開始位置座標値としてランダムアクセスメモリ(RAM)203に格納する(加工送り開始位置検出工程)。このとき、撮像手段11とレーザー光線照射手段52の集光器8はX軸方向に所定の間隔を置いて配設されているので、X座標値は上記撮像手段11と集光器8との間隔を加えた値が格納される。
【0037】
このようにして
図8において最上位の行E1のデバイス302における第1の加工送り開始位置座標値(a1)を検出したならば、チャックテーブル36を分割予定ライン301の間隔だけY軸方向に割り出し送りするとともにX軸方向に移動して、
図8において最上位から2番目の行E2における最左端のデバイス302を撮像手段11の直下に位置付ける。そして、更にデバイス302に形成された電極303(303a〜303j)における
図6において左上の電極303aを撮像手段11の直下に位置付ける。この状態で撮像手段11が電極303aを検出したならばその座標値(a2)を第2の加工送り開始位置座標値として制御手段20に送る。そして、制御手段20は、この座標値(a2)を第2の加工送り開始位置座標値としてランダムアクセスメモリ(RAM)203に格納する。このとき、撮像手段11とレーザー光線照射手段52の集光器8は上述したようにX軸方向に所定の間隔を置いて配設されているので、X座標値は上記撮像手段11と集光器8との間隔を加えた値が格納される。以後、制御手段20は、上述した割り出し送りと加工送り開始位置検出工程を
図8において最下位の行Enまで繰り返し実行し、各行に形成されたデバイス302の加工送り開始位置座標値(a3〜an)を検出して、これをランダムアクセスメモリ(RAM)203に格納する。
【0038】
上述した加工送り開始位置検出工程を実施したならば、ウエーハ30の各デバイス302に形成された各電極303(303a〜303j)の裏面にレーザー加工孔(ビアホール)を穿孔する穿孔工程を実施する。穿孔工程は、先ず加工送り手段37を作動しチャックテーブル36を移動して、上記ランダムアクセスメモリ(RAM)203に格納されている第1の加工送り開始位置座標値(a1)をレーザー光線照射手段52の集光器8の直下に位置付ける。このように第1の加工送り開始位置座標値(a1)が集光器8の直下に位置付けられた状態が
図9の(a)に示す状態である。
図9の(a)に示す状態から制御手段20は、チャックテーブル36を
図9の(a)において矢印X1で示す方向に所定の移動速度で加工送りするように上記加工送り手段37を制御すると同時に、レーザー光線照射手段52を作動し集光器8からパルスレーザー光線を照射する。なお、集光器8から照射されるレーザー光線の集光点Pは、ウエーハ30の上面付近に合わせる。このとき、制御手段20は、X軸方向位置検出手段374の読み取りヘッド374bからの検出信号に基いて音響光学偏向手段7の偏向角度調整手段74および出力調整手段75を制御するための制御信号を出力する。
【0039】
一方、RF発振器72は偏向角度調整手段74および出力調整手段75からの制御信号に対応したRFを出力する。RF発振器72から出力されたRFのパワーは、RFアンプ73によって増幅され音響光学素子71に印加される。この結果、音響光学素子71は、パルスレーザー光線発振手段6から発振されたパルスレーザー光線の光軸を
図2において1点鎖線で示す位置から2点鎖線で示す位置までの範囲で偏向して移動速度に同期させる。この結果、第1の加工送り開始位置座標値(a1)に所定出力のパルスレーザー光線を照射することができる。
【0040】
上記穿孔工程における加工条件は次のように設定されている。
光源 :LD励起QスイッチNd:YVO4
波長 :532nm
平均出力 :2W
繰り返し周波数 :50kHz
パルス幅 :10ps
集光スポット径 :φ15μm
【0041】
上述した穿孔工程を実施している際に、制御手段20はレーザー光線発振手段6が発振するパルスレーザー光線のショット数をカウンター204によってカウントするとともに、プラズマ検出手段9の第1のホトデテクター94から光強度信号を入力している。ここで、第1のホトデテクター94から出力される光強度信号について説明する。ウエーハ30を構成するリチウムタンタレート基板300にパルスレーザー光線を照射すると、波長が670nmのプラズマが発生する。この波長が670nmのプラズマは
図3に示すようにプラズマ検出手段9を構成するラズマ受光手段91の集光レンズ911によって集光され、第1のバンドパスフィルター93を通過して第1のホトデテクター94に達する。リチウムタンタレート等の透明部材にパルスレーザー光線を照射すると、1回目のパルスレーザーで表面を粗して粗面とし、2回目のパルスレーザーで粗面をアブレーションする。このようにリチウムタンタレート等の透明部材にパルスレーザー光線を照射すると、表面の粗面化とアブレーション加工が繰り返し実施される。このとき発生するプラズマの光強度は、1回目のパルスレーザーで表面を粗して粗面とするときより2回目のパルスレーザーで粗面をアブレーションするときの方が高い。このようにリチウムタンタレート等の透明部材にパルスレーザー光線を照射すると、プラズマの光強度が振幅をもって交互に現れる。
【0042】
図11は、リチウムタンタレート基板300に上述したパルスレーザー光線を照射したとき発生するプラズマの光強度を検出する第1のホトデテクター94の出力電圧を示している。
図11において横軸はパルスレーザー光線のショット数を示し、縦軸は電圧値(V)を示している。
図11に示す実施形態においては、パルスレーザー光線の各ショットにおける下限値が1回目のパルスレーザーで表面を粗して粗面化するときに発するプラズマの光強度に対応する電圧値で、パルスレーザー光線の各ショットにおける上限値が2回目のパルスレーザーで粗面をアブレーションするときに発するプラズマの光強度に対応する電圧値である。
図11に示す実施形態においては、パルスレーザー光線のショット数が60ショット程度までは第1のホトデテクター94から出力される電圧値の下限値と上限値は1.5Vから3Vの範囲で振幅が1.1V前後で推移し、パルスレーザー光線のショット数が60ショットを超えると電圧値が共に漸次低下し、パルスレーザー光線のショット数が90ショットを超えると第1のホトデテクター94から出力される電圧値の下限値と上限値との振幅が漸次低下する。そして、パルスレーザー光線のショット数が105ショットを超えると第1のホトデテクター94から出力される電圧値が無くなり、リチウムタンタレート基板300の加工が終了したことを意味しており、パルスレーザー光線の照射を継続するとボンディングパッド303が加工されることになる。従って、第1のホトデテクター94から出力される電圧値の下限値と上限値との振幅が所定値(0.1V)まで低下してからパルスレーザー光線を何ショット照射したらボンディングパッド303に達するかを実験的に求めことにより、パルスレーザー光線の照射を停止する時点を設定することができる。
【0043】
ここで、第1のホトデテクター94から出力される電圧値の下限値と上限値との振幅が所定値(0.1V)まで低下してからパルスレーザー光線を何ショット照射したらボンディングパッド303に達するかを実験的に求めた一例について説明する。図示の実施形態においては、プラズマ受光手段91は第2の光路92bに導かれたプラズマ光のうち銅のプラズマ光の波長(515nm)のみを通過させる第2のバンドパスフィルター96と、第2のバンドパスフィルター96を通過した光を受光して光強度信号を出力する第2のホトデテクター97を備えているので、ボンディングパッド303が加工された瞬間を捉えることができる。このボンディングパッド303が加工された瞬間が上記第1のホトデテクター94から出力される電圧値の下限値と上限値との振幅が所定値(0.1V)まで低下してから照射されたパルスレーザー光線のショット数をカウントすることにより、電圧値の振幅が所定値(0.1V)まで低下してからボンディングパッド303に達するまでのショット数を求めることができる。従って、電圧値の振幅が所定値(0.1V)まで低下してからボンディングパッド303に達するまでのショット数が5ショットであるならば、第1のホトデテクター94から出力される電圧値の下限値と上限値との振幅が所定値(0.1V)まで低下してからパルスレーザー光線を5ショット照射したらパルスレーザー光線の照射を停止すればよい。即ち制御手段20は、第1のホトデテクター94から出力される電圧値の下限値と上限値との振幅が所定値(0.1V)まで低下してからパルスレーザー光線を5ショット照射したら銅によって形成されたボンディングパッド303に達したと判断し、音響光学偏向手段7の偏向角度調整手段74に0Vの電圧を印加し、音響光学素子71に0Vに対応する周波数のRFを印加し、パルスレーザー光線発振手段6から発振されたパルスレーザー光線を
図2において破線で示すようにレーザー光線吸収手段76に導く。従って、パルスレーザー光線がチャックテーブル36に保持されたウエーハ30に照射されず、ボンディングパッド303が溶融して穴が開くことがない。
【0044】
一方、制御手段20は、X軸方向位置検出手段374の読み取りヘッド374bからの検出信号を入力しており、この検出信号をカウンター204によってカウントしている。そして、カウンター204によるカウント値が次のボンディングパッド303座標値に達したら、制御手段20はレーザー光線照射手段52を制御し上記穿孔工程を実施する。その後も制御手段20は、カウンター204によるカウント値がボンディングパッド303の座標値に達する都度、制御手段20はレーザー光線照射手段52を作動し上記穿孔工程を実施する。そして、
図9の(b)で示すように半導体ウエーハ30のE1行の最右端のデバイス302に形成されたボンディングパッド303における最右端の電極303e位置に上記穿孔工程を実施したら、上記加工送り手段37の作動を停止してチャックテーブル36の移動を停止する。この結果、半導体ウエーハ30のシリコン基板300には、
図9の(b)で示すようにボンディングパッド303に達する加工孔304が形成される。
【0045】
次に、制御手段20は、レーザー光線照射手段52の集光器8を
図9の(b)において紙面に垂直な方向に割り出し送りするように上記第1の割り出し送り手段38を制御する。一方、制御手段20は、Y軸方向位置検出手段384の読み取りヘッド384bからの検出信号を入力しており、この検出信号をカウンター204によってカウントしている。そして、カウンター204によるカウント値がボンディングパッド303の
図6においてY軸方向の間隔Cに相当する値に達したら、第1の割り出し送り手段38の作動を停止し、レーザー光線照射手段52の集光器8の割り出し送りを停止する。この結果、集光器8は上記ボンディングパッド303eと対向するボンディングパッド303j(
図6参照)の直上に位置付けられる。この状態が
図10の(a)に示す状態である。
図10の(a)に示す状態で制御手段20は、チャックテーブル36を
図10の(a)において矢印X2で示す方向に所定の移動速度で加工送りするように上記加工送り手段37を制御すると同時に、レーザー光線照射手段52を作動し上記穿孔工程を実施する。そして、制御手段20は、上述したようにX軸方向位置検出手段374の読み取りヘッド374bからの検出信号をカウンター204によりカウントし、そのカウント値がボンディングパッド303に達する都度、制御手段20はレーザー光線照射手段52を作動し上記穿孔工程を実施する。そして、
図10の(b)で示すように半導体ウエーハ30のE1行の最右端のデバイス302に形成されたボンディングパッド303f位置に上記穿孔工程を実施したら、上記加工送り手段37の作動を停止してチャックテーブル36の移動を停止する。この結果、半導体ウエーハ30のシリコン基板300には、
図10の(b)で示すようにボンディングパッド303の裏面側にレーザー加工孔304が形成される。
【0046】
以上のようにして、半導体ウエーハ30のE1行のデバイス302に形成されたボンディングパッド303の裏面側にレーザー加工孔304が形成されたならば、制御手段20は加工送り手段37および第1の割り出し送り手段38を作動し、半導体ウエーハ30のE2行のデバイス302に形成されたボンディングパッド303における上記ランダムアクセスメモリ(RAM)203に格納されている第2の加工送り開始位置座標値(a2)をレーザー光線照射手段52の集光器8の直下に位置付ける。そして、制御装置20は、レーザー光線照射手段52と加工送り手段37および第1の割り出し送り手段38を制御し、半導体ウエーハ30のE2行のデバイス302に形成されたボンディングパッド303の裏面側に上述した穿孔工程を実施する。以後、半導体ウエーハ30のE3〜En行のデバイス302に形成されたボンディングパッド303の裏面側に対しても上述した穿孔工程を実施する。この結果、半導体ウエーハ30のシリコン基板300には、各デバイス302に形成されたボンディングパッド303の裏面側にレーザー加工孔304が形成される。
【0047】
なお、上記穿孔工程において、
図6におけるX軸方向の間隔A領域と間隔B領域および
図6におけるY軸方向の間隔C領域と間隔D領域には半導体ウエーハ30にパルスレーザー光線を照射しない。このように、半導体ウエーハ30にパルスレーザー光線を照射しないために、上記制御手段20は音響光学偏向手段7の偏向角度調整手段74に0Vの電圧を印加する。この結果音響光学素子71には0Vに対応する周波数のRFが印加され、パルスレーザー光線発振手段6から発振されたパルスレーザー光線(LB)は
図2において破線で示すようにレーザー光線吸収手段76に導かれるので、半導体ウエーハ30に照射されることはない。
【0048】
以上、本発明を図示の実施形態に基づいて説明したが、本発明は実施形態のみに限定されるものではなく、本発明の趣旨の範囲で種々の変形は可能である。例えば、上述した実施形態においては、基板(第1の部材)の表面に形成された複数のデバイスにそれぞれボンディングパッド(第2の部材)が配設されたウエーハに、基板(第1の部材)の裏面側からボンディングパッド(第2の部材)に達するレーザー加工孔を形成する例について説明したが、第1の材料によって形成された第1の部材と第2の材料によって形成された第2の部材とが接合された被加工物に第1の部材から第2の部材に達するレーザー加工孔を形成する場合に、広く適用することができる。
また、上述した実施形態においては、被加工物を形成する第1の部材としてリチウムタンタレート基板を用いた例を示したが、本発明はリチウムナイオベート、サファイア、石英等の透明部材の加工に特に有効である。