(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5970071
(24)【登録日】2016年7月15日
(45)【発行日】2016年8月17日
(54)【発明の名称】デバイス構造の製造方法および構造
(51)【国際特許分類】
H01L 25/065 20060101AFI20160804BHJP
H01L 25/07 20060101ALI20160804BHJP
H01L 25/18 20060101ALI20160804BHJP
【FI】
H01L25/08 C
【請求項の数】21
【全頁数】11
(21)【出願番号】特願2014-533278(P2014-533278)
(86)(22)【出願日】2011年9月30日
(65)【公表番号】特表2014-528644(P2014-528644A)
(43)【公表日】2014年10月27日
(86)【国際出願番号】US2011054428
(87)【国際公開番号】WO2013048496
(87)【国際公開日】20130404
【審査請求日】2014年5月22日
(73)【特許権者】
【識別番号】591003943
【氏名又は名称】インテル・コーポレーション
(74)【代理人】
【識別番号】110000877
【氏名又は名称】龍華国際特許業務法人
(72)【発明者】
【氏名】リー、ケビン ジェイ.
【審査官】
多賀 和宏
(56)【参考文献】
【文献】
特開2010−245534(JP,A)
【文献】
特開2007−317822(JP,A)
【文献】
特開2011−151259(JP,A)
【文献】
特開2006−332354(JP,A)
【文献】
特開2007−073775(JP,A)
【文献】
特開2005−294430(JP,A)
【文献】
特開平05−003183(JP,A)
【文献】
特開2011−176003(JP,A)
【文献】
特開2009−111061(JP,A)
【文献】
特開2008−112835(JP,A)
【文献】
特開2001−127094(JP,A)
【文献】
特開2001−094003(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L21/447−21/449
21/60−21/607
23/12−23/15
25/00−25/07
25/10−25/11
25/16−25/18
(57)【特許請求の範囲】
【請求項1】
前面、背面、マイクロ電子デバイス、および、前記背面と前記前面との間に半導体基板を貫通して延在するビア、を有する前記半導体基板と、
前記前面の上に形成された半田バンプと、
前記前面の上および前記半田バンプの周辺に形成された硬化済み熱硬化性材料と、を備え、
前記硬化済み熱硬化性材料と前記半田バンプとが、露出した平坦な前側接合面を形成する、構造。
【請求項2】
前記平坦な前側接合面は、研磨面を有さない、請求項1に記載の構造。
【請求項3】
前記ビアが、銅を含む、請求項1または2に記載の構造。
【請求項4】
前記硬化済み熱硬化性材料が、硬化済みエポキシ樹脂、硬化済みフェノール樹脂、硬化済みポリイミドおよび硬化済みポリベンゾオキサゾール(PBO)からなる一群から選択される、請求項1から3の何れか一項に記載の構造。
【請求項5】
基板と、
チップと、を備える3Dパッケージ構造であって、
前記チップは、
前面、背面、マイクロ電子デバイス、および、前記背面と前記前面との間に半導体基板を貫通して延在するビア、を含む前記半導体基板と、
前記前面の上に形成された半田バンプと、
前記前面の上および前記半田バンプの周辺に形成された硬化済み熱硬化性材料と、を有し、
前記硬化済み熱硬化性材料と前記半田バンプとが、露出した平坦な前側接合面を形成し、
前記平坦な前側接合面は、前記基板に取り付けられる、3Dパッケージ構造。
【請求項6】
前記チップに積層された第2のチップを更に備える、請求項5に記載の3Dパッケージ構造。
【請求項7】
前記3Dパッケージ構造に通信可能に接続されたバスを有するシステムを更に備える、請求項6に記載の3Dパッケージ構造。
【請求項8】
前面および前記前面の上に形成された半田バンプを有するデバイスウェハを準備する段階と、
上に熱硬化性材料の層が形成される平坦な濡れ面を有する支持基板を準備する段階と、
熱および圧力の下で、前記デバイスウェハを前記支持基板に接合する段階と、
前記支持基板を取り除いて、リフローされた前記半田バンプおよび少なくとも部分的に硬化された前記熱硬化性材料とを有する平坦な前側接合面を露出させる段階と、を備え、
前記接合する段階は、
前記半田バンプを、前記熱硬化性材料の層に貫通させる段階と、
前記半田バンプのリフローの間に、前記平坦な濡れ面を前記半田バンプで濡らす段階と、
前記熱硬化性材料を少なくとも部分的に硬化させる段階とを有する、デバイス構造の製造方法。
【請求項9】
前記平坦な濡れ面を前記半田バンプで濡らす段階と、前記熱硬化性材料を少なくとも部分的に硬化させる段階とを同時に行う、請求項8に記載のデバイス構造の製造方法。
【請求項10】
前記支持基板は、一の面全体にわたって前記平坦な濡れ面を有する、請求項8または9に記載のデバイス構造の製造方法。
【請求項11】
前記デバイスウェハを前記支持基板に接合する段階の後に、前記デバイスウェハの前記前面と背面との間に延在するビアを形成する段階を更に備える、請求項8から10の何れか一項に記載のデバイス構造の製造方法。
【請求項12】
前記支持基板を取り除く段階の前に、前記ビアを形成する段階を備える、請求項11に記載のデバイス構造の製造方法。
【請求項13】
前記デバイスウェハを前記支持基板に接合する段階の後であって、前記ビアを形成する段階の前に、前記デバイスウェハの厚みを低減させるべく、前記デバイスウェハの背面を研削または研磨する段階を備える、請求項11または12に記載のデバイス構造の製造方法。
【請求項14】
前記デバイスウェハを前記支持基板に接合する段階の前に、前記デバイスウェハの前記前面および背面の間に延在するビアを形成する段階を更に備える、請求項8から10の何れか一項に記載のデバイス構造の製造方法。
【請求項15】
前記平坦な濡れ面は、ニッケル、金、プラチナ、パラジウム、コバルト、銅、鉄および鋼からなる一群から選択される材料を含む、請求項8から14の何れか一項に記載のデバイス構造の製造方法。
【請求項16】
前記支持基板は、バルク基板である、請求項8から15の何れか一項に記載のデバイス構造の製造方法。
【請求項17】
前記バルク基板は、銅である、請求項16に記載のデバイス構造の製造方法。
【請求項18】
前記支持基板は、バルク基板、および、前記平坦な濡れ面を含むコーティング層を有する、請求項8から15の何れか一項に記載のデバイス構造の製造方法。
【請求項19】
前記支持基板の前記平坦な濡れ面上に、前記熱硬化性材料の層を、スピンコーティングまたは積層する段階を更に備える、請求項8から18の何れか一項に記載のデバイス構造の製造方法。
【請求項20】
前記デバイスウェハを前記支持基板に接合させる段階の前に、前記熱硬化性材料の層がBステージ硬化される、請求項19に記載のデバイス構造の製造方法。
【請求項21】
第1のダイを、前記平坦な前側接合面に取り付ける段階と、
第2のダイを、前記デバイスウェハの背面に取り付ける段階と、を更に備える請求項8から20の何れか一項に記載のデバイス構造の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、3次元(3D)パッケージ化に関し、より詳細には、シリコン貫通電極(through-silicon vias:TSV)に関する。
【背景技術】
【0002】
3Dパッケージ化は、システムオンチップ(SOC)およびシステムインパッケージ(SIP)に向けたマイクロエレクトロニクス開発の解決策として、出現した。特に、TSVを有する3Dフリップチップ構造は、広く適用される可能性がある。TSV 3Dパッケージは、一般的に、垂直方向に積層された2つ以上のチップを含み、各チップ上の回路間の電気的接続を形成するエッジ配線に代えて、シリコン基板を貫通するビアを有する。
【0003】
TSV処理の間に、デバイスウェハは、薄くなるように加工され、典型的には、50μmから100μmの厚みになる。このように薄いウェハを安全に扱うためには、ウェハを平らに保持し、薄く壊れやすいウェハを、欠け、ひび等の機械的な損傷から保護するためのある種のサポートシステムが必要である。
【0004】
現在のTSVプロセスは、典型的には、デバイスウェハを仮接着剤を使用して仮支持ウェハに取り付けた後、プロセスフローの順番の最後において、薄く加工されたデバイスウェハを支持ウェハから取り外す工程を含む。薄く加工されたデバイスウェハを支持ウェハから取り外すのに、幾つかの実装形態を使用してもよい。
【0005】
第1実装形態では、熱による取り外しが利用される。この実装形態では、デバイスウェハを仮支持ウェハに仮に接着するために、熱可塑性樹脂接着剤が使用される。TSV処理が完了した後、熱を使用して接着剤を軟らかくして、薄く加工されたデバイスウェハを、仮支持ウェハから機械的に取り外す。
【0006】
第2の実装形態では、紫外線(UV)による取り外しが利用される。この実装形態では、光−熱変換(light-to-heat conversion(LTHC))剥離コーティングと共にUV硬化仮接着剤を使用して、デバイスウェハが、仮にガラス搬送ウェハに取り付けられる。TSV処理が完了した後、ガラス搬送ウェハを貫通させたLTHC層に対するレーザー照射が適用されて、LTHC層を弱くする。そして、ガラス搬送ウェハを薄く加工されたデバイスウェハからリフトオフして、薄く加工されたデバイスウェハからUV硬化接着剤をはがす。
【0007】
第3の実装形態では、溶媒による取り外しが利用される。この実装形態では、孔の開いた仮搬送ウェハに、仮接着剤を使用してデバイスウェハを取り付ける。TSV処理が完了した後、仮搬送ウェハの孔を通じて溶媒を塗布して、仮接着剤を溶解し除去する。
【0008】
上記の3つの実装形態のそれぞれにおいて、仮接着剤は、機械的に軟質であり、TSV処理の間の、壊れやすいデバイスウェハに対する機械的損傷に対する最低限の保護を提供している。
【図面の簡単な説明】
【0009】
【
図1】本発明の実施形態に係る支持基板に対して接合を行う前の、反転させた状態のデバイスウェハを示した垂直断面図である。
【0010】
【
図2】本発明の実施形態に係る支持基板に対して接合された状態での、反転したデバイスウェハを示した垂直断面図である。
【0011】
【
図3】本発明の実施形態に係る支持基板に対して接合された状態での、反転したデバイスウェハのビア最終処理を示した垂直断面図である。
【0012】
【
図4】本発明の実施形態に係る支持基板を取り除いた後の、加工済みデバイスウェハを示した垂直断面図である。
【0013】
【
図5】本発明の実施形態に係るTSVを実装する3Dパッケージの側面図である。
【0014】
【
図6】本発明の実施形態に係るシステムを示した図である。
【発明を実施するための形態】
【0015】
様々な実施形態において、TSV処理の間にデバイスウェハを扱う構造および方法について、図面を参照して説明する。しかしながら、ある実施形態では、これらの詳細事項の一以上が存在しなくとも実施可能であり、その他の周知の方法および材料の組み合わせを使用して実施されてもよい。以下の詳細な説明では、本発明の完全な理解を提供するべく、特定の材料およびプロセス等、数多くの詳細事項が記載される。また、本発明を不必要に不明瞭にするのを避けるべく、周知のパッケージ化プロセスおよび製造技術については、詳細に記載していない本明細書全体にわたって使用されている"一実施形態"または"ある実施形態"との言葉は、実施形態に関連する特定の特徴、構造、材料または特性が、少なくとも本発明の実施形態の一つに含まれていることを意味する。したがって、本明細書中の様々な箇所で使用されている"一実施形態"または"ある実施形態"というフレーズは、必ずしも本発明の同一の実施形態を示していない。また、本発明の1以上の実施形態において、特定の特徴、構造、材料または特性を好適に組み合わせてもよい。
【0016】
"の上に(over)"、"〜まで(to)"、"〜の間(between)"、"〜上に(on)"という言葉は、一の層の、別の層に対する相対的な位置を指す場合がある。一の層が、別の層"の上に(over)"位置する、または、別の層に"接合される"という言葉は、一の層が直接、別の層に接触している場合、および、1以上の介在層を有する場合を含む。複数の層の"間に"存在する一の層という言葉は、一の層が直接、複数の層に接触している場合、および、1以上の介在層を有する場合を含む。一方、"第1の層が第2の層上に(on)存在する"という言葉は、第1の層が第2の層に接触することを意味する。
【0017】
本発明の実施形態では、基板支持、および、デバイスウェハのTSV処理を機械的に維持するべく、機械的剛性および堅牢性を提供可能な、硬化された熱硬化性材料のような恒久的な接着剤を使用して、デバイスウェアを一時的に支持するための構造およびプロセスについて説明する。このようなプロセスは、恒久的な接着材料を使用して仮支持基板にデバイスウェハを取り付けること、および、TSV処理が完了した後に、仮支持基板を取り外すこと、を伴う。"ビア最後"TSV処理(金属配線構造の後にビアが形成される)について以下に詳細に例示および説明されるが、本発明の実施形態はこれに限定されず、本発明の実施形態は、"ビア最初"TSV処理(マイクロ電子デバイスが形成される前に、ビアが形成される)および"ビア中間"TSV処理(マイクロ電子デバイスの形成と金属配線構造の形成との間に、ビアが形成される)についても同様に利用可能である。更に、実施形態がTSV処理を参照して説明されるが、実施形態は、化合物III−VウェハまたはII−VIウェハのようなシリコン以外のウェハの基板にも適用可能である。
【0018】
一実施形態において、前面、背面、マイクロ電子デバイス、および、背面と全面との間で半導体基板を貫通して延在するビア(例えば、TSV)を有する半導体基板を含む構造について説明がなされる。半田リフローによる1以上のバンプが前面上に形成され、硬化済み熱硬化性材料が、前面上および1以上のリフローされた半田バンプの周辺に形成される。硬化済み熱硬化性材料および1以上のリフローされた半田バンプは共に、平坦な前側接合面を形成する。
平坦な前側接合面は露出してよい。平坦な前側接合面は研磨面を有しないでよい。ある実施形態では、半導体基板は、上記のような構造を複数有するTSV加工デバイスウェハであってもよい。これに代えて、TSV加工デバイスウェハは、複数の半導体基板を形成するべく個々に分割されてもよく、複数の半導体基板は複数のチップを形成するべく更に処理が施されても、施されなくてもよく、更に3Dパッケージ構造に組み込まれてもよい。したがって、一実施形態では、構造は、チップである。
【0019】
一実施形態では3Dパッケージ構造は、基板、および、基板に平坦な前側接合面が取り付けられる上記の構造を有するチップを備えるとして説明される。このような実施形態では、1以上のチップが、互いに積層されていてもよい。
【0020】
一実施形態では、デバイスウェハを、熱および圧力の下で、支持基板に接合する段階を含む方法が記載される。デバイスウェハは、前面、および、前面上に形成された1以上の半田バンプを有してもよい。支持基板は、平坦な濡れ面を有してもよい。熱硬化性材料の層が、平坦な濡れ面上に形成されてもよい。熱および圧力の下での接合の間、半田バンプは熱硬化性材料の層を貫通して、リフローの間に平坦な濡れ面にわたって拡がるまたは平坦な濡れ面を濡らして、熱硬化性材料を少なくとも部分的に硬化させる。
平坦な濡れ面を半田バンプで濡らす段階と、熱硬化性材料を少なくとも部分的に硬化させる段階とを同時に行ってよい。支持基板は、一の面全体にわたって平坦な濡れ面を有してよい。そして、支持基板が除去されて、リフローされた半田バンプおよび少なくとも部分的に硬化された熱硬化性材料を有する平坦な前側接合面が露出される。ビア最後プロセスフローでは、接合の後であって、支持基板の除去の前に、1以上のビアを、デバイスウェハの前面および背面の間に延在するように形成してもよい。ビアを形成する前に、デバイスウェハの厚みを低減させるべく、デバイスウェハの背面に対して、研削または化学機械研磨(CMP)処理を行ってもよい。ビア最初またはビア中間プロセスフローでは、接合の前に、1以上のビアが、デバイスウェハの前面と背面との間に延在するように形成されてもよい。
【0021】
図1から5を参照して、製造方法について説明する。
図1には、支持基板200の上に反転した状態のデバイスウェハ100が示されている。デバイスウェハ100は、前面102および背面104を有してもよい。デバイスウェハ100は、様々な形態を有してもよい。例えば、デバイスウェハは、バルク半導体であってもよく、バルク半導体上に形成されたエピタキシャル層を有してもよい、またはsemiconductor-on-insulator(SOI)構造を有してもよく、その他の構造が使用されてもよい。図示された特定の実施形態では、デバイスウェハ100は、絶縁層114に積層された半導体層116およびバルク基板118を含む(SOI)構造を有してもよい。デバイスウェハ100は更に、金属−絶縁体−半導体電界効果トランジスタ(MOSFET)、キャパシタ、インダクタ、抵抗器、ダイオード、micro-electro-mechanical system(MEMS)、その他の能動または受動素子およびこれらの組み合わせのような様々なマイクロ電子デバイスを形成するべく、ドープ領域またはその他のドープ構造を有してもよい。
【0022】
基板100の前面102上に、金属配線構造112が形成されてもよい。図に示すように、金属配線構造112は、銅、アルミニウム等の導電金属で形成された複数の配線層、および、酸化シリコン、炭素ドープ酸化物、シリコン窒化物等の層間絶縁材料を含む。物理的および化学的保護を提供するべく、金属配線構造112の上に、パッシベ―ション層113が形成されてもよい。パッシベ―ション層113に形成された開口上に、1以上の導電パッド108(例えば、銅、アルミニウム等)が設けられてもよく、導電パッド108上に1以上の半田バンプ106が形成されてもよい。
【0023】
支持基板200は、リフローの間に半田バンプ106材料に対して許容される接着力を有する材料から形成された平坦な濡れ面202を有してもよく、半田バンプ106が、リフローの間に平坦な濡れ面202にわたって拡がり、濡れ面を濡らす。ある実施形態では、半田バンプ106は、スズを基本とする材料、鉛スズを基本とする材料、インジウムを基本とする材料または鉛を基本とする材料から形成されてもよい。このような実施形態では、平坦な濡れ面202は、ニッケル、金、プラチナ、パラジウム、コバルト、銅、鉄および鋼のような半田濡れ性を有する金属から形成されてもよい。また、平坦な濡れ面202を、リフローの間に半田バンプ106に対して十分な接着性を有するものとして利用することができる。
【0024】
平坦な濡れ面202は、支持基板200と一体的に形成されてもよい。例えば、支持基板200は、例えば、滑らかな平坦な濡れ面202を有する、銅のようなバルク金属で形成されてもよい。平坦な濡れ面202はまた、バルク基板206の上に、別の層204として形成されてもよい。層204は、濡れ性または研磨に適した望ましい特性を有してもよい。バルク基板206および層204を形成するための材料は、コスト、エッチング特性、および、デバイスウェハを支持基板に接合した後での取り外しの容易さ等に基づいて、選択されてもよい。
【0025】
図1を再び参照し、熱硬化性材料208の層が、平坦な濡れ面202上に形成される。熱硬化性材料208の層は、これに限定されないが、エポキシ樹脂、フェノール樹脂、ポリイミドおよびポリベンゾオキサゾール(PBO)のような、好適なアンダーフィルタイプまたはバッファコーティングタイプの材料で形成されてもよい。熱硬化性材料208の層を、スピンコーティングおよびシート積層のような様々な態様で塗布してもよい。また、平坦な濡れ面202に塗布される前または塗布された後に、熱硬化性材料208の層が、Bステージ硬化されてもよい。
【0026】
図2には、熱および圧力の下で、デバイスウェハ100が支持基板200に接合される様子が示されている。図に示されるように、複数の半田バンプ106が、リフローの間に、熱硬化性材料208の層を貫通して、平坦な濡れ面202に拡がるまたは濡れ面を濡らしている。同時に、熱硬化性材料208の層は、少なくとも部分的に硬化されている。
【0027】
本発明の実施形態によれば、接合は、ウェハのスケールで実行され、ボンドヘッドが、デバイスウェハ100の背面104を持ち上げ、デバイスウェハ100を支持基板200上に配置して、支持基板200は台座によって支持される。特定の熱接合プロファイルは、半田バンプ106および熱硬化性材料208の種類に依存すると考えられる。熱圧着(TCB)プロセスの一例では、支持基板200が、例えば、ステージ化温度100℃に保持される。デバイスウェハ100は、例えば、ステージ化温度100℃で、ボンドヘッドを使用してピックアップされてもよい。そして、デバイスウェハ100が、支持基板200の上に配置された後で、ボンドヘッド温度が、半田バンプ106の液相温度を上回る温度(例えば、250℃から300℃)へと上昇させる。ボンドヘッド温度を、半田の液相温度を上回る温度(TAL)に一定期間維持した後、ボンドヘッド温度を半田バンプ106の液相温度を下回る温度(例えば、180℃)へと下げる。この時点で、接合された構造がオフライン硬化のために台座から取り除かれてもよいし、熱硬化性材料208を実質的に完全に硬化させるべく、インラインの態様で上昇させた温度で台座上に保持してもよい。
【0028】
図3には、デバイスウェハ100に処理が行われて、ウェハの前面102と背面104との間に延在する少なくとも1つのビア120(例えば、TSV)を形成する"ビア最後処理"が例示されている。
図3には、ビア120が1つのみ示されているが、これは図示の目的のためであり、本発明の実施形態に係るデバイスウェハには、複数のビアが形成されてもよい。また、"ビア最後処理"が図示されているが、本発明の実施形態は、デバイスウェハ100が支持基板200に接合される前に、ビア120が形成される"ビア最初"処理および"ビア中間"処理にも適用可能である。
【0029】
ビア120の形成の前に、背面104を研削
および/または化学機械研磨(CMP)することにより、デバイスウェハ100を薄くしてもよい。例えば、一実施形態では、デバイスウェハ100を、約50μmから100μmにまで薄くしてもよい。デバイスウェハ100を薄く加工した後、パッシベーション膜または積層膜130を、背面104の上に形成して、気密バリアを提供してもよい。図示されていないが、デバイスウェハ100に更に処理を行い、再分配線(redistribution lines:RDL)およびその他のビルドアップ構造を、ビア120の処理の前後または間に形成してもよい。
【0030】
ビア120を形成するために、フォトレジスト材料を、薄く加工されたデバイスウェハ100の背面104の上に形成した後、フォトレジスト材料を、露光および現像してもよい。現像の後には、レジストコーティングのビア120を設けることを望む位置に、開口が存在する。シリコンデバイスウェハの場合、パッシベーション膜または積層膜130を貫通しバルクシリコン118を貫通するようにプラズマエッチングし、薄く加工されたデバイスウェハ100の前面102(デバイス側)上の銅のランディングパッドでエッチングを止めることにより、シリコン貫通電極(TSV)開口を形成する。そして、フォトレジストを除去し、残りのエッチングポリマーまたは残留物を、デバイスウェハ100から取り除く。そして、絶縁層124をウェハ表面に堆積させて、シリコン貫通電極(TSV)120の底面および側壁をライニング(lining)する。好適な材料としては、これに限定されないが、二酸化シリコン、シリコン窒化物、炭化ケイ素および様々なポリマーが挙げられる。これらの材料を、化学気相堆積(CVD)法、原子層堆積(ALD)法またはスピンコーティング法により、堆積させることができる。
【0031】
そして、異方性エッチングプロセスを使用して、TSV120の底面およびパッシベーション膜または積層膜130上から絶縁層124を除去すると同時に、TSV120の側壁においては、ある程度の厚みの絶縁層を残す。次いで、バリア層126およびシード層を、デバイスウェハの表面に堆積してもよい。例えば、バリア層126は、タンタル、チタンまたはコバルトを含む。シード層は、例えば、銅であってもよい。そして、デバイスウェハの表面に、銅のブランケット層を電気めっきで形成して、TSVを完全に銅122で満たす。
図3に示すように、銅およびバリア層の表に出た余計な部分は、CMPにより取り除く。
【0032】
図4に示すように、薄く加工されたデバイスウェハ100の処理が完了すると、支持基板200が選択的に取り除かれる。一実施形態では、支持基板200は銅であり、例えば、Transcene社の銅エッチング液49−1のようなウェットエッチング液を使用して支持基板を選択的にエッチングするが、実質的に影響を受けないリフローされた半田バンプ106および硬化済み熱硬化性材料208は残すようにして、支持基板を取り除く。別の実施形態では、支持基板200は、薄層204を有する金属またはプラスチック材料のようなバルク基板206で形成される。バルク基板206がプラスチック材料である場合、溶媒を使用して、バルク基板206を除去した後、薄層204を除去するべく、ウェットエッチングを行ってもよい。いずれの態様において、支持基板200を取り除くことにより、リフローされた半田バンプ106および少なくとも部分的に硬化された熱硬化性材料208を含む平坦な前側接合面140が露出される。多くの実施形態において、熱硬化性材料208は、支持基板200が除去される前に、すでに完全に硬化されている。
【0033】
支持基板200の除去の後、基板100上に形成された得られた複数の構造を、個々に分離してもよく、チップ500を形成するべく更に処理を行ってもよいし、行わなくてもよく、得られたチップは、3Dパッケージ構造に組み込まれてもよい。例えば、得られた構造に更に処理を施して、平坦な前側接合面140または背面104の上に、ビルドアップ構造を含めてもよい。3Dパッケージ構造の一例が
図5に示されており、本発明の実施形態に従って形成されたTSVを含む1以上のチップ500が、基板600の上に積み重ねられており、半田要素502と接続されている。基板600は、例えば、プリント回路基板または積層基板である。
【0034】
図6には、本発明の一実施形態に係るコンピュータシステムが示されている。システム690は、プロセッサ610、メモリデバイス620、メモリコントローラ630、グラフィックスコントローラ640、入出力(I/O)コントローラ650、ディスプレイ652、キーボード654、ポインティングデバイス656および周辺機器658を含み、これらは、ある実施形態では、バス660を介して互いに通信可能に結合されていてもよい。プロセッサ610は、汎用プロセッサまたは特定用途向け集積回路(ASIC)であってもよい。I/Oコントローラ650は、有線通信または無線通信のための、通信モジュールを含んでもよい。メモリデバイス620は、ダイナミックランダムアクセスメモリ(DRAM)デバイス、スタティックランダムアクセスメモリ(SRAM)デバイス、フラッシュメモリデバイス、または、これらメモリデバイスの組み合わせであってもよい。したがって、ある実施形態では、システム690内のメモリデバイス620は、DRAMデバイスを含む必要がない。
【0035】
システム690に示される構成要素の1以上は、例えば、
図5のチップ500または3Dパッケージ構造のような1以上の集積回路パッケージに含まれてもよい、および/または、含んでもよい。例えば、プロセッサ610、メモリデバイス620、I/Oコントローラ650の少なくとも一部、または、これら構成要素の組み合わせが、上記の様々な実施形態で説明された構造の少なくとも1つの実施形態を含む集積回路パッケージに含まれてもよい。
【0036】
これら要素は、当技術分野でよく知られた従来の機能を有する。詳細には、メモリデバイス620は、ある場合には、本発明の実施形態に係るパッケージ構造を形成する方法のための実行可能命令を長期的に格納する場所として使用されてもよい。その他の実施形態では、メモリデバイス620は、プロセッサ610によって実行される間、本発明の実施形態に係るパッケージ構造を形成するための方法の実行命令を、短期間格納するのに使用されてもよい。加えて、命令は、格納されてもよいし、システムと通信可能に接続された機械アクセス可能媒体と関連付けられてもよく、そのような媒体の例としては、コンパクトディスクリードオンリーメモリ(CD−ROM)、DVD(digital versatile disk)、フロッピー(登録商標)ディスク、搬送波、および/または、その他の伝播信号が挙げられる。一実施形態において、メモリデバイス620は、プロセッサ610に、実行のために実行可能命令を供給してもよい。
【0037】
システム690は、コンピュータ(例えば、デスクトップ、ラップトップ、ハンドヘルドサーバ、ウェブアプリケーション、ルータ等)、無線通信デバイス(例えば、携帯電話、コードレス電話、ポケットベル(登録商標)、パーソナルデジタルアシスタンス(PDA)等)、コンピュータ周辺機器(例えば、プリンタ、スキャナ、モニタ等)、エンターテイメントデバイス(例えば、テレビ、ラジオ、ステレオ、テープおよびコンパクトディスクプレーヤ、ビデオカセットレコーダ、ビデオカメラ、MP3(Motion Picture Experts Group, Audio Layer 3)プレーヤ、ビデオゲーム、腕時計等)を含んでもよい。
【0038】
本発明が、構造的特徴および/または方法の動作として具体的に説明されたが、添付の特許請求の範囲に規定される発明は、必ずしも、説明された特定の特徴または動作に限定されない。開示された特定の特徴および動作は、本発明を例示すために有用な、特許請求される発明の正常な実装形態として理解されるべきである。