(58)【調査した分野】(Int.Cl.,DB名)
前記アレイ部材の前記複数の長方形の開口の前記偏向投影系による像の大きさは、短手方向の幅が15〜25nmで、長手方向の幅が120〜200nmであることを特徴とする請求項1〜4のいずれか一項に記載の荷電粒子線露光装置。
前記開口の像の長手方向の長さが、前記周期的パターンのピッチの(n−1/2)倍〜(n+1/2)倍(nは2以上の整数)であることを特徴とする請求項13又は14に記載のデバイス製造方法。
【発明を実施するための形態】
【0015】
本発明の実施形態の一例につき
図1〜
図9を参照して説明する。
まず、本実施形態において半導体素子等を製造するためのリソグラフィー工程で使用される荷電粒子線露光装置としての電子ビーム露光装置の構成及び動作につき説明する。
図1は、本実施形態に係るマスクレスの電子ビーム露光装置10の全体構成を概略的に示す図である。
図1において、電子ビーム露光装置10は、それぞれ個別に偏向可能な電子ビームよりなる多数の小ビーム36が配列される露光領域52でウエハW(ターゲット)を露光する電子ビーム光学系20と、多数の小ビーム36を個別にオン/オフする変調装置40と、ウエハWを静電吸着等によって保持して、露光領域52に対してウエハWを所定方向に走査(移動)するウエハステージWSTと、装置全体の動作を統括制御するコンピュータよりなる主制御系12と、その他の制御系等とを備えている。電子ビーム光学系20及びウエハステージWSTは、不図示の真空チャンバ内に収納されている。以下、電子ビーム光学系20の光軸に平行にZ軸を取り、Z軸に垂直な平面(本実施形態ではほぼ水平面である)内で
図1の紙面に垂直にX軸を、
図1の紙面に平行にY軸を取って説明する。本実施形態では、露光中のウエハWの表面はほぼXY平面に平行である。
【0016】
ウエハWは、例えばシリコン等からなる円板状の基材の表面に電子線レジスト(感光材料)を塗布したものである。ウエハステージWSTのX方向、Y方向の位置、及びZ軸に平行な軸の回り(θz方向)の回転角は、ステージ制御系14内の複数軸のレーザ干渉計によって計測されている。この計測値及び主制御系12からの制御情報に基づいて、ステージ制御系14は、例えばリニアモータ等の駆動機構(不図示)を介してウエハステージWSTのX方向、Y方向の位置及び速度、並びにθz方向の回転角等を制御する。
【0017】
ウエハWの表面の電子ビーム露光装置20による露光領域52は、
図3(A)に示すように、X方向の幅LXが例えば26mmでY方向の幅LYが例えば10mm程度のX方向に細長い長方形の領域である。露光中のウエハWの表面は、ウエハステージWSTによって露光領域52に対してY方向(+Y方向又は−Y方向)に走査される。従って、Y方向がウエハWの機械的な走査方向SDYである。また、電子ビーム露光装置10は、ウエハWの各ショット領域(ダイ)に形成されているアライメントマークの位置を検出するウエハアライメント系(不図示)を備えている。
【0018】
図1において、電子ビーム光学系20は、電子ビームEBよりなる多数の小ビーム36をほぼZ軸に平行に発生するマルチビーム発生系20aを備えている。マルチビーム発生系20aは、電子ビームEBを発生する電子ビーム発生装置22と、電子ビームEBをほぼ平行ビームにする静電レンズよりなるコリメータレンズ系24と、ほぼ平行ビームにされた電子ビームEBが照射される多数の開口27が所定配列で形成された開口アレイ部材26と、多数の開口27から射出される小ビーム36を集束する多数の静電レンズよりなるコンデンサーレンズアレイ28とを有する。
【0019】
さらに、電子ビーム光学系20は、それぞれ小ビーム36が照射される多数の開口31が開口27と同じ配列で形成されたビームブランキングアレイ部材30と、開口31と同じ配列で多数の開口33が形成されて、多数の開口31を通過した小ビーム36のうちで後述のように変調装置40の一部である電極膜48,50間の電界によって偏向された小ビーム36を停止させるビーム停止アレイ部材32と、偏向投影系20bとを備えている。偏向投影系20bは、ビーム停止アレイ部材32を通過した小ビーム36を個別にX方向及びY方向に所定範囲内で偏向可能な多数の静電偏向器よりなるビーム偏向器アレイ34と、ビーム偏向器アレイ34を通過した多数の小ビーム36をそれぞれ縮小してビームスポット38(開口31の像)を形成する多数の静電レンズよりなる投影レンズアレイ35とを有する。ビーム偏向器アレイ34の動作は、主制御系12の制御下にある電子ビーム光学系の制御系18によって制御される。
【0020】
投影レンズアレイ35を構成する各静電レンズに関して、ビームブランキングアレイ部材30の開口31の形成面とウエハWの表面とは共役であり、ビームブランキングアレイ部材30の各開口31の像の投影倍率βは、例えば1/50〜1/200程度の縮小倍率である。以下では、一例として投影倍率βは1/100程度であるとする。本実施形態では、開口アレイ部材26の開口27の配列、ビームブランキングアレイ部材30の開口31の配列、ビーム停止アレイ部材32の開口33の配列、及びビーム偏向器アレイ34による偏向がない場合の露光領域52内のビームスポット38の配列(
図3(A)参照)は互いに等しい。
【0021】
図2(A)は、
図1中のビームブランキングアレイ部材30の多数の開口31の配列を概略的に示し、
図2(B)は
図2(A)中のB部の拡大図である。
図2(A)において、例えばシリコン等の絶縁体よりなり、X方向に細長い薄い平板状のビームブランキングアレイ部材30は、ウエハWの表面の
図3(A)の露光領域52とほぼ同じ形状のX方向の幅LXでY方向の幅LYの長方形のパターン形成領域52Aを有する。パターン形成領域52A内には、それぞれX方向にピッチSXで配列された多数の開口31よりなる多数の列Ai(i=1〜I:Iは整数)が、Y方向に間隔SYで配列されている。一例として、ピッチSX及び間隔SYは次のようにほぼ150μmである。なお、ピッチSX及び間隔SYの値は任意である。
【0022】
SX=SY=150(μm) …(1)
図2(B)に拡大して示すように、各列Ai内の各開口31は、X方向の幅a1がY方向の幅b1よりも大きい長方形である。また、各列Aiの一連の開口31に対して、これに隣接する列A(i+1)の一連の開口31は、X方向に次第にδだけ位置がずれている。
【0023】
図2(A)のビームブランキングアレイ部材30の多数の開口31を投影レンズアレイ35によって投影倍率βで縮小した像(ビーム偏向器アレイ34による偏向がない像)をウエハWの表面に投影したものが、
図3(A)の露光領域52内の多数の小ビーム36によるビームスポット38である。また、
図3(B)は
図3(A)のB部の拡大図である。
図3(A)において、露光領域52内の多数のビームスポット38の配列は、
図2(A9の多数の開口31の配列と同じである。即ち、露光領域52内には、それぞれX方向にピッチSXで配列された多数のビームスポット38よりなる多数の列Bi(i=1〜I:Iは整数)がY方向に間隔SYで配列されている。一例として、ピッチSX及び間隔SYは式(1)で表される。
【0024】
また、
図3(B)に示すように、各列Bi内の各ビームスポット38は、X方向の幅a2がY方向(機械的な走査方向SDY)の幅b2よりも大きい長方形である。なお、
図3(B)において、各ビームスポット38の大きさ(幅a2及びb2)は、配列のピッチSX及び間隔SYに比べて1000倍程度大きく描かれている。投影レンズアレイ35の投影倍率βを用いて、ビームスポット38の幅a2及びb2は、次のように
図2(B)の開口31の幅a1及びb1のβ倍(ここでは例えば1/100倍)である。
【0025】
a2=β・a1 …(2A)、 b2=β・b1 …(2B)
本実施形態では、ビームスポット38を用いてウエハWが露光されるため、電子ビーム露光装置10のX方向の解像限界は幅a2であり、Y方向の解像限界は幅b2である。幅a2及び幅b2は、電子ビームの解像限界又はこれよりも大きい値であれば、幅a2が幅b2よりも広いという条件下で任意の値を取ることができる。
【0026】
また、電子ビーム露光装置10は、一つの用途として、
図4に示すように、ウエハW上にそれまでの工程で形成されている線幅dのラインパターン72をピッチ2dでX方向に配列したライン・アンド・スペースパターン(以下、L&Sパターンという)73のラインパターン72を部分的に除去するために使用可能である。即ち、L&Sパターン73を覆うように塗布される電子線レジストのうち、ラインパターン72を除去する部分を露光するために電子ビーム露光装置10が使用される(詳細後述)。なお、
図4のX方向及びY方向は、
図4のパターンが形成されたウエハを
図1のウエハステージWSTにロードしたときの方向を表している。
【0027】
この場合、L&Sパターン73の周期方向(
図4ではX方向)がビームスポット38の長手方向に平行に設定され、ビームスポット38の一度の照射でn本(nは2以上の整数)のラインパターン72を覆うように露光するものとする。このとき、ビームスポット38のX方向の長さa2は、ビームスポット38が点線の形状38Sであるときに最も短い(2n−1)dとなり、ビームスポット38が点線の形状38Lであるときに最も長い(2n+1)dとなる。即ち、ビームスポット38のX方向(長手方向)の長さa2の範囲は、L&Sパターン73のピッチ2dを用いて以下のようになる。
【0028】
(n−1/2)2d≦a2≦(n+1/2)2d …(3)
従って、ビームスポット38(開口31の像)の長手方向の長さa2が式(3)の条件を満たすときには、ビームスポット38の一度の照射によって、ピッチ2dのL&Sパターン73のn本のラインパターン72を部分的に除去するための露光を効率的に行うことができる。さらに、電子ビームの微小な円形のスポット光でウエハWを露光する場合に比べて、ビーム偏向器アレイ34及びウエハステージWST等の制御も容易である。
【0029】
また、L&Sパターン73中でラインパターン72が部分的に除去される離間部74のY方向の幅の最小値はラインパターン72の線幅d程度であるため、離間部74のY方向の幅(ひいては線幅d)の最小値はビームスポット38のY方向の線幅b2に等しいとみなすことができる。このとき、式(3)においてピッチ2dの代わりに2・b2とおくと次の条件が得られる。
【0030】
(2n−1)b2≦a2≦(2n+1)b2 …(4)
従って、ビームスポット38(開口31の像)のX方向(長手方向)の線幅a2の好ましい値は、次のように式(4)の中央値(線幅b2の2n倍)である。
a2=2n・b2 …(5)
また、ビームスポット38のY方向(短辺方向)の線幅b2を、例えば現在ダブルパターニング等で製造可能な最小の線幅である20nmとして、ビームスポット38が一度に照射されるラインパターン72の本数nを通常の工程の最小値である4とすると、式(5)のビームスポット38のX方向の幅a2は160nmになる。
【0031】
また、線幅b2が例えば15〜25nmである場合、n=4とすると、式(5)から長手方向の線幅a2は次の範囲であればよい。
120(nm)≦a2≦200(nm) …(6)
次に、
図2(B)のビームブランキングアレイ部材30の開口31の配列と同じく、露光領域52内のビームスポット38の配列は、
図3(B)に示すように、各列Biの一連のビームスポット38に対して、これに隣接する列B(i+1)の一連のビームスポット38は、X方向に次第にδだけ位置がずれている。本実施形態において、各列Biのビームスポット38のX方向への位置ずれ量δは、
図1のビーム偏向器アレイ34による各ビームスポット38(小ビーム36)の電子的な走査方向SDXである±X方向への偏向量の最大値δに等しく設定されている。なお、ビーム偏向器アレイ34は、各ビームスポット38を±Y方向へも最大値がδとなるように偏向可能である。また、ビーム偏向器アレイ34による各ビームスポット38のX方向への最大偏向量は±δ/2でもよい。
【0032】
具体的に、位置ずれ量δ(最大偏向量)は一例として2μm程度に設定されている。また、一連のビームスポット38の列Biの数Iは、ビームスポット38のX方向の配列のピッチSXを位置ずれ量δで割った値以上に設定されている。これによって、露光領域52に対してウエハWをY方向に移動するときに、露光領域52内の各ビームスポット38のビーム偏向器アレイ34によるX方向の最大の偏向量がδであっても、ウエハWの表面の任意の点を、いずれかの列Bi内のいずれかのビームスポット38で露光することが可能となる。従って、ウエハWの表面にビームスポット38以上の大きさの任意の回路パターンを露光することが可能である。
【0033】
本実施形態においては、ピッチSXはほぼ150μm、位置ずれ量δはほぼ2μmであるため、ビームスポット38の列Biの数Iはほぼ75であればよい。このとき、列BiのY方向の間隔SYはほぼ150μmであるため、露光領域52のY方向の幅LYは、ほぼ150×74(μm)=11.25(mm)となる。また、露光領域52のX方向の幅LXは26mmであるため、各列Biのビームスポット38の数は、ほぼ26/0.15(mm)≒173となる。従って、露光領域52内に配列される全部のビームスポット38をオンにしたときのビームスポット38の数NBS(即ちビームブランキングアレイ部材30の開口31の数)は、次のようにほぼ13000となる。
【0034】
NBS=173×75=12975≒13000 …(7)
本実施形態では、露光領域52内の全部のビームスポット38は、互いに独立にビーム偏向器アレイ34によってX方向及びY方向に±δの範囲内で偏向可能である。さらに、全部のビームスポット38は、
図1の変調装置40によって、互いに独立にオン/オフすることが可能である。
【0035】
図1において、変調装置40は、主制御系12からの制御情報によって、上記のNBS個のビームスポット38(開口31)と同じ個数の光ファイバーの入射端に選択的に例えば可視域から近赤外域にかけての照明光を供給する光ファイバー選択装置16と、その選択的に供給される照明光ILA,ILBをビームブランキングアレイ部材30に照射する選択用照射系41A,41Bとを備えている。光ファイバー選択装置16内の多数の光ファイバーは第1組の光ファイバーケーブル42A及び第2組の光ファイバーケーブル42Bに分岐している。そして、選択用照射系41A,41Bは、それぞれ可撓性を持つ光ファイバーケーブル42A,42Bと、光ファイバーケーブル42A,42Bの多数の光ファイバーの射出端44Aa,44Baをビームブランキングアレイ部材30の多数の開口31の配列に対応させて配列して固定した光ファイバーアレイ44A,44Bと、光ファイバーアレイ44A,44Bから射出される照明光ILA,ILBをビームブランキングアレイ部材30の対応する開口31の近傍のフォトダイード60(
図2(C)参照)に照射するレンズ系46A,46Bとを有する。
【0036】
光ファイバー選択装置16は、全部の光ファイバーに個別に選択的に照明光を極めて短い時間であっても供給可能である。このような光ファイバー選択装置16は、光通信技術を用いて容易に製造可能である。光ファイバーアレイ44A,44Bからの照明光ILA,ILBは、ビームブランキングアレイ部材30の異なる領域を照明する。一例として、照明光ILA,ILBは、
図2(A)のビームブランキングアレイ部材30の中心に対して+X方向側及び−X方向側の半分の領域を照明する。光ファイバーアレイ44A,44Bの各射出端44Aa,44Baは、レンズ系46A,46Bに関してビームブランキングアレイ部材30の異なる開口31の近傍のフォトダイード60と光学的に共役である。なお、光ファイバーアレイ44A,44Bの射出面とビームブランキングアレイ部材30とは、レンズ系46A,46Bに関していわゆるシャインプルーフの条件を満たすように配置してもよい。また、光ファイバー選択装置16内の多数の光ファイバーを3組以上の光ファイバーケーブルに分岐し、これらの光ファイバーケーブルの射出端からの照明光でビームブランキングアレイ部材30の異なる領域を照明してもよい。
【0037】
また、変調装置40は、それぞれビームブランキングアレイ部材30の対応する領域内の各開口31をY方向に挟むように設けられた電極膜48及び50を含む偏向器54(
図2(C)参照)と、ビーム停止アレイ部材32とを備えている。
図2(C)は、ビームブランキングアレイ部材30内のX方向に2行でY方向に2列の開口31の近傍にそれぞれ設けられた偏向器54を示す。
【0038】
図2(C)において、ビームブランキングアレイ部材30の表面に、ほぼY方向に配列されたX方向に細長い複数の開口31をそれぞれX方向に挟むようにグラウンドレベル(0V)の接地ライン55と、例えば+10〜15V程度の電圧VCが印加される電源ライン56とが設けられている。また、ビームブランキングアレイ部材30表面において、各開口31をY方向に挟むように、かつ各開口51の長手方向(X方向)の側面に沿って長方形の導電性の電極膜48及び50が設けられ、一方の電極膜48は接地ライン55に接続され、他方の電極膜50は抵抗器58を介して電源ライン56に接続されている。
【0039】
また、ビームブランキングアレイ部材30の表面において、各開口31の近傍に例えばPIN型のフォトダイード60が固定され、フォトダイオード60と電極膜50との間に増幅用のFET型のトランジスタ62が固定されている。フォトダイオード60は抵抗器64及び66を介して電源ライン56及び接地ライン55に例えば逆バイアスで連結され、トランジスタ62のソースが調整用の抵抗器68を介して接地ライン55に接続され、トランジスタ62のドレインが電極膜50に接続されている。さらに、フォトダイード60と抵抗器66との連結部がトランジスタ62のゲートに接続されている。電極膜48,50、フォトダイード60、トランジスタ62、抵抗器58,64〜68、及びこれらを連結する信号ラインより、偏向器54が構成されている。偏向器54は、例えばMEMS(Microelectromechanical Systems:微小電気機械システム)技術を用いても製造可能である。
【0040】
例えば位置P4及びP5の開口31に対応する偏向器54のフォトダイード60には照明光が照射されていない。この場合、位置P4及びP5の開口31に隣接する電極膜50はほぼ電圧VCになるため、電極膜50と接地された電極膜48との間に電界EYが発生し、電界EYによって開口31を通過した小ビーム36は+Y方向に偏向されて
図1のビーム停止アレイ部材32によって遮蔽され、小ビーム36(ビームスポット38)は露光領域52内でオフになる。本実施形態では、長方形の電極膜48,50が開口31の長手方向の辺に沿って配置されており、電極膜48,50の間隔を最も狭くできるため、電極膜50に比較的低い電圧を印加するのみで開口31を通過する小ビーム36をオフにできる。
【0041】
一方、位置P3及びP6の開口31に隣接するフォトダイード60を含む領域P31及びP61には照明光ILAが照射されている。この場合、領域P31,P61内のフォトダイード60に電流が流れ、位置P3及びP6の開口31に隣接する電極膜50の電圧は接地レベル程度まで低下する。従って、位置P3及びP6の開口31には電極膜48,50間の電界が殆ど作用しないため、小ビーム36はそのまま開口31を通過して、ウエハWの表面の露光領域52に照射されて、ビームスポット38がオンになる。この際に、電極膜50に印加する電圧の変化は比較的小さいため、開口31の近傍のフォトダイード60を小型化しても、小ビーム36のオン/オフを高速に切り替えることができる。
【0042】
従って、
図1において、変調装置40を用いることによって、ビームブランキングアレイ部材30の任意の開口31の近傍のフォトダイードに照明光ILA(又はILB)が照射されていない期間では、位置P2の開口31で示すように、その開口31を通過する小ビーム36はY方向に偏向されてビーム停止アレイ部材32によって遮蔽される。従って、位置P2の開口31の像であるビームスポット38はオフ状態になる。一方、任意の開口31の近傍のフォトダイードに照明光ILA(又はILB)が照射されている期間では、位置P1の開口31で示すように、その開口31を通過する小ビーム36は偏向されることがなくビーム停止アレイ部材32によって遮蔽されない。従って、位置P1の開口31の像であるビームスポット38はオン状態になる。
【0043】
なお、
図3(B)に示すように、ビームスポット38のY方向の幅b2が例えば20nmである場合、ビーム偏向器アレイ34によるビームスポット38のY方向への最大偏向量±δは例えば±2μmであり、ビームスポット38の幅b2の200倍程度である。従って、ウエハW上の或る点をビームスポット38で露光するときには、一例として、ビーム偏向器アレイ34によってビームスポット38(この状態ではオフである)をウエハWと同期してY方向に移動している期間中に、対応する開口31の近傍のフォトダイードに照明光を照射して、必要な露光時間だけそのビームスポット38をオンにすればよい。その点に対する露光が終わると、一例として、ビームスポット38はオフの状態でY方向の端部(機械的な走査方向SDYと逆方向の端部)に戻される。なお、小ビーム36の強度が大きい場合には、ビーム偏向器アレイ34によるビームスポット38のY方向への偏向量は狭くともよい。
【0044】
このように、本実施形態の電子ビーム露光装置10によれば、変調装置40によってビームブランキングアレイ部材30の任意の開口31を通過する小ビーム36を個別にオン又はオフに設定できる。さらに、ビームブランキングアレイ部材30の多数の開口31を通過した小ビーム36のうちでオンにされた小ビーム36(ビームスポット38)をビーム偏向器アレイ34によって個別にX方向及びY方向に偏向するとともに、
図3(C)に示すように、ビームスポット38が照射される露光領域52に対してウエハステージWSTによってウエハWをY方向に走査することによって、ウエハWの全部のショット領域(ダイ)SAj(j=1〜J:Jはショット領域の個数を表す整数)内に、それぞれビームスポット38よりも大きい任意の形状の多数のパターンを任意に組み合わせた回路パターンをほぼ連続的に露光できる。
【0045】
次に、本実施形態において電子ビーム露光装置10を用いるデバイス製造方法の一例につき説明する。ここでは、電子ビーム露光装置10の露光領域52に照射される多数のビームスポット38の大きさはY方向の幅b2が20nm、X方向の幅a2が160nmであるとする。また、本実施形態で製造対象とする半導体素子の回路パターンは、
図4の部分拡大図で示すように、SRAM(Static RAM)のゲートセル用の回路パターン70である。回路パターン70は、線幅dのラインパターン72をX方向にピッチ2dで配列したL&Sパターン73から、部分的に複数本のラインパターン72をY方向の幅dで除去して複数の離間部74(非周期的な部分)を形成したものである。一例として、線幅dを22nmとする。また、
図4では、説明の便宜上、離間部74のX方向の幅はラインパターン72を2本含む幅であるが、実際には離間部74のX方向の幅はラインパターン72を4本含む幅、即ち(3×2+1)d=154nmであるとする。この場合、
図2(B)のビームスポット38の大きさは20nm×160nmと仮定されているため、
図4に点線で示すように、ビームスポット38のX方向の幅は離間部74よりも僅かに広く、ビームスポット38のY方向の幅は離間部74よりも僅かに狭い。
【0046】
また、現状の露光ビームとしてArFエキシマレーザ光(波長193nm)等を用いる露光装置(紫外光露光装置)に、例えば米国特許出願公開第2005/259234号明細書に開示されているような液浸法を適用した場合でも、その解像限界は線幅で44nm程度である。従って、回路パターン70は、紫外光露光装置の解像限界よりも微細な非周期的な部分(離間部74)を含むパターンの一例である。
【0047】
以下、リソグラフィー工程で電子ビーム露光装置10を用いて、ウエハの表面の各ショット領域に
図4の回路パターン70を形成する方法の一例につき
図8のフローチャートを参照して説明する。本実施形態では、第1段階として、スペーサ・ピッチ・ダブリング(Spacer Pitch Doubling, Spacer transfer 又は SidewalL transfer)技術を用いるダブルパターニング法によってウエハの表面の各ショット領域に線幅dでピッチ2dのL&Sパターン73を形成する。そして、第2段階として、その各ショット領域において、L&Sパターン73から電子ビーム露光装置10による露光及びエッチングによって部分的にラインパターン72を除去する。
【0048】
まず、上記の第1段階として、
図8のステップ102において、
図5(A)の拡大断面図で示すように、不図示の処理装置において、ウエハのシリコン等の基材71の表面にデバイス層76及び中間層78を形成し、不図示のコータ・デベロッパにおいて、そのウエハの中間層78の表面にポジ型のフォトレジスト層80を形成する。なお、
図5(A)〜
図7(B)においては、形成されるパターンの周期方向をX方向、その周期方向に直交する方向をY方向としている。次のステップ104において、上記のように液浸型で、露光ビームとしてArFエキシマレーザ光を用いる紫外光露光装置(不図示)を用意し、その照明条件を例えばX方向の2極照明に設定する。そして、その紫外光露光装置を用いてそのウエハのフォトレジスト層80に、
図5(B)の拡大した投影像の光量分布82Dで示すように、最終的に形成するラインパターン72の2倍の線幅で2倍のピッチ、即ちX方向に線幅2dでピッチ4dのL&Sパターンとなる像82(
図5(A)参照)を所定の露光量で露光する。その線幅2dは44nmである。その所定の露光量とは、1ピッチ分の像82のうちで、現像後に感光レベルを超える部分のX方向の幅が3dとなる露光量である。
【0049】
次のステップ106において、コータ・デベロッパ(不図示)において、そのウエハのフォトレジスト層80を現像することより、
図5(C)に示すように、線幅dのレジストパターン80AをX方向にピッチ4dで配列したL&Sパターンが形成される。その後、不図示のエッチング装置において、
図5(D)に示すように、レジストパターン80Aをマスクとして中間層78のエッチングを行ってから、レジストパターン80Aを剥離する。これにより、
図5(E)及び
図5(F)の拡大平面図で示すように、そのウエハのデバイス層76の表面に、中間層78の線幅dのラインパターン78AをX方向にピッチ4dで配列したL&Sパターン79が形成される。
【0050】
次のステップ108において、不図示の処理装置において、
図6(A)に示すように、そのウエハの中間層76及びラインパターン78Aを覆うようにスペーサ層84を堆積することにより、凸の部分のX方向の幅が3dで凹の部分のX方向の幅がdのL&Sパターンが形成される。そして、ステップ110に移行して不図示のエッチング装置において、
図6(B)に示すように、ウエハのスペーサ層84に対して表面に垂直な方向に異方性エッチングを行う。これにより、線幅dの中間層のラインパターン78AのX方向の両端部に、スペーサ層84の線幅dのスペーサ部84A(ラインパターン)が残される。その後、不図示の処理装置において、そのウエハの中間層のラインパターン78Aを除去することにより、
図6(C)に示すように、デバイス層76の表面に線幅dのスペーサ部84AをX方向にピッチ2dで配列したL&Sパターンが形成される。次のステップ112において、不図示のエッチング装置において、そのウエハの線幅dのスペーサ部84AよりなるL&Sパターンをマスクとしてデバイス層76のエッチングを行う。この結果、
図6(D)及び
図6(E)の拡大平面図で示すように、ウエハの基材71の表面にデバイス層76の線幅dのラインパターン76AをX方向にピッチ2dで配列したL&Sパターン73が形成される。ラインパターン76Aは、
図4のラインパターン72に対応する。なお、L&Sパターン73とともに、アライメントマーク(不図示)も形成されている。
【0051】
次に、上記の第2段階として、ステップ114において、不図示のコータ・デベロッパにおいて、
図6(D)のウエハのデバイス層の線幅d(ピッチ2d)のL&Sパターン73の表面にポジ型の電子線レジストを塗布する。その後、そのウエハ(ウエハWとする)を
図1の電子ビーム露光装置10のウエハステージWSTにロードし、不図示のウエハアライメント系を用いてウエハWのアライメントを行う。この結果、
図7(A)に示すように、ウエハWに形成されているL&Sパターン73(これを覆うように電子線レジストPRが塗布されている)の周期方向が、電子ビーム露光装置10の各ビームスポット38の長手方向(X方向)に平行になるように、ウエハWの回転角が調整される。
【0052】
次にステップ116に移行して、電子ビーム露光装置10において、ウエハステージWSTを介して、電子ビームの露光領域52に対するウエハWのY方向への移動を開始する。
図3(C)に示すように、ウエハWのショット領域SA1を含む一列のショット領域に露光する場合、ウエハWは露光領域52に対して+Y方向に移動する(露光領域52はウエハWに対して相対的に−Y方向に移動する)。その後、ステップ118において、ウエハWの一列のショット領域において、
図4のL&Sパターン73の離間部74に相当する部分で、対応するビームブランキングアレイ部材30の開口31の近傍のフォトダイードに選択用照射系41A,41B(変調装置40)から照明光を照射して、その開口31を通過する小ビーム36をオンにする。さらに、ステップ120において、オンにされた複数の小ビーム36(ビームスポット38)をビーム偏向器アレイ34によってそれぞれX方向、Y方向に偏向して、L&Sパターン73の離間部74に相当する複数の被露光部86を露光する。
【0053】
具体的に、
図7(A)において、各ビームスポット38のX方向の幅a2は160nm、Y方向の幅b2は20nmであり、ラインパターン76Aの線幅d(ひいては被露光部86のY方向の幅)は22nmである。さらに、被露光部86は、実際には4本のラインパターン76Aを覆う領域であるため、アライメント誤差を考慮すると、被露光部86のX方向の幅a3は、一例として、176(=8×22)nmであると良い。そこで、被露光部86を露光するために、ビーム偏向器アレイ34によってビームスポット38を±X方向にそれぞれ8(=(a3−a2)/2)nm偏向し、ウエハステージWSTのY方向への移動に同期してビーム偏向器アレイ34によってビームスポット38をY方向に移動している期間内に、ビームスポット38を2(=d−b2)nmだけY方向にシフトすればよい。なお、ビームスポット38のY方向への偏向量が小さい場合には、Y方向にほぼ静止しているビームスポット38に対してウエハステージWSTによってウエハWが2nmだけ移動する期間内で、ビームスポット38をオンにしてもよい。ステップ118及び120は、ウエハWの各ショット領域内の離間部74に対応する部分でそれぞれ繰り返される。
【0054】
その後、ステップ122において、
図3(C)に示すように、ウエハWのショット領域SA1を含む一列のショット領域の露光が終了すると、ウエハWの露光が終了したかどうかを判定する。ここでは、露光は終了していないため、動作はステップ124に移行して、ウエハステージWSTによるウエハWのX方向へのステップ移動によって、ウエハWの次の一列のショット領域が露光領域52のY方向の手前に移動する。そして、ウエハステージWSTの1回目の走査露光時とは逆の−Y方向への移動が開始される。その後、ステップ118〜124が繰り返される。このように、ウエハWの走査露光とステップ移動とを繰り返すことによって、ウエハWの全部のショット領域SAj(j=1〜J)への露光が終了する。
【0055】
その後、動作はステップ122からステップ126に移行し、ウエハステージWSTからウエハWがアンロードされる。その後、ステップ128において、不図示のコータ・デベロッパにおいてウエハWの電子線レジストの現像を行うことで、
図7(B)に示すように、ラインパターン76Aを覆う電子線レジストPRのうち、被露光部86に対応する部分が開口部86Aとなる。そして、不図示のエッチング装置において、開口部86Aが形成された電子線レジストPRをマスクとしてデバイス層76のラインパターン76A(72)のエッチングを行うことによって、
図4の回路パターン70が完成する。
【0056】
本実施形態によれば、第1段階でダブルパターニング法を用いて微細なL&Sパターン73を形成した後、第2段階で電子ビーム露光装置10を用いて非周期的な部分を露光することによって、紫外光露光装置の解像限界よりも微細な非周期的な部分(離間部74)を含む回路パターン70を効率的に形成できる。
この際に、
図4の回路パターン70の離間部74に対応する被露光部86は、電子ビーム露光装置10のビームスポット38を少なくともX方向に僅かに偏向するのみで効率的に露光できるとともに、各小ビーム36(ビームスポット38)のオン/オフの制御が容易であり、ビーム偏向器アレイ34の制御も容易である。
【0057】
さらに、上記のパターン形成方法を用いてSRAM等の半導体デバイス(電子デバイス)を製造する場合、半導体デバイスは、
図9に示すように、半導体デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)及び電子ビーム露光装置10用の露光パターンデータを製作するステップ222、半導体デバイス用の基板(ウエハ)を製造するステップ223、基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、及び検査ステップ226等を経て製造される。また、その基板処理ステップ224は、紫外光露光装置でレチクルのパターンを基板に露光する工程、電子ビーム露光装置10でその露光パターンを基板に露光する工程、露光した基板を現像する工程、並びに現像した基板の加熱(キュア)及びエッチングを行う工程などを含んでいる。
【0058】
このデバイスの製造方法によれば、紫外光露光装置の解像限界よりも微細な非周期的な部分を含む回路パターンを含む半導体デバイスを効率的に製造できる。
本実施形態の効果等は以下の通りである。
(1)本実施形態の電子ビーム露光装置10は、電子ビームでウエハW(ターゲット)を露光する露光装置である。電子ビーム露光装置10は、電子ビームからなる多数(複数)の小ビーム36(ビーム)をほぼ平行に発生するマルチビーム発生系20aと、小ビーム36がそれぞれ照射される多数の長方形の開口31が互いに長手方向が平行になるように形成されたビームブランキングアレイ部材30(アレイ部材)と、多数の開口31から選択された開口31を通過する小ビーム36をウエハWに導く変調装置40と、を備えている。
【0059】
さらに、電子ビーム露光装置10は、変調装置40で選択された開口31を通過した小ビーム36を少なくとも開口31の長手方向に沿ったX方向(第1方向)に偏向可能であり、かつ小ビーム36によって開口31を縮小したビームスポット38(像)を形成する偏向投影系20bと、偏向投影系20bによる小ビーム36の露光領域52に対してウエハWをX方向に直交するY方向(第2方向)に相対移動するウエハステージWST(移動機構)と、を備えている。
なお、小ビーム36とは、一例として、それぞれビームブランキングアレイ部材30に形成された多数の開口31のうちの一つの開口31をほぼ覆うことが可能で、かつ隣接する2つの開口31を同時に照射することがない大きさの断面積を持つ電子ビームであればよい。
【0060】
また、電子ビーム露光装置10を用いるデバイス製造方法は、ウエハW(ターゲット)の表面にL&Sパターン73(周期的パターン)を形成するステップ102〜112と、ウエハWのL&Sパターン73が形成された領域に、電子ビーム露光装置10を用いて、ビームブランキングアレイ部材30の多数の開口31の像(ビームスポット38)を選択的に露光することによって、L&Sパターン73中のラインパターン76Aを部分的に除去するステップ114〜128と、を含んでいる。
【0061】
本実施形態によれば、電子ビーム露光装置10を用いることによって、紫外光露光装置の解像限界よりも微細な非周期的な部分(離間部74)を含む回路パターン70を効率的に形成できる。
(2)また、ビームブランキングアレイ部材30に形成された多数の開口31は、X方向及びほぼY方向に沿って配列されるとともに、ほぼY方向に沿って配列される多数の開口31は、ウエハW上でのビーム偏向器アレイ34による小ビーム36の最大偏向量と同じ位置ずれ量δで次第にX方向にずれて配列されている。従って、多数の開口31の像であるビームスポット38が配列される露光領域52に対して、ウエハステージWSTによってウエハWをY方向に走査することによって、ウエハWの表面の任意の点をいずれかの開口31の像(ビームスポット38)で露光可能である。
【0062】
(3)また、変調装置40は、ビームブランキングアレイ部材30の多数の開口31の近傍にそれぞれ設けられた電極膜48,50(電極部材)と、多数の開口31に対応して設けられるとともに、電極膜50に印加される電圧を制御する多数のフォトダイード60(光電変換素子)と、ウエハWに露光されるパターンに応じて、多数のフォトダイード60に選択的に照明光ILA,ILBを照射する選択用照射系41A,41Bと、ビームブランキングアレイ部材30の多数の開口31に対応する位置にそれぞれ開口33が形成されるとともに、開口31を通過した小ビーム36のうちで、電極膜48,50によって発生する電界によって偏向された小ビーム36を停止させるビーム停止アレイ部材32(停止用アレイ部材)と、を備えている。
【0063】
変調装置40によれば、露光領域52内に照射される多数の小ビーム36(ビームスポット38)のオン/オフを高速に切り替えることができる。また、この切り替えの際に、照明光ILA,ILBを照射しているため、他の開口31を通過する小ビーム36に影響を与えることがない。
(4)また、電極膜48,50は各開口31の長手方向に沿って設けられているため、電極膜48,50間の電位差が小さい場合でも小ビーム36のオン/オフの切り替えを高速に行うことができる。
【0064】
(5)ラインパターン76Aを部分的に除去するステップ114〜128は、ウエハWのL&Sパターン73が形成された領域に電子線レジストPR(感光材料)を塗布するステップ114と、電子線レジストPRを電子ビーム露光装置10で露光するステップ120と、電子線レジストPRを現像するステップ128と、現像後の電子線レジストをマスクとしてL&Sパターン73をエッチングするステップ128と、を含んでいる。
【0065】
これにより、電子ビーム露光装置10によって露光された部分のラインパターン76Aのみを正確に除去できる。
(6)また、本実施形態の電子ビーム露光装置10を用いるデバイス製造方法は、ウエハW(ターゲット)の表面にL&Sパターン73(周期的パターン)を形成するステップ102〜112と、多数(複数)の長方形の開口31から選択された開口を通過した小ビーム36(電子ビーム)によって開口31の縮小された像(ビームスポット38)が形成される露光領域52を含む領域に、開口31の像の長手方向(X方向)にウエハWのL&Sパターン73の周期方向が平行になるように、ウエハステージWSTにウエハWを配置するステップ114と、を含んでいる。さらに、そのデバイス製造方法は、ウエハWのL&Sパターン73が形成された領域で、多数の開口31から選択された開口の小ビーム36によって形成される像を少なくとも開口31の像の長手方向に沿ったX方向(第1方向)に偏向してウエハWを露光するステップ120と、露光領域52をウエハWのL&Sパターン73が形成された領域が通過するように、露光領域52に対してウエハWをX方向に直交するY方向に相対移動するステップ116と、多数の開口31から選択された開口の像によってウエハWのL&Sパターン73が形成された領域に露光されたマスクパターン(被露光部86)を用いてL&Sパターン73を部分的に除去するステップ128とを含んでいる。
【0066】
本実施形態によれば、電子ビームの小ビーム36による多数の長方形の開口31の像(ビームスポット38)でウエハWのL&Sパターン73が形成された領域を露光することによって、紫外光露光装置の解像限界よりも微細な非周期的な部分(離間部74)を含む回路パターン70を効率的に形成できる。
(7)また、L&Sパターン73を形成するステップ102〜112は、紫外光露光装置を用いてウエハWの表面にL&Sパターン73の周期方向(X方向)に周期性を持つL&Sパターン79(第1パターン)を形成するステップ102〜106と、L&Sパターン79に基づいて、X方向にL&Sパターン79のピッチ(4d)に対して1/2のピッチを持つL&Sパターン73(第2パターン)を形成するステップ108〜112とを有する。
【0067】
このようにダブルパターニング法を用いることによって、紫外光露光装置を用いて、紫外光露光装置の解像限界よりも微細なピッチの周期的パターンを形成できる。
なお、L&Sパターン79からピッチが1/2のL&Sパターンを形成する代わりに、L&Sパターンからこのピッチに対して1/(2k)(kは1以上の整数)のピッチを持つL&Sパターンを形成することも可能である。この場合には、最終的に形成されたL&Sパターンの一部を除去するために電子ビーム露光装置10を用いて露光を行えばよい。
【0068】
次に、上記の実施形態については以下のような変形が可能である。
(1)上記の実施形態では、
図2(B)に示すように、ビームブランキングアレイ部材30の長方形の開口31の長手方向がビーム偏向器アレイ34によって少なくとも偏向される方向(電子的な走査方向SDX)であるX方向(第1方向)に平行である。
これに対して、
図10(A)のビームブランキングアレイ部材30Aのパターン形成領域52A内にX方向、Y方向に配列された多数の長方形の開口31Aは、
図10(B)に示すように、開口31Aの短手方向が
図1のビーム偏向器アレイ34によって少なくとも偏向される方向(電子的な走査方向SDX)であるX方向(第1方向)に平行である。即ち、開口31AのX方向の幅b1はY方向の幅a1よりも小さい。また、隣接する列の開口31Aの位置は、次第にX方向にδだけずれている。また、開口31Aを通過する小ビーム36をオフにするための長方形の1対の電極膜48,50は、開口31AをX方向に挟むように、開口31Aの長手方向(Y方向)に沿って配置され、電極膜50の電圧は不図示のフォトダイードによって制御される。このビームブランキングアレイ部材30Aは、
図1のビームブランキングアレイ部材30と交換して電子ビーム光学系20内に配置可能である。なお、このようにビームブランキングアレイ部材30Aを用いる場合には、開口アレイ部材26も、開口27を90°回転した形状の開口が形成された開口アレイ部材と交換してもよい。
【0069】
ビームブランキングアレイ部材30Aを電子ビーム光学系20内に配置した場合、
図11(A)に示すように、ウエハWの表面の露光領域52に多数の開口31Aの小ビーム36による像であるビームスポット38Aが照射される。
図11(B)に示すように、ビームスポット38Aの形状はX方向の幅b2でY方向の幅a2の長方形、即ち
図3(B)のビームスポット38を90°回転した形状である。
図11(B)において、各ビームスポット38Aは、
図1の変調装置40によって個別にオン又はオフに切り替え可能であり、かつビーム偏向器アレイ34によってX方向(電子的な走査方向SDX)に±δ及びY方向に±δの範囲内で偏向可能である。なお、Y方向の偏向量はこれより狭くともよい。
【0070】
このビームスポット38Aを用いて
図6(E)のL&Sパターン73の一部のパターンを除去するための露光を行う場合には、L&Sパターン73が形成されたウエハを、L&Sパターン73の周期方向が
図11(B)のビームスポット38A(開口31Aの像)の長手方向であるY方向に平行になるように、ウエハステージWSTに載置すればよい。
(2)上記の実施形態では、L&Sパターン73を形成するためのダブルパターニング法として、スペーサ・ピッチ・ダブリング技術を用いている。しかしながら、ダブルパターニング法としては、他の任意の方法、例えば紫外光露光装置を用いて線幅dでピッチ4dのL&Sパターンを形成する工程を、位相を180°ずらして2回繰り返すダブルパターニング法等を使用できる。
【0071】
また、L&Sパターン73を、紫外光露光装置を用いる通常のリソグラフィー工程で形成する場合、又はL&Sパターン73を露光ビームとして波長が数nm〜数10nm程度のEUV光(Extreme Ultraviolet Light)を用いるEUV露光装置等を用いて形成する場合にも、上記実施形態及びその変形例が適用可能である。
(3)上記の実施形態では、変調装置40は、選択用照射系41A,41Bを用いてビームブランキングアレイ部材30の開口31の選択を行っている。その外に、例えば液晶表示素子と同様に、マトリックス状に配置された選択線を用いて開口31内の電界の切り替えを行うようにしてもよい。
【0072】
なお、上述の実施形態では、荷電粒子線として電子ビームを使用する電子ビーム露光装置10を用いているが、露光用の荷電粒子線としてイオンビーム等を用いる露光装置にも上記実施形態及びその変形例を適用することができる。
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。