【課題を解決するための手段】
【0008】
本発明は、
項1.ピロリン系ニトロキシド重合体及びポリエチレングリコール類を含有
し
前記ピロリン系ニトロキシド重合体が、下記一般式(1)、又は、下記一般式(2)で表されるピロリン系ニトロキシド化合物の重合体であり、
前記ポリエチレングリコール類の使用量が、前記ピロリン系ニトロキシド重合体100質量部に対して、0.05〜20質量部であり、
前記ポリエチレングリコール類の数平均分子量が、500〜500,000である
ラジカル組成物、
【化1】
式(1)中、nは0または1を表す。
【化2】
項2.
項1に記載のラジカル組成物を用いた電池、
に関する。
以下に本発明を詳細に説明する。
【0009】
本発明に係るラジカル組成物は、ピロリン系ニトロキシド重合体を含有する。
前記ピロリン系ニトロキシド重合体は、ピロリン系ニトロキシド化合物を重合して得られるものである。
【0010】
前記ピロリン系ニトロキシド重合体としては、下記一般式(1)で表されるピロリン系ニトロキシド化合物を重合して得られる重合体が好ましい。
【0011】
【化3】
式(1)中、nは0または1を表す。
【0012】
前記一般式(1)で表されるピロリン系ニトロキシド化合物としては、nが0である3−オキシラニル−2,2,5,5−テトラメチルピロリン−1−オキシル、nが1であるピロリン系ニトロキシド置換グリシジルエーテル等が挙げられる。
【0013】
前記3−オキシラニル−2,2,5,5−テトラメチルピロリン−1−オキシルは、例えば、下記式(3)に示すように、3−カルバモイル−2,2,5,5−テトラメチルピロリン−1−オキシルを用いる方法(Tetrahedron Letters,43(4),553−555(2002))により製造することができる。
具体的には、水酸化ナトリウム水溶液等を用いて3−カルバモイル−2,2,5,5−テトラメチルピロリン−1−オキシルを加水分解して3−カルボキシ−2,2,5,5−テトラメチルピロリン−1−オキシルとし、次に、アルゴンガスや窒素ガス等の不活性ガス雰囲気下、水素化リチウムアルミニウム−tert−ブトキシド等を用いてこれを還元することにより3−ホルミル−2,2,5,5−テトラメチルピロリン−1−オキシルとし、さらにトリメチルスルホニウムヨージド等を用いてこれを環化することにより3−オキシラニル−2,2,5,5−テトラメチルピロリン−1−オキシルを製造することができる。
【0014】
【化4】
【0015】
前記ピロリン系ニトロキシド置換グリシジルエーテルは、例えば、水酸化ナトリウムの存在下、テトラブチルアンモニウム硫酸水素ナトリウムを触媒に用いて、エピクロロヒドリンと4−ヒドロキシプロキシルとを反応させる方法(Macromolecules,26,3227−3229(1993))により製造することができる。
【0016】
前記一般式(1)で表されるピロリン系ニトロキシド化合物を重合して、ピロリン系ニトロキシド重合体とする方法としては、例えば、塊状重合法および溶液重合法等を用いて重合する方法が挙げられる。前記塊状重合法を用いて重合する方法としては、例えば、攪拌機、温度計、アルゴンガスや窒素ガス等の不活性ガスを導入するためのガス導入管および冷却管を備えた反応器を用いて、所定量のニトロキシド化合物を仕込み、不活性ガスにより脱酸素した後、攪拌しながら重合開始剤を添加する方法等が挙げられる。前記溶液重合法を用いて重合する方法としては、例えば、前記塊状重合法を用いて重合する場合において、所定量のニトロキシド化合物とともに不活性溶媒を仕込み、不活性ガスにより脱酸素した後、攪拌しながら重合開始剤を添加する方法等が挙げられる。
【0017】
また、前記ピロリン系ニトロキシド重合体としては、下記一般式(2)で表されるピロリン系ニトロキシド化合物を重合して得られる重合体が好ましい。
【0018】
【化5】
【0019】
前記一般式(2)で表されるピロリン系ニトロキシド化合物は、例えば、下記式(4)に示すように、3−カルバモイル−2,2,5,5−テトラメチルピロリン−1−オキシルを用いる方法(CAN.J.CHEM.,64,1482−1490(1986))により製造することができる。
具体的には、水酸化ナトリウム水溶液等を用いて3−カルバモイル−2,2,5,5−テトラメチルピロリン−1−オキシルを加水分解して3−カルボキシ−2,2,5,5−テトラメチルピロリン−1−オキシルとし、次に、アルゴンガスや窒素ガス等の不活性ガス雰囲気下、水素化リチウムアルミニウム−tert−ブトキシド等を用いてこれを還元することにより3−ホルミル−2,2,5,5−テトラメチルピロリン−1−オキシルとし、さらにメチルトリホスホニウムブロミド等を用いてこれをビニル化することにより3−ビニル−2,2,5,5−テトラメチルピロリン−1−オキシルを製造することができる。
【0020】
【化6】
【0021】
前記一般式(2)で表されるピロリン系ニトロキシド化合物を重合して、ピロリン系ニトロキシド重合体とする方法としては、例えば、塊状重合法および溶液重合法等を用いて重合する方法が挙げられる。前記塊状重合法を用いて重合する方法としては、例えば、攪拌機、温度計、アルゴンガスや窒素ガス等の不活性ガスを導入するためのガス導入管および冷却管を備えた反応器を用いて、所定量のニトロキシド化合物を仕込み、不活性ガスにより脱酸素した後、攪拌しながら重合開始剤を添加する方法等が挙げられる。前記溶液重合法を用いて重合する方法としては、例えば、前記塊状重合法を用いて重合する場合において、所定量のニトロキシド化合物とともに不活性溶媒を仕込み、不活性ガスにより脱酸素した後、攪拌しながら重合開始剤を添加する方法等が挙げられる。
【0022】
前記ピロリン系ニトロキシド重合体の数平均分子量は、500〜5,000,000であることが好ましく、より好ましくは1,000〜1,000,000である。数平均分子量が500未満の場合は、ピロリン系ニトロキシド重合体が電解液に溶解して、電池を繰り返して使用した際に、容量が低下するおそれがある。一方、数平均分子量が5,000,000を超える場合には、電極作成時に使用する溶媒への溶解性が低下して、取扱いが困難になるだけでなく、電池を繰り返して使用した際に、容量が低下するおそれがある。
なお、本発明での数平均分子量とは、高速液体クロマトグラフィーにより測定し、分子量既値のポリスチレンに換算した値をいう。
【0023】
前記ピロリン系ニトロキシド重合体は単独で用いてもよく、2種類以上を併用してもよい。
【0024】
本発明に係るラジカル組成物は、ポリエチレングリコール類を含有する。前記ポリエチレングリコール類は、電気化学的に安定な樹脂である。例えば、ポリエチレングリコール類を含有するラジカル組成物を用いてフィルム形成電極を製造した場合、フィルム中でポリエチレングリコール類の凝集が起こらず、電極活物質の分散性を向上させ、均一なフィルムが得ることができる。
【0025】
前記ポリエチレングリコール類としては、ポリエチレングリコール及びこれらの誘導体が挙げられ、例えば、ポリエチレングリコール、ポリオキシエチレンアルキルフェニルエーテルアルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテルメチルカルボン酸ナトリウム、ポリオキシエチレンアルキルエーテルエタンスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸モノグリセライド、ポリオキシエチレンソルビトール脂肪酸部分エステル、ポリオキシエチレンソルビタン脂肪酸部分エステル、ポリオキシエチレンラノリンアルコールエーテル、ポリエチレングリコール脂肪酸モノエステル、ポリエチレングリコール脂肪酸ジエステル、ポリオキシエチレン脂肪酸アミン、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルおよびポリオキシエチレンアセチレングリコール、ポリエチレンオキシド等が挙げられる。
【0026】
上述したポリエチレングリコール類の中では、工業的に入手が容易で、安価であり、高い効果が得られる観点から、ポリエチレングリコールおよびポリエチレンオキシドが好ましく、ポリエチレングリコールがより好ましい。
【0027】
前記ポリエチレングリコール類は、単独で用いてもよく、2種以上を併用してもよい。
【0028】
前記ポリエチレングリコール類の数平均分子量は、通常500〜500,000であることが好ましく、より好ましくは1,000〜50,000である。数平均分子量が500未満の場合は、ピロリン系ニトロキシド重合体との親和性に劣り、ピロリン系ニトロキシド重合体の電解液への溶解性が高まるために、十分な効果が得られないことがある。一方、数平均分子量が500,000を超える場合には、ピロリン系ニトロキシド重合体との混和性が劣る傾向がある。
なお、本発明での数平均分子量とは、高速液体クロマトグラフィーにより測定し、分子量既値のポリスチレンに換算した値をいう。
【0029】
前記ポリエチレングリコール類の使用量は、ポリエチレングリコール類の分子量によって適宜調整することができるが、前記ピロリン系ニトロキシド重合体100質量部に対して0.05〜20質量部が好ましく、0.5〜10質量部がより好ましい。前記ポリエチレングリコール類の使用量が0.05質量部未満の場合、ピロリン系ニトロキシド重合体の電解液への溶出を抑制する効果が低下するおそれがある。また、前記ポリエチレングリコール類の使用量が20質量部を超える場合、使用量に見合う効果がなく経済的ではない。また、本発明に係るラジカル組成物を用いて製造した電極の抵抗が高くなるおそれがある。
【0030】
本発明に係るラジカル組成物は、特に電池の電極活物質として用いた場合に優れた効果を発現することができる。具体的には、本発明に係るラジカル組成物に、他の電極活物質、導電付与剤、結着剤、増粘剤、触媒等を添加することで電池の材料として好適に使用することができる。
【0031】
本発明に係るラジカル組成物を製造する方法としては特に限定されないが、例えば、ピロリン系ニトロキシド重合体とポリエチレングリコール類とを溶媒を用いて溶解させた後に濃縮、乾燥することにより混合する方法等が挙げられる。
【0032】
本発明に係るラジカル組成物を電極活物質として用いることで、電池とすることができる。
このような電池もまた本発明の1つである。
図1に本発明に係る電池の実施形態の一例を示す。
図1に示す電池は、正極5と負極3とを、電解液を含有するセパレータ4を介して対向するように重ね合わせ、さらに正極5に正極集電体6を重ね合わせた構成となっている。これらは負極側のステンレス外装1と正極側のステンレス外装1とで外装され、その間には、両者の電気的接触を防ぐ目的で、プラスチック樹脂等の絶縁性材料からなる絶縁パッキン2が配置される。
以下に、電池を構成する主な部材等に関して説明する。
【0033】
(1)電極活物質
本発明において「電極活物質」とは、充電反応および放電反応等の電極反応に直接寄与する物質のことをいい、電池システムの中心的役割を果たすものである。
電極活物質は、本発明に係るラジカル組成物を含有するものであり、正極および/または負極の電極活物質として、本発明に係るラジカル組成物をそれぞれ単独で用いてもよいし、また、他の電極活物質と組み合わせて電極活物質としてもよい。
【0034】
本発明に係るラジカル組成物を正極の電極活物質に用いる場合、他の電極活物質としては、金属酸化物、ジスルフィド化合物、他の安定ラジカル化合物および導電性高分子等を挙げることができる。
【0035】
前記金属酸化物としては、例えば、LiMnO
2、Li
xMn
2O
4(0<x<2)等のマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム、MnO
2、LiCoO
2、LiNiO
2、あるいはLi
yV
2O
5(0<y<2)、オリビン系材料LiFePO
4、スピネル構造中のMnの一部を他の遷移金属で置換した材料LiNi
0.5Mn
1.5O
4、LiCr
0.5Mn
1.5O
4、LiCo
0.5Mn
1.5O
4、LiCoMnO
4、LiNi
0.5Mn
0.5O
2、LiNi
0.33Mn
0.33Co
0.33O
2、LiNi
0.8Co
0.2O
2、LiN
0.5Mn
1.5−zTi
zO
4(0<z<1.5)等が挙げられる。
【0036】
前記ジスルフィド化合物としては、ジチオグリコール、2,5−ジメルカプト−1,3,4−チアジアゾール、S−トリアジン−2,4,6−トリチオール等が挙げられる。
【0037】
前記他の安定ラジカル化合物としては、ポリ(2,2,6,6−テトラメチル−4−ピペリジノキシメタクリレート)等が挙げられる。
【0038】
前記導電性高分子としては、ポリアセチレン、ポリフェニレン、ポリアニリン、ポリピロール等が挙げられる。
【0039】
これらの中では、マンガン酸リチウムおよびLiCoO
2が好適に用いられる。
【0040】
本発明に係るラジカル組成物を負極の電極活物質に用いる場合、他の電極活物質としては、グラファイトや非晶質カーボン、金属リチウムやリチウム合金、リチウムイオン吸蔵炭素、金属ナトリウム、他の安定ラジカル化合物および導電性高分子等を挙げることができる。
【0041】
他の安定ラジカル化合物としては、ポリ(2,2,6,6−テトラメチル−4−ピペリジノキシメタクリレート)等が挙げられる。
【0042】
これらの中でも特に、金属リチウムまたはグラファイトと組み合わせることが好ましい。なお、これらの形状としては特に限定されず、薄膜状のもの、バルク状のもの、粉末を固めたもの、繊維状のもの、フレーク状のもの等であってもよい。
【0043】
本発明において、エネルギー密度の観点から、本発明に係るラジカル組成物を含有する電極活物質は、正極の電極活物質として用いるのが好ましく、本発明に係るラジカル組成物を前記他の電極活物質と組み合わせることなく単独で用いるのがより好ましい。また、このときの負極の電極活物質としては、金属リチウムまたはグラファイトを用いることが好ましい。
【0044】
(2)導電付与剤(補助導電材)およびイオン伝導補助材
本発明に係るラジカル組成物を電極活物質として使用する場合、インピーダンスを低下させ、エネルギー密度、出力特性を向上させる目的で、導電付与剤(補助導電材)やイオン伝導補助材を混合させてもよい。
【0045】
前記補助導電材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、気相成長炭素繊維(VGCF)、カーボンナノチューブ等の炭素繊維、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子が挙げられる。
また、前記イオン伝導補助材としては、高分子ゲル電解質、高分子固体電解質等が挙げられる。これらの中でも、炭素繊維が好適に用いられ、中でも気相成長炭素繊維がより好適に用いられる。炭素繊維を用いることにより、電極の引張り強度がより大きくなり、電極にひびが入ったり剥がれたりすることが少なくなる。これら補助導電材やイオン伝導補助材は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
前記補助導電材やイオン伝導補助材を用いる場合、電極中における混合割合としては、10〜80質量%が好ましい。
【0046】
(3)結着剤
前記電極活物質では、各構成材料間の結びつきを強めるために、結着剤を混合させてもよい。
前記結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−テトラフルオロエチレン共重合体、スチレン−ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、各種ポリウレタン等の樹脂バインダーが挙げられる。これら結着剤は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
前記結着剤を用いる場合、電極中の混合割合としては、5〜30質量%が好ましい。
【0047】
(4)増粘剤
前記電極活物質を形成させるためのスラリーを作製しやすくするために、増粘剤を混合させてもよい。
前記増粘剤としては、カルボキシメチルセルロース、ポリプロピレンオキシド、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルヒドロキシエチルセルロース、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸ヒドロキシエチル、ポリアクリル酸アンモニウム、ポリアクリル酸ソーダ等が挙げられる。これら増粘剤は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
前記増粘剤を用いる場合、電極中の混合割合としては、0.1〜5質量%が好ましい。
【0048】
(5)触媒
前記電極活物質において、電極反応をより円滑に行うために、酸化還元反応を助ける触媒を混合させてもよい。
前記触媒としては、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子、ピリジン誘導体、ピロリドン誘導体、ベンズイミダゾール誘導体、ベンゾチアゾール誘導体、アクリジン誘導体等の塩基性化合物、金属イオン錯体等が挙げられる。これら触媒は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
前記触媒を用いる場合、電極中の混合割合としては、10質量%以下が好ましい。
【0049】
(6)集電体およびセパレータ
前記電極活物質に接触させて用いられる集電体としては、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金、ステンレス、炭素等が挙げられ、箔、金属平板、メッシュ状等の形状のものを用いることができる。また、集電体に触媒効果を持たせたり、電極活物質と集電体とを化学結合させたりしてもよい。
一方、セパレータとしては、ポリエチレン、ポリプロピレン等からなる多孔質フィルムや不織布等を挙げることができる。
【0050】
(7)電解質
本発明に係る電池において、電解質は、負極と正極の両極間の荷電担体輸送を行うものであり、一般には20℃で10
−5〜10
−1S/cmのイオン伝導性を有していることが好ましい。前記電解質としては、例えば、電解質塩を溶媒に溶解した電解液を用いることができる。
前記電解質塩としては、例えば、LiPF
6、LiClO
4、LiBF
4、LiCF
3SO
3、Li(CF
3SO
2)
2N、Li(C
2F
5SO
2)
2N、Li(CF
3SO
2)
3C、Li(C
2F
5SO
2)
3C等の従来公知の材料を挙げることができる。これら電解質塩は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
前記溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の有機溶媒を挙げることができる。これら溶媒は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
【0051】
また、前記電解質として高分子化合物に前記電解質塩を含有させた固体電解質や高分子化合物に前記電解液を含ませてゲル状にした固体電解質を用いることもできる。
前記高分子化合物としては、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−モノフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体;アクリロニトリル−メチルメタクリレート共重合体、アクリロニトリル−メチルアクリレート共重合体、アクリロニトリル−エチルメタクリレート共重合体、アクリロニトリル−エチルアクリレート共重合体、アクリロニトリル−メタクリル酸共重合体、アクリロニトリル−アクリル酸共重合体、アクリロニトリル−ビニルアセテート共重合体等のアクリロニトリル系重合体;さらにポリエチレンオキサイド、エチレンオキサイド−プロピレンオキサイド共重合体、これらのアクリレート体やメタクリレート体の重合体等が挙げられる。
【0052】
(8)電池形状
本発明に係る電池の形状は特に限定されず、従来公知のものを用いることができる。例えば、電極積層体、あるいは巻回体を金属ケース、樹脂ケース、あるいはアルミニウム箔等の金属箔と合成樹脂フィルムからなるラミネートフィルム等によって封止したもの等が挙げられ、円筒型、角型、コイン型、およびシート型等が挙げられる。
【0053】
(9)電池の製造方法
本発明に係る電池の製造方法としては特に限定されず、材料に応じて適宜選択した方法を用いることができる。例えば、本発明に係るラジカル組成物を含有する電極活物質、導電付与剤等に溶媒を加えスラリー状にして電極集電体に塗布し、加熱もしくは常温で溶媒を揮発させることにより電極を作製し、さらにこの電極を対極、セパレータを挟んで積層または巻回して外装体で包み、電解液を注入して封止するといった方法である。スラリー化のための溶媒としては、テトラヒドロフラン、ジエチルエーテル、エチレングリコールジメチルエーテル、ジオキサン等のエーテル系溶媒;N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン等のアミン系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒;クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエタン、四塩化炭素等のハロゲン化炭化水素系溶媒;アセトン、メチルエチルケトン等のアルキルケトン系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;ジメチルスルホキシド、水等が挙げられる。また、電極の作製法としては、電極活物質、導電付与剤等を乾式で混練した後、薄膜化し電極集電体上に積層する方法もある。