【実施例】
【0052】
以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。
【0053】
(実施例1)
磁石粉末として住友金属鉱山株式会社製の平均粒径が2.3μmのサマリウム−鉄−窒素系(Sm−Fe−N系)磁石粉末を90質量%、重量平均分子量Mwが5300であるポリアミド12樹脂を6.2質量%、引っ張り破断伸び530%であり且つ曲げ弾性率130MPaであるポリアミドエラストマーを2.0質量%、強化剤として繊維径11μmの炭素繊維(Cファイバー)を1.0質量%、添加剤としてセバシン酸エステルを0.8質量%として、それぞれを攪拌混合機で混合し、連続押出機を使用して200℃で混練を行って、ボンド磁石用組成物を得た。
【0054】
このようにして得られたボンド磁石用組成物を射出成形し、以下のようにして、成形時における流動性、冷熱衝撃試験耐久性、及び接着強度について評価を行った。
【0055】
<成形時における流動性の評価方法>
成形温度を240℃とし、ピンポイントゲート4点で、外径が32mm、内径が30mmで、高さが20mmのリング形状に射出成形した。この射出成形の際に、射出圧力200MPaでウェルド等の外観不良なく成形できたものを『◎』とし、射出圧力250MPaでウェルド等の外観不良なく成形できたものを『○』として評価した。一方、250MPaの射出圧でもウェルド等の外観不良が出たものは『×』として成形性が不良であると評価し、その後の冷熱衝撃試験や接着性の評価は行わなかった。
【0056】
<冷熱衝撃試験耐久性(ヒートショック)の評価方法>
上述した流動性評価時の成形方法により成形したボンド磁石を、外径が34mm、内径が32mmで、高さが22mmの鉄製リングの内側にエポキシ系接着剤で接着し、常温で24時間保管した後、−40℃30分〜+90℃30分を1サイクルとして熱衝撃試験を行った。300サイクル後と600サイクル後に、倍率が20倍の光学顕微鏡でボンド磁石にひび割れ等の欠陥が発生していないかを確認した。試験サンプル数10個で、300サイクル後に欠陥の発生数が0だったものを『○』とし、600サイクル後に欠陥の発生数が0だったものを『◎』として評価した。一方、300サイクルで欠陥が1個でも発生したものは『×』と評価した。
【0057】
<接着強度(接着性)の評価方法>
上述した冷熱衝撃試験の600サイクル終了後に、鉄製リングに接着されたボンド磁石を直径31.5mmの鉄製シャフトで引き抜き、接着強度を測定した。接着強度の平均値が5000N以上だったものを『◎』とし、5000N未満1000N以上のものを『△』とし、1000N未満のものを『×』として評価した。
【0058】
下記表1に、それぞれの評価の結果を示す。表1に示すように、実施例1にて得られたボンド磁石用組成物により成形されたボンド磁石では、成形時の流動性が射出圧力200MPaでウェルド等の外観不良なく良好に成形することができ、流動性の高いものであることが分かった。また、冷熱衝撃試験では、600サイクル後においても欠陥の発生数が0であり耐久性の高いものであることが分かった。さらに、鉄製リングとの接着強度も5000N以上であり、金属部品との接着性も非常に高いものであることが分かった。
【0059】
(実施例2)
重量平均分子量Mwが5300であるポリアミド12樹脂を5.2質量%とし、強化剤としての繊維径11μmの炭素繊維を2.0質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0060】
(実施例3)
重量平均分子量Mwが5300であるポリアミド12樹脂を6.7質量%とし、強化剤としての繊維径11μmの炭素繊維を0.5質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0061】
(実施例4)
重量平均分子量Mwが5300であるポリアミド12樹脂を6.0質量%とし、添加剤としてのセバシン酸エステルを1.0質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0062】
(実施例5)
重量平均分子量Mwが5300であるポリアミド12樹脂を6.7質量%とし、添加剤としてのセバシン酸エステルを0.3質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0063】
(実施例6)
添加剤をアジピン酸エステルに変更したこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0064】
(実施例7)
重量平均分子量Mwが5300であるポリアミド12樹脂を5.7質量%とし、引っ張り破断伸び530%であり曲げ弾性率130MPaであるポリアミドエラストマーを2.5質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0065】
(実施例8)
重量平均分子量Mwが5300であるポリアミド12樹脂を7.7質量%とし、引っ張り破断伸び530%であり曲げ弾性率130MPaであるポリアミドエラストマーを0.5質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0066】
(実施例9)
磁石粉末としての住友金属鉱山株式会社製の平均粒径が2.3μmのSm−Fe−N系磁石粉末を91.0質量%とし、重量平均分子量Mwが5300であるポリアミド12樹脂を5.2質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0067】
(実施例10)
磁石粉末としての住友金属鉱山株式会社製の平均粒径が2.3μmのSm−Fe−N系磁石粉末を88.0質量%とし、重量平均分子量Mwが5300であるポリアミド12樹脂を8.2質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0068】
【表1】
【0069】
(比較例1)
重量平均分子量Mwが5300であるポリアミド12樹脂を4.7質量%とし、強化剤としての繊維径11μmの炭素繊維を2.5質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0070】
下記表2に、その評価の結果を示す。なお、下記の実施例2〜20についての評価結果についても同様である。
【0071】
その結果、表2に示すように、比較例1にて得られたボンド磁石用組成物では、流動性が低く射出圧が高くなり、外観上欠陥のないサンプルを得ることができなかった。
【0072】
(比較例2)
重量平均分子量Mwが5300であるポリアミド12樹脂を6.9質量%とし、強化剤としての繊維径11μmの炭素繊維を0.3質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0073】
その結果、表2に示すように、比較例2にて得られたボンド磁石用組成物では、その組成物により得られたボンド磁石における補強効果が十分ではなく、冷熱衝撃試験において割れが発生した。
【0074】
(比較例3)
強化剤として繊維径7μmの炭素繊維を使用したこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0075】
その結果、表2に示すように、比較例3にて得られたボンド磁石用組成物では、その組成物により得られたボンド磁石における補強効果が十分ではなく、冷熱衝撃試験において割れが発生した。
【0076】
(比較例4)
強化剤として繊維径11μmのガラス繊維を使用したこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0077】
その結果、表2に示すように、比較例4にて得られたボンド磁石用組成物では、その組成物により得られたボンド磁石における補強効果が十分ではなく、冷熱衝撃試験において割れが発生した。
【0078】
(比較例5)
重量平均分子量Mwが5300であるポリアミド12樹脂を5.8質量%とし、添加剤としてセバシン酸エステルを1.2質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0079】
その結果、表2に示すように、比較例5にて得られたボンド磁石用組成物では、その組成物により得られたボンド磁石の冷熱衝撃試験において割れが発生した。
【0080】
(比較例6)
重量平均分子量Mwが5300であるポリアミド12樹脂を6.8質量%とし、添加剤としてセバシン酸エステルを0.2質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0081】
その結果、表2に示すように、比較例6にて得られたボンド磁石用組成物では、その組成物により得られたボンド磁石において、鉄製リングとの接着力が低下し、接着力1000N以上のサンプルを得ることができなかった。
【0082】
(比較例7)
添加剤を添加せず、それ以外は実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0083】
その結果、表2に示すように、比較例7にて得られたボンド磁石用組成物では、流動性が低く射出圧が高くなり、外観上欠陥のないサンプルを得ることができなかった。
【0084】
(比較例8)
添加剤として安息香酸エステルの一種であるp−ヒドロキシ安息香酸2−エチルヘキシル(EHPB)に変更したこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0085】
その結果、表2に示すように、比較例8にて得られたボンド磁石用組成物では、その組成物により得られたボンド磁石において、鉄製リングとの接着力が低下し、接着力1000N以上のサンプルを得ることができなかった。
【0086】
(比較例9)
添加剤として脂肪酸系滑材の一種であるステアリン酸アマイド系ワックスに変更したこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0087】
その結果、表2に示すように、比較例9にて得られたボンド磁石用組成物では、その組成物により得られたボンド磁石の冷熱衝撃試験において割れが発生した。また、鉄製リングとの接着力が低下し、接着力1000N以上のサンプルを得ることができなかった。
【0088】
(比較例10)
添加剤として炭化水素系滑材の一種であるポリエチレンワックス(PEワックス)に変更したこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0089】
その結果、表2に示すように、比較例10にて得られたボンド磁石用組成物では、その組成物により得られたボンド磁石の冷熱衝撃試験において割れが発生した。また、鉄製リングとの接着力が低下し、接着力1000N以上のサンプルを得ることができなかった。
【0090】
(比較例11)
重量平均分子量Mwが5300であるポリアミド12樹脂を5.5質量%とし、引っ張り破断伸びが530%であり曲げ弾性率が130MPaであるポリアミドエラストマーを2.7質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0091】
その結果、表2に示すように、比較例11にて得られたボンド磁石用組成物では、流動性が低く射出圧が高くなり、外観上欠陥のないサンプルを得ることはできなかった。
【0092】
(比較例12)
重量平均分子量Mwが5300であるポリアミド12樹脂を7.9質量%とし、引っ張り破断伸びが530%であり曲げ弾性率が130MPaであるポリアミドエラストマーを0.3質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0093】
その結果、表2に示すように、比較例12にて得られたボンド磁石用組成物では、その組成物により得られたボンド磁石の冷熱衝撃試験において割れが発生した。
【0094】
(比較例13)
引っ張り破断伸びが500%であり曲げ弾性率が89MPaであるポリアミドエラストマーを2.0質量%の割合で使用したこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0095】
その結果、表2に示すように、比較例13にて得られたボンド磁石用組成物では、その組成物により得られたボンド磁石の冷熱衝撃試験において割れが発生した。
【0096】
(比較例14)
引っ張り破断伸びが310%であり曲げ弾性率が670MPaであるポリアミドエラストマーを2.0質量%の割合で使用したこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0097】
その結果、表2に示すように、比較例14にて得られたボンド磁石用組成物では、その組成物により得られたボンド磁石の冷熱衝撃試験において割れが発生した。
【0098】
(比較例15)
磁石粉末として住友金属鉱山株式会社製の平均粒径が2.3μmのSm−Fe−N系磁石粉末を91.2質量%とし、重量平均分子量Mwが5300であるポリアミド12樹脂を5.0質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0099】
その結果、表2に示すように、比較例15にて得られたボンド磁石用組成物では、流動性が低く射出圧が高くなり、外観上の欠陥がないサンプルを得ることはできなかった。
【0100】
(比較例16)
磁石粉末として住友金属鉱山株式会社製の平均粒径が2.3μmのSm−Fe−N系磁石粉末を87.0質量%とし、重量平均分子量Mwが5300であるポリアミド12樹脂を9.2質量%としたこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0101】
その結果、表2に示すように、比較例16にて得られたボンド磁石用組成物では、その組成物により得られたボンド磁石の冷熱衝撃試験において割れが発生した。また、そのボンド磁石の磁気特性は低いものであった。
【0102】
(比較例17)
ポリアミド樹脂として重量平均分子量Mwが8000であるポリアミド12樹脂を6.2質量%の割合で使用したこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0103】
その結果、表2に示すように、比較例17にて得られたボンド磁石用組成物では、流動性が低く射出圧が高くなり、外観上欠陥のないサンプルを得ることはできなかった。
【0104】
(比較例18)
ポリアミド樹脂として重量平均分子量Mwが4100であるポリアミド12樹脂を6.2質量%の割合で使用したこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0105】
その結果、表2に示すように、比較例18にて得られたボンド磁石用組成物では、樹脂の絶対強度が低く、その組成物により得られたボンド磁石の冷熱衝撃試験において割れが発生した。
【0106】
(比較例19)
ポリアミド樹脂として重量平均分子量Mwが9600であるポリアミド11樹脂を6.2質量%の割合で使用したこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0107】
その結果、表2に示すように、比較例19にて得られたボンド磁石用組成物では、樹脂の絶対強度が低く、その組成物により得られたボンド磁石の冷熱衝撃試験において割れが発生した。こ
【0108】
(比較例20)
ポリアミド樹脂として重量平均分子量Mwが5500であるポリアミド6樹脂を6.2質量%の割合で使用したこと以外は、実施例1と同様にしてボンド磁石用組成物を作製し、同様にして評価を行った。
【0109】
その結果、表2に示すように、比較例20にて得られたボンド磁石用組成物では、流動性が低く射出圧が高くなり、外観上欠陥のないサンプルを得ることはできなかった。
【0110】
【表2】