(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0013】
[第1の実施形態]
以下、本発明の一実施形態について、図面を参照して説明する。
図1は、本発明の第1の実施形態による形状測定装置10の構成を示すブロック図である。形状測定装置10は、操作入力部11と、表示部12と、撮像部13と、画像生成部13aと、照射部14と、記憶部15と、判定部17と、点群算出部18(点群データ算出部)と、参照光生成部19と、設定部21と、スコア算出部22とを備え、位相シフト法により測定対象Mの三次元形状を測定するコンピュータ端末である。本実施形態では、形状測定装置10は、Nバケット法に基づいて、明暗のパターンが縞状に並んだ光(以下、パターン光と称する)の初期位相を変化させて、それぞれの初期位相のパターン光が測定対象Mに形成された像を撮像し、それぞれの像における同一画素の信号強度(例えば、輝度値やMAX(R,G,B)値などに代表される明度値など)に基づいて、測定対象Mの形状測定を行う。
【0014】
操作入力部11は、ユーザからの操作入力を受け付ける。例えば、操作入力部11は、主電源のオンとオフとを切替えるための電源釦、及び撮像処理開始の指示を受け付けるレリーズ釦等の操作部材を備えている。または、操作入力部11はタッチパネルにより、後述するしきい値を設定する指示等を受け付けることもできる。また、操作入力部11は、例えば、レリーズ釦を半押し状態と全押し状態とにすることよって、半押し状態と全押し状態とに対応する操作入力を受け付ける。ここで、レリーズ釦の全押し状態とは、レリーズ釦が所定の位置まで押し込まれた状態であり、レリーズ釦の半押し状態とは、レリーズ釦が全押し状態の位置の手前まで押し込まれた状態である。
【0015】
撮像部13は、測定対象Mの像を撮像する。撮像したデータをRAWデータとして、出力する。撮像部13から出力されたデータは、画像生成部13aで、撮像部13で撮像された測定対象Mの像の撮像画像を生成し、生成した撮像画像を記憶部15に記憶させる撮像処理を行う。また、撮像部13は、照射部14と連動して動作し、照射部14によって測定対象Mに照明光が
照射されるタイミングに合わせて撮像処理を行う。本実施形態では、撮像部13は、照射部14によってNバケット法に基づく初期位相の異なる複数のパターン光が測定対象Mに形成された像を、初期位相毎に撮像した複数の撮像画像を生成する。また、撮像部13は、照射部14によって
照射方向から測定対象Mに照射される参照光が測定対象Mに
照射されるタイミングに合わせて撮像処理を行う。
【0016】
照射部14は、投光部14aと測定光生成部14bからなる。測定対象Mの形状測定の際、測定光生成部14bは、後述する投光部14aに設けられた光源の光強度を変調する光源制御部5を制御する。これにより、照射部14は、画像生成部13aによって生成された撮像画像が、測定対象Mにパターン光が形成された画像として撮像されるように、撮像部13が撮像している方向と異なる方向の
照射方向から、つまり、撮像部13の光軸とは異なる方向から測定対象Mに測定光を照射する。具体的には、照明部14は、測定対象M上に所定の光量分布が形成されるように測定光を照射する。測定対象M上に形成される所定の光量分布は、測定対象M上の位置に伴って光量が周期的に変化する分布であり、例えば、測定対象M上の位置の変化に応じて光量が正弦波状に変化する分布である。また、照射部14は、一定の周期の空間周波数を持ち、Nバケット法に基づいて初期位相が90度ずつ異なる複数のパターン光が測定対象Mに形成された像を、撮像部13によって順次撮像できるように、パターン光を照射する。また、本実施形態の投光部14aは、参照光生成部19によって生成された参照光を照射する。測定光、参照光及びパターン光については後述する。
【0017】
記憶部15には、撮像画像の各画素のうちの、信号強度の差(例えば、輝度差など)がしきい値以上の画素を含む範囲を対象範囲として検出するしきい値が予め記憶されている。また、記憶部15には、撮像部13により生成された撮像画像や、点群算出部18(点群データ算出部)によって算出された点群データ等が記憶される。
【0018】
点群算出部18(点群データ算出部)は、撮像部13により初期位相が異なる複数のパターン光が形成されたように撮像された測定対象Mの像の撮像画像を基に、測定対象Mの形状を算出し、測定対象Mの各位置の座標値を有する点群データを算出する。また、点群算出部18は、撮像部13で撮像された測定対象Mの複数の撮像画像に基づいて、位相算出、位相接続等の点群算出処理を行い、点群データを算出して、記憶部15に記憶させる。
【0019】
参照光生成部19は、
照射方向から測定対象Mに照射される参照光を生成する。また、参照光生成部19は、測定光生成部14bによって照射部14から照射された照明光により測定対象M上に形成される所定の光量分布において、相異なる光量と同じ光量の参照光を生成する。また、参照光は、所定の
照射方向から測定対象Mに照射されることを特徴とする。ここで、所定の
照射方向は、例えば、撮像部13が撮像している方向と異なる方向である。本実施形態において、参照光生成部19は、測定対象Mにパターン光が形成された画像として撮像されるように測定対象M上に形成される所定の光量分布における相異なる光量のうち第1の光量と同じ光量、及び第1の光量とは異なる第2の光量と同じ光量の参照光を生成する。ここで、第1の光量と同じ光量の参照光としては、例えば、照明光により測定対象M上に形成される所定の光量分布のうち、最大光量の参照光が参照光生成部19によって生成される。また、第2の光量と同じ光量の参照光としては、例えば、照明光により測定対象M上に形成される所定の光量分布のうち、最小光量の参照光が参照光生成部19によって生成される。また、参照光生成部19は、投光部14aにより参照光を照射するように、照射部14を制御する。つまり、投光部14aは、測定光と参照光とをそれぞれ照射する。
なお、上述の第1の光量と第2の光量はそれぞれ、測定対象M上に形成される所定の光量分布における光量の範囲のうち最大、最小となる光量を用いたが、最大、最小でなくてもよく、第1の光量と第2の光量は、当該所定の光量分布における光量の範囲のうちの適当な異なる光量の値を用いてもよい。また、第1の光量と第2の光量は、当該所定の光量分布における光量とは異なる光量であってもよい。
【0020】
検出部20は、参照光が測定対象Mに
照射された際に撮像部13によって撮像された撮像画像に基づいて、照射部14により照明光を照射して撮像部13で取得された撮像画像から求めることができる測定対象Mの形状測定の対象範囲を検出する。また、検出部20は、形状測定の対象範囲を検出する際に、参照光が測定対象Mに
照射された際に撮像部13によって撮像された撮像画像を用いる。また、検出部20は参照光生成部24が生成する相異なる光量により参照光が測定対象Mに
照射されるごとに撮像部13によって生成された複数の撮像画像から各領域の信号強度を取得し、かつ複数の撮像画像間において対応する領域ごとに比較された信号強度の大小関係に基づいて、測定対象Mの形状測定の対象範囲を検出する。例えば、照射部14により測定光(パターン光)を照射して撮像部13で取得された撮像画像から求めることができる測定対象Mの形状測定の対象範囲は、測定対象Mの表面の材質や明度、反射率などによって影響を受けて変化する。照射部14により測定光(パターン光)を照射して撮像部13で取得された撮像画像は、例えば、測定光が当たる部分は明るく、測定光が当たらない部分は暗く撮像されることが望ましい。ここで、例えば、測定対象Mの表面が光をほとんど反射しない材質である場合、測定対象Mのうちの、測定光が当たる部分の明るさと、測定光が当たらない部分の明るさとに、ほとんど差が生じなくなる。このような場合には、測定対象Mの形状測定をすることができないため、この対象範囲には含まれない。他にも、反射率が非常に高く、一方、測定対象Mからは正反射光しか発生しない場合がある。この場合も、照射部14により十分なコントラストを有する像が得られない場合があるので、このような対象範囲には測定することができない範囲となってしまう。
また、例えば、照明光を照射した場合に、照明光が当たらない部分、つまり影になる部分は、測定対象Mの形状測定をすることができないため、この対象範囲には含まれない。
【0021】
また、検出部20は、参照光生成部19が生成する相異なる光量により参照光が測定対象Mに
照射されるごとに撮像部13によって生成された複数の撮像画像から所定画素の信号強度(例えば、輝度値など)を取得し、かつ複数の撮像画像間において対応する画素ごとに比較された信号強度の差(例えば、輝度差など)に基づいて、照明光を照射して撮像部で取得される撮像画像から所望の精度で形状測定ができる対象範囲を検出する。また、検出部20は、撮像画像の各画素のうちの、信号強度の差(例えば、輝度差など)が、記憶部15に記憶されているしきい値以上の画素を含む範囲を、対象範囲として検出する。また、検出部20は、測定対象Mにパターン光が形成された画像として撮像されるように参照光生成部19が生成する相異なる光量のうち第1の光量と同じ光量の参照光が測定対象Mに照射されて撮像された第1の撮像画像と、参照光生成部19が生成する相異なる光量のうち第1の光量とは異なる第2の光量と同じ光量の参照光が測定対象Mに照射されて撮像された第2の撮像画像とに基づいて、対象範囲を検出する。また、検出部20は、第1の光量は、照明光に設定される光量のうち最大光量に対応し、第2の光量は、照明光に設定される光量のうち最小光量に対応する参照光の光量に基づいて、対象範囲を検出する。また、検出部20は、照明光の照射範囲と一致するように照射される参照光によって、対象範囲を検出する。
【0022】
設定部21は、操作入力部11からの指令に基づいたしきい値を設定して、設定したしきい値を記憶部15に記憶させる。
スコア算出部22は、検出部20によって検出された対象範囲に含まれる画素数に基づいたスコアを算出する。また、スコア算出部22は、検出部20によって検出された対象範囲に含まれる複数の画素に跨って設定された領域の面積に基づいたスコアを算出する。例えば、スコア算出部22は、撮像部13によって撮像された撮像画像の画素数に対する、検出部20によって検出された対象範囲に含まれる画素数の割合をスコアとして算出する。また、スコア算出部22は、算出したスコアに基づいて、使用者に対して撮像条件を変えるように促す情報を生成する。例えば、スコア算出部22は、算出したスコアが所定値以下の場合には、その撮像条件においては検出部20によって検出された対象範囲が狭いことを示す情報を表示部12に表示させる。これにより、使用者は、形状測定装置10の位置や方向を変更するなどによって撮影条件を変更して、より広い範囲の対象範囲によって測定対象Mの三次元形状を示す点群データを得ることができる。ここで、検出部20によって検出された対象範囲が狭いことを示す情報は、例えば文字による表示でもよい、矢印などの図形による表示であってもよい。このように、本実施形態の形状測定装置10によれば、効率的に形状測定作業を行うことができる。
【0023】
表示部12は、各種情報を表示するディスプレイである。本実施形態においては、表示部12は、検出部20で検出された対象範囲を、撮像部13で取得された撮像画像上に表示する。また、表示部12は、例えば点群算出部18により算出された測定対象Mの三次元形状を示す点群データ等を表示する。また、表示部12は、スコア算出部22によって算出されたスコアを表示する。また、表示部12は、スコア算出部22によって生成された、使用者に対して撮像条件を変えるように促す情報を表示する。
【0024】
次に、投光部14aの詳細な構成について
図2を参照して説明する。
図2は、投光部14aの構成を示す構成図である。
例えば、投光部14aは、
図2に示すように、光源1と、光源1からの光を光の照射方向に対して直交する方向に長手方向を有するライン状の強度分布となるように光強度分布を変換するコリーメートレンズ2及びシリンドリカルレンズ3を有する。また、ライン状の光強度分布となった光束を、ライン状の光強度分布を光束の長手方向に対して、垂直方向に光源1の光を測定対象Mに対して走査する走査ミラー4(MEMS(Micro Electro Mechanical Systems)ミラー)を備えている。
【0025】
また、光源1には、光源1から発する光強度を制御するための、光源制御部5が設けられており、光源制御部5によってレーザ光の強度を変調しながら、走査ミラーで逐次、レーザ光の偏向方向を変えることで、撮像部13で取得される画像は、測定対象Mにパターン光が形成されたときと同じ像が得られる。
言い換えると、光源1から照射されるレーザ光を光軸方向と垂直方向のある一方向にライン状の光強度分布を有するように強度分布を整形させ、光軸方向及びライン状の光強度分布の長手方向の両方に垂直な方向に、ライン状の強度分布を有する光線(以下、ライン光と称する)の強度を変化させながら走査ミラーで偏向方向を変化させることで、光軸方向及びライン状の光強度分布の長手方向の両方に垂直な方向に周期的な強度変化をもつ縞状のパターン光を形成する。そして、走査ミラーの走査を複数回行うことでパターン光が重畳し、測定対象M上の位置に伴って周期的に光量が変化する光量分布が測定対象M上に形成される。つまり、走査ミラーの走査を複数回行うことで、パターン光の強度が積算されて測定対象M上に所定の光量分布が形成される。
ここで、例えば、レーザ光の強度を変調させながら走査ミラーでレーザ光の偏向方向を変化させることで、正弦波状に強度変化させてパターン光を形成しても良い。正弦波状に強度変化させる場合、走査ミラーの走査を複数回繰り返すことで、測定対象M上の位置に伴って正弦波状に光量が変化する光量分布が形成される。
つまり、測定対象Mの形状測定の際、測定光生成部14bにより投光部14aから測定光としてライン光が照射され、光源制御部5により測定光の強度が変調されつつ走査ミラーで偏向方向が変化させられることにより、測定対象M上にパターン光が形成される。そして、測定対象M上の所定領域において、走査ミラーによる走査を複数回繰り返すことにより、形成されたパターン光が重畳して所定の光量分布が形成される。
また、パターン光に対して、例えば、走査ミラーの偏向方向に対して光源制御部5によるレーザ光の強度変調のタイミングを変化させることでパターン光のパターンの初期位相を変化させて複数の初期位相のパターン光を生成する。具体的には、パターン光が正弦波状の強度分布の場合、走査ミラーの偏向方向に対して光源制御部5によるレーザ光の強度変調のタイミングを変化させることで正弦波状に変化する強度の当該正弦波の初期位相をシフトさせて、複数の初期位相のパターン光を生成する。
なお、ここでは測定対象M上に形成される光量分布は、正弦波状に光量が変化する分布として例示したが、正弦波状でなくても良い。例えば、三角波状や矩形波状などの周期的な光量変化の分布の他、ランダムな光量変化の分布であっても良い。
また、ここではパターン光の強度分布が正弦波状である例を示したが、正弦波状でなくても、測定対象M上に形成する光量分布に合わせて三角波状や矩形波状などの強度分布のパターン光でも良いし、ランダムな強度分布のパターン光でも良い。
なお、測定対象M上に形成される光量分布が所定の光量分布となれば、どのような強度分布のパターン光を測定対象M上に形成して光を重畳するようにしてもよく、例えば、走査ミラーによる走査毎に測定対象M上に形成されるパターン光の強度分布が異なっていてもよい。
なお、ここでは走査ミラーを用いてライン光を走査することでパターン光を形成する例を示したが、液晶プロジェクタ等を適用してパターン光を
照射することもできる。液晶プロジェクタを使用する場合、走査ミラーのような光の走査は行わずに一括でパターン光(つまり、測定光)を形成することができる。
【0026】
図3は、照射部14が初期位相を90度ずつシフトさせてパターン光を形成した測定対象Mの例を示す図である。ここでは、初期位相が0度であるパターンのパターン光Aと、パターン光Aのパターンから初期位相を90度シフトさせたパターンのパターン光Bと、パターン光Aのパターンから初期位相を180度シフトさせたパターンのパターン光Cと、パターン光Aのパターンから初期位相を270度シフトさせたパターンのパターン光Dとが示されている。また、ここでは、初期位相が0度であるパターンのパターン光Eと、パターン光Eのパターンから初期位相を90度シフトさせたパターンのパターン光Fと、パターン光Eのパターンから初期位相を180度シフトさせたパターンのパターン光Gと、パターン光Eのパターンから初期位相を270度シフトさせたパターン光Hとが示されている。例えば5バケット法の場合にはパターン光Aからパターン光Eまでの5枚の撮像画像が生成され、7バケット法の場合にはパターン光Aからパターン光Gまでの7枚の撮像画像が生成される。ここで、撮像順は必ずしもパターン光A、パターン光B、パターン光C、パターン光D、パターン光Eのような順でなくともよく、例えばパターン光A、パターン光E、パターン光B、パターン光C、パターン光Dの順に撮像することもできるが、本実施形態では、パターン光A、パターン光B、パターン光C、パターン光D、パターン光Eのように初期位相を順にシフトさせながら撮像処理を行うとする。すなわち、撮像部13は、初期位相が同一であるパターン光(例えば、パターン光A、パターン光E)が測定対象Mに形成された像を撮像する複数の撮像タイミング間に、他の初期位相のパターン光(例えば、パターン光B、パターン光C、パターン光D)が測定対象Mに形成された像を撮像することになる。
【0027】
次に、
図4から
図6を参照して、点群データの算出の一例を説明する。
図4は、測定対象Mの形状の一例を示す図である。
本実施形態の測定対象Mは、
図4(a)に示す側面形状及び正面形状を有している。この測定対象Mは、
図4(b)に示す形状を有している。本実施形態の形状測定装置10は、この
図4に示す形状を有する測定対象Mの形状を測定する。
図5は、
図4に示した本実施形態の測定対象Mに、
図3に示したパターン光が形成された場合の画像を示している。つまり、照射部14は、上述のように測定対象Mにパターン光が形成された画像として撮像されるように、撮像部13が撮像している方向と異なる方向の
照射方向から測定対象M上に所定の光量分布が形成されるように光を測定光として照射する。具体的には、測定対象M上に形成される所定の光量分布は、測定対象M上の位置に伴って光量が周期的に変化する分布であり、例えば、測定対象M上の位置の変化に応じて照射された光量が正弦波状に変化する分布である。言い換えると、照明部14は、測定対象M上の位置に応じて相異なる光強度の光が
照射されるように測定光を照射する。ここで、
図5(a)は、パターン光Aまたはパターン光Eが測定対象Mに照射されている状態を示している。また、
図5(b)は、パターン光Bまたはパターン光Fが測定対象Mに照射されている状態を示している。同様に、
図5(c)は、パターン光Cまたはパターン光Gが測定対象Mに照射されている状態を示しており、
図5(d)は、パターン光Dまたはパターン光Hが測定対象Mに照射されている状態を示している。本実施形態の形状測定装置10は、
図5(a)〜(d)に示す各パターン光が照射された測定対象Mを撮像する。
このようにして、測定光は、測定対象Mにパターン光が形成された画像として撮像されるように
照射される。
【0028】
図6は、点群データ算出結果を示す図である。
本実施形態の形状測定装置10は、点群算出部18(点群データ算出部)が、
図5(a)〜(d)に示す各パターン光が照射された測定対象Mを撮像した撮像画像に基づいて、
図6に示すように点群データを算出する。
このように、点群算出部18は、点群データを算出して、算出した点群データに基づいた画像を表示部12に表示させる。ここで、
図6において、測定光(パターン光)は紙面左側手前から紙面右側奥の方向、つまり、
図6に示す矢印の方向に照射されている。この方向から測定光(パターン光)を照射することによって、測定対象Mによって測定光がさえぎられている部分は陰になっており、点群算出部18が点群データを算出することができない領域になる。また、
図6において、ハッチングされた範囲は、点群算出部18が点群データを算出することができない範囲を示している。つまり、
図6におけるハッチングされた範囲以外の範囲が、照射部14により測定光を照射して撮像部13で取得された撮像画像から求めることができる測定対象Mの形状測定の対象範囲である。
【0029】
次に、
図7および
図8を参照して、参照光生成部19と検出部20との構成を説明する。
図7は、参照光が照射された測定対象Mを撮像した撮像画像を示す図である。
上述したように、参照光生成部19は、参照光が、測定対象Mにパターン光が形成された画像として撮像されるように
照射される測定光により測定対象4上に形成される光量分布における相異なる光量のうち、第1の光量と同じ光量になるように参照光を生成する。また、参照光生成部19は、参照光が、測定光により測定対象4上に形成される光量分布において、当該第1の光量とは異なる第2の光強度と同じ光強度になるように参照光を生成する。
投光部14aは、参照光生成部19によって、第2の光量と同じ光量の参照光を測定対象Mに照射する(
図7(a)を参照)。また、投光部14aは、参照光生成部19によって、第1の光量と同じ光量の参照光を測定対象Mに照射する(
図7(b)を参照)。
【0030】
図8は、検出部20の検出結果を示す図である。
上述したように、検出部20は、第1の光量と同じ光量の参照光が測定対象Mに照射されて撮像された第1の撮像画像と、第2の光量と同じ光量の参照光が測定対象Mに照射されて撮像された第2の撮像画像とに基づいて、対象範囲を検出する。例えば、検出部20は、
図8においてハッチングされていない範囲を、撮像画像から求めることができる測定対象Mの形状測定の対象範囲として検出する。
図8と、上述した
図6とを比較すれば、この
図8に示す検出結果は、
図6に示す点群データ算出結果、つまり形状測定結果と一致していることがわかる。つまり、本実施形態の形状測定装置10は、点群データを算出する前に、点群データを算出することが可能な測定対象Mの形状測定の対象範囲を検出することができる。上述した
図5に示したように、点群データを算出するためには、例えば4バケット法においては、パターン光A、パターン光B、パターン光C、パターン光Dの4種類のパターン光を測定対象Mに形成して、撮像した各パターン光に対応した撮像画像が必要になる。一方、本実施形態の形状測定装置10は、点群データを算出する前に、点群データを算出することが可能な測定対象Mの形状測定の対象範囲を検出することができるため、効率的に形状測定を行うことができる。
【0031】
次に、
図9から
図11を参照して、本実施形態による形状測定装置10の動作例を説明する。
図9は、形状測定装置10が領域判定処理及び形状測定処理を行う動作例を説明するフローチャートである。
操作入力部11にユーザから操作入力を受け付ける。例えば、操作入力部11は、レリーズ釦が半押し状態又は全押し状態にされた操作入力を受け付ける(ステップS10)。操作入力部11は、レリーズ釦が半押し状態にされた操作入力を受け付けると、領域判定処理を行わせるため、処理をステップS20に進める(ステップS10−YES)。一方、操作入力部11は、レリーズ釦が半押し状態にされた操作入力がないと判定した場合は、処理をステップS40に進める(ステップS10−NO)。
検出部20は、ステップS20において、領域判定処理を行う。領域判定処理については、後述する。
【0032】
次に、操作入力部11は、レリーズ釦が半押し状態にされた操作入力が継続しているか否かを判定する(ステップS30)。レリーズ釦が半押し状態にされた操作入力が継続していると判定した場合には、操作入力部11は、処理をステップS20に戻して、領域判定処理を継続させる(ステップS30−YES)。つまり、操作入力部11は、参照光を照射することを指令する指令信号が使用者により入力され続けている間は、参照光生成部19に、繰り返し参照光を照射させ、検出部20に、参照光が
照射された撮像画像が入力される毎に、対象範囲を検出させるため、領域判定処理を継続させる。一方、操作入力部11は、レリーズ釦が半押し状態にされた操作入力が継続していないと判定した場合には、処理をステップS40に進める(ステップS30−NO)。
【0033】
次に、操作入力部11は、レリーズ釦が全押し状態にされた操作入力を受け付けると、形状測定処理を行わせるため、処理をステップS50に進める(ステップS50−YES)。一方、操作入力部11は、レリーズ釦が全押し状態にされた操作入力がないと判定した場合は、処理を終了する(ステップS40−NO)。
【0034】
ステップS50において行われる、形状測定処理については後述する。検出部20は、ステップS50が終了した場合には、処理を終了する。
【0035】
次に、
図10を参照して、本実施形態による形状測定装置10の動作例を説明する。
図10は、形状測定装置10が領域判定処理を行う動作例を説明するフローチャートである。
上述したように、形状測定装置10は、ステップS20において領域判定処理を行う。
まず、参照光生成部19は、第1の光量と同じ光量になるように参照光を生成し、生成した参照光を投光部14aによって測定対象Mに照射する。次に、撮像部13は、参照光が照射された測定対象Mを撮像して第1の撮像画像を生成し、生成した第1の撮像画像を記憶部15に記憶させる(ステップS210)。ここで、第1の光量は、例えば、後述の形状測定処理で照射部14によって測定光を照射することにより測定対象M上に形成された、測定対象M上の位置に伴って正弦波状に光量が変化する光量分布における最大光量である。このような参照光が照射された測定対象Mの撮像画像(第1の撮像画像)は、
図7(b)に示すように白っぽい画像(白画像)となる。
【0036】
次に、参照光生成部19は、第2の光量と同じ光量になるように参照光を生成し、生成した参照光を投光部14aによって測定対象Mに照射する。次に、撮像部13は、参照光が照射された測定対象Mを撮像して第2の撮像画像を生成し、生成した第2の撮像画像を記憶部15に記憶させる(ステップS220)。ここで、第2の光量は、例えば、後述の形状測定処理で照射部14によって測定光を照射することにより測定対象M上に形成された、測定対象M上の位置に伴って正弦波状に光量が変化する光量分布における最小光量である。このような参照光が照射された測定対象Mの撮像画像(第2の撮像画像)は、
図7(a)に示すように黒っぽい画像(黒画像)となる。
【0037】
次に、検出部20は、記憶部15に記憶されている第1の撮像画像(すなわち、白画像)と第2の撮像画像(すなわち、黒画像)とを読み出し、読み出した撮像画像から各画素の信号強度(例えば、輝度値)を取得し、かつ複数の撮像画像間において画素ごとに、各画素間の信号強度の差分(例えば、輝度差)を算出する(ステップS230)。
【0038】
次に、検出部20は、操作入力部11から設定部21を介して、記憶部15に予め記憶されているしきい値を記憶部15から読み出す。そして検出部20は、読み出したしきい値とステップS230において算出した信号強度の差とを画素ごとに比較した結果に基づいて、判定画像を作成する(ステップS240)。ここで、判定画像は、上述した
図8に示す画像である。本実施形態において、検出部20は、例えば、算出した信号強度の差が、読み出したしきい値以上であれば、形状測定することができる対象範囲であると判定する。一方、検出部20は、例えば、算出した信号強度の差が、読み出したしきい値未満であれば、形状測定することができる対象範囲でないと判定する。検出部20は、形状測定することができる対象範囲でないと判定した範囲に、例えばハッチングを施して判定画像を作成する(
図8を参照)。
【0039】
次に、検出部20は、ステップS240において作成した判定画像を表示部12に表示させて処理を終了する(ステップS250)。
このようにして、形状測定装置10は、形状測定することができる対象範囲と、形状測定することができない対象範囲とを判定した判定画像を表示部12に表示する。
【0040】
次に、
図11を参照して形状測定装置10が形状測定処理を行う動作例を説明する。
図11は、形状測定装置10が形状測定処理を行う動作例を説明するフローチャートである。
撮像部13が測定対象Mの撮像処理を開始し、合わせて照射部14が測定対象Mへの測定光(パターン光)の投影処理を開始する(ステップS510)。ここで、照射部14は、測定対象M上の位置に伴って正弦波状に光量が変化する光量分布を測定対象M上に形成するように測定光の投影処理を行う。また、撮像部13は、例えば初期位相が0度、90度、180度、270度、360度のパターン光形成時に撮像した5枚の撮像画像を、記憶部15に記憶させる(ステップS520)。
【0041】
次に、点群算出部18は、記憶部15に記憶されている撮像画像に基づいて点群データを算出し、記憶部15に記憶させる(ステップS530)。そして、表示部12は、算出された点群データを表示して処理を終了する(ステップS540)。
【0042】
以上説明したように、本実施形態の形状測定装置10は、測定対象Mを撮像した撮像画像を生成する撮像部13を備えている。また、形状測定装置10は、撮像部13によって生成された撮像画像が、測定対象Mにパターン光が形成された画像として撮像されるように、撮像部13が撮像している方向と異なる方向の
照射方向から、測定対象M上に所定の光量分布が形成されるように測定光(パターン光)を照射する照射部14を備えている。ここで、測定対象M上に形成される所定の光量分布は、例えば、測定対象M上の位置に伴って光量が周期的に変化する分布である。言い換えると、照射部14は、測定対象M上の位置に応じて相異なる光強度の光(すなわち、パターン光)が
照射されるように測定光を照射する。また、形状測定装置10は、
照射方向から測定対象Mに照射される参照光を生成する参照光生成部19と、参照光が測定対象Mに
照射された際に撮像部13によって撮像された複数の撮像画像に基づいて、照射部14により測定光(パターン光)を照射して撮像部13で取得された撮像画像から求めることができる測定対象Mの形状測定の対象範囲を検出する検出部20を備えている。これにより、本実施形態の形状測定装置10は、撮像条件が測定対象Mや測定環境によって様々に変化して、測定対象M物の三次元データ(点群データ)を生成することができない範囲がある場合であっても、形状測定処理を行う前に予め三次元データ(点群データ)を生成することができない範囲を判定することができる。つまり、本実施形態の形状測定装置10は、形状測定処理に先立って領域判定処理を行うことができるため、効率的に形状測定作業を行うことができる。
【0043】
また、本実施形態の形状測定装置10の参照光生成部19は、形状測定処理で測定光(パターン光)の照射によって測定対象M上に形成された所定の光量分布における相異なる光量と同じ光量の参照光を生成するように投光部14aを制御する。これにより、本実施形態の形状測定装置10は、形状測定処理と領域判定処理との撮像条件を揃えることができるため、形状測定処理による三次元データを生成することができる範囲と、領域判定処理による三次元データを生成することができる範囲との一致度を高めることができ、効率的に形状測定作業を行うことができる。
【0044】
また、本実施形態の形状測定装置10は、検出部20で検出された対象範囲を、撮像部13で取得された撮像画像上に表示する表示部12を備えている。これにより、本実施形態の形状測定装置10は、使用者が領域判定処理の結果画像をすぐに確認することができるため、効率的に形状測定作業を行うことができる。
【0045】
また、本実施形態の形状測定装置10の検出部20は、参照光生成部19が設定する相異なる光量により参照光が測定対象Mに
照射されるごとに撮像部13によって生成された複数の撮像画像から各画素の信号強度を取得し、かつ複数の撮像画像間において画素ごとに比較された信号強度の差に基づいて、対象範囲を検出する。これにより、本実施形態の形状測定装置10は、信号強度の差を演算すればよく、複雑な演算を行うことなく対象範囲を検出することができるため、演算に必要な時間と電力を低減することができる。
なお、複数の撮像画像からの各画素の信号強度について比較するほかにも、複数の撮像画像の同一領域の信号強度の平均値を比較することでも良い。
【0046】
また、本実施形態の形状測定装置10は、しきい値が記憶されている記憶部15を備え、検出部20が撮像画像の各画素のうちの、信号強度の差あるいは信号強度がしきい値以上の画素を含む範囲を、対象範囲として検出する。これにより、本実施形態の形状測定装置10は、所定のしきい値と比較した信号強度の差を演算すればよく、複雑な演算を行うことなく対象範囲を検出することができるため、演算に必要な時間と電力を低減することができる。
【0047】
また、本実施形態の形状測定装置10は、しきい値を設定する設定部21を備えている。これにより本実施形態の形状測定装置10は、測定対象Mや測定環境などの違いにより生じる対象範囲の検出結果の差を少なくしてしきい値を設定することができる。つまり、形状測定装置10は、形状測定処理による三次元データを生成することができる範囲と、領域判定処理による三次元データを生成することができる範囲との一致度を高めることができ、効率的に形状測定作業を行うことができる。
【0048】
また、本実施形態の形状測定装置10は、検出部20によって検出された対象範囲に含まれる画素数に基づいたスコアを算出するスコア算出部22を備えている。これにより、本実施形態の形状測定装置10は、領域判定処理による三次元データを生成することができる範囲の判定結果の良否を数値化することができ、効率的に形状測定作業を行うことができる。
【0049】
また、本実施形態の形状測定装置10のスコア算出部22は、算出したスコアに基づいて、使用者に対して撮像条件を変えるように促す情報を生成する。
ここでいう撮像条件とは次のようなものが、例示できる。シャッター速度(露出時間)、測定対象Mに対する本形状測定装置の姿勢、撮像部の結像光学系のFナンバー、照射部14によるパターン光の像の強度などである。例えば、測定対象が鏡面や光沢面、艶面である場合、測定光により測定対象M上に形成される所定の光量分布における第1の光量(例えば、光量分布における最大光量)の
照射時と第2の光量(例えば、光量分布における最小光量)の
照射時とで、信号強度の差が生じにくくなる。このような場合は、形状測定装置10の姿勢を変えることで、三次元データを生成することができる範囲を拡大することが可能になる。また、同様に露出時間やパターン光の像の強度を変えることでも、範囲を拡大することができる。これにより、本実施形態の形状測定装置10は、判定結果の画像や数値によらずに、領域判定処理による三次元データを生成することができる範囲の判定結果の良否を使用者に通知することができる。したがって、本実施形態の形状測定装置10によれば、効率的に形状測定作業を行うことができる。
【0050】
また、本実施形態の形状測定装置10の検出部20は、測定対象M上に形成される所定の光量分布における相異なる光量のうち第1の光量と同じ光量の参照光が測定対象Mに照射されて撮像された第1の撮像画像と、相異なる光量のうち第1の光量とは異なる第2の光量と同じ光量の参照光が測定対象Mに照射されて撮像された第2の撮像画像とに基づいて、対象範囲を検出する。これにより、本実施形態の形状測定装置10は、2枚の撮像画像によって対象範囲を検出することができるため、3枚以上の撮像画像によって対象範囲を検出する場合に比べ、撮像に要する時間を低減することができるため、効率的に形状測定作業を行うことができる。
【0051】
また、本実施形態の形状測定装置10の検出部20は、第1の光量は、測定光によって測定対象上に形成される所定の項量分布における最大光量に対応し、第2の光量は、最小光量に対応する参照光に基づいて、対象範囲を検出する。これにより、本実施形態の形状測定装置10は、2枚の撮像画像の各画素間の信号強度の差を大きくすることができ、領域判定処理のしきい値を設定し易くできるため、効率的に形状測定作業を行うことができる。
【0052】
また、本実施形態の形状測定装置10の検出部20は、測定光の照射範囲(パターン光の形成領域)と一致するように照射される参照光によって、対象範囲を検出する。これにより、本実施形態の形状測定装置10は、形状測定処理と領域判定処理との撮像条件を揃えることができるため、形状測定処理による三次元データを生成することができる範囲と、領域判定処理による三次元データを生成することができる範囲との一致度を高めることができ、効率的に形状測定作業を行うことができる。
【0053】
また、本実施形態の形状測定装置10の参照光生成部19は、照射部14の投光部14aにより参照光を照射するように、投光部14aを制御する。これにより、本実施形態の形状測定装置10は、参照光を照射するための照射部を別途備える必要がないため、形状測定装置10を小型化及び軽量化することができる。
なお、本実施形態の形状測定装置では、参照光生成部19と測定光生成部14bとを別手段で記載しているが、実際は同一制御回路にて、両手段を達成しても良い。
【0054】
また、本実施形態の形状測定装置10は、撮像部13から初期位相が異なる複数のパターン光が形成されたように撮像された測定対象Mの撮像画像を基に、測定対象Mの形状を算出し、測定対象Mの各位置の座標値を有する点群データを算出する点群算出部18(点群データ算出部)を有している。これにより、本実施形態の形状測定装置10は、領域判定処理と形状測定処理とを1台の形状測定装置10によって行うことができるため、効率的に形状測定作業を行うことができる。
【0055】
また、本実施形態の形状測定装置10は、点群算出部18(点群データ算出部)で点群データを算出することを指令する指令信号が使用者により入力される前までは、参照光生成部19では、繰り返し参照光を照射し、検出部20は、参照光が
照射された撮像画像が入力される毎に、対象範囲を検出する。これにより、本実施形態の形状測定装置10は、使用者の操作により領域判定処理を繰り返し行うことができるため、好ましい撮像条件が得られるまで、領域判定処理の結果を確認しながら、撮像条件を変更することができる。したがって、本実施形態の形状測定装置10によれば、効率的に形状測定作業を行うことができる。
【0056】
なお、本実施形態の形状測定装置10の検出部20は、参照光が測定対象Mに照射されて撮像された撮像画像のコントラストに基づいて、対象範囲を検出してもよい。ここで、撮像画像のコントラストとは、撮像画像が有する各画素のうち、近傍の画素間の信号強度の差である。本実施形態の形状測定装置10は、例えば、測定対象Mが平面に近い場合には、1枚の撮像画像のコントラストを検出して、対象範囲を検出してもよい。これにより、本実施形態の形状測定装置10は、1枚の撮像画像によって対象範囲を検出することができるため、2枚以上の撮像画像によって対象範囲を検出する場合に比べ、撮像に要する時間を低減することができるため、効率的に形状測定作業を行うことができる。
【0057】
なお、本実施形態の形状測定装置10の検出部20は、測定光の照射範囲(パターン光の形成範囲)に比べて狭い照射範囲に照射される参照光によって、対象範囲を検出してもよい。これにより、本実施形態の形状測定装置10は、領域判定処理の対象になる画素数が少ないため、領域判定処理に要する時間を低減することができる。したがって、本実施形態の形状測定装置10によれば、効率的に形状測定作業を行うことができる。
【0058】
なお、上述の
図10のステップS230〜S250のように、本実施形態の形状測定装置10の検出部20は、第1の光量(例えば、測定光により測定対象M上に形成された所定の光量分布における最大光量)と第2の光量(例えば、所定の光量分布における最小光量)の参照光を測定対象Mに
照射して得られた撮像画像間において対応する所定画素の信号強度の差に基づいて、測定対象Mの形状測定の対象範囲を判定するが、参照光に2種類の光量を使用しなくてもよい。例えば、参照光に3種類以上の光量を使用しても良いし、1種類の光量を使用しても良い。
参照光に1種類の光量を使用する場合、例えば、1種類の光量の参照光を測定対象Mに
照射して撮像部13により撮像された画像に基づいて、測定対象Mの形状測定の対象範囲を判定する。この場合、参照光の光量は例えば、測定光により測定対象M上に形成された所定の光量分布における最大光量でも良いし、最小光量でも良い。
参照光の光量を最大光量にする場合、参照光を
照射した投影像の画像における所定画素の信号強度の大小関係に基づいて測定対象Mの形状測定の対象範囲を判定する。大小関係とは、例えば、参照光を
照射した投影像の画像における所定画素の信号強度と記憶部15から読み出したしきい値とを比較することである。この比較に基づいて測定対象Mの形状測定の対象範囲を判定する。このとき、記憶部15に記憶されるしきい値は、例えば、撮像部13が飽和する(検出できる最大の光量に対する)信号強度である。一方、参照光の光量を最小光量にする場合も同様に測定対象Mの形状測定の対象範囲を判定する。このとき、記憶部15に記憶されるしきい値は、例えば、撮像部13が検出できる最小光量に対する信号強度である。
なお、上述のしきい値は任意に設定してもよく、形状測定装置10の出荷時に適当な値に設定してもよいし、ユーザーが任意の値を入力して設定するようにしてもよい。このように1種類の光量の参照光を使用することにより、相異なる複数種類の光量を使用するより短時間で領域判定処理を行うことができるため、効率的に形状測定作業を行うことができる。
[第2の実施形態]
次に、
図12を参照して、本発明の第2の実施形態を説明する。なお、第1の実施形態において説明した構成及び動作と同一の構成及び動作は、説明を省略する。
図12は、本発明の第2の実施形態に係る一例としての形状測定装置10の構成を示す図である。
本実施形態の形状測定装置10は、対象範囲を、確度に対応する表示状態によって表示する第2表示部23を備えている。
検出部20は、信号強度の差に基づいて、形状測定結果の確からしさを示す確度を撮像画像の画素ごとに検出し、対象範囲として、測定条件毎に分別するように制御する。例えば、検出部20は、信号強度の差に基づいて、形状測定結果の確からしさを示す確度に対応させて、明度や色相を変えることによって第2表示部23に測定条件毎に表示させる。ここで、形状測定結果の確からしさを示す確度は、信号強度の差が大きいほど確度が大きく、信号強度の差が小さいほど確度が小さくなるように対応付けられた値である。これにより、第2表示部23に表示される対象範囲を示す画像などの情報は、上述した第1の実施形態で説明したようにハッチングの有無などの2値ではなく、明度や色相などの多値によって第2表示部23に表示される。したがって、対象範囲の判定結果の情報が多くなり、使用者に撮像状況を正確に伝達することができる。つまり、本実施形態の形状測定装置10によれば、効率的に形状測定作業を行うことができる。
【0059】
なお、本実施形態の形状測定装置10の検出部20は、参照光が測定対象Mに照射されて撮像された撮像画像のコントラストに基づいて、対象範囲を検出してもよい。ここで、撮像画像のコントラストとは、撮像画像が有する各画素のうち、近傍の画素間の信号強度の差である。本実施形態の形状測定装置10は、例えば、測定対象Mが平面に近い場合には、1枚の撮像画像のコントラストを検出して、対象範囲を検出してもよい。これにより、本実施形態の形状測定装置10は、1枚の撮像画像によって対象範囲を検出することができるため、2枚以上の撮像画像によって対象範囲を検出する場合に比べ、撮像に要する時間を低減することができるため、効率的に形状測定作業を行うことができる。
【0060】
なお、本実施形態の形状測定装置10の検出部20は、測定光(パターン光)の照射範囲に比べて狭い照射範囲に照射される参照光によって、対象範囲を検出してもよい。これにより、本実施形態の形状測定装置10は、領域判定処理の対象になる画素数が少ないため、領域判定処理に要する時間を低減することができる。したがって、本実施形態の形状測定装置10によれば、効率的に形状測定作業を行うことができる。
【0061】
[第3の実施形態]
次に、本発明の第3の実施形態を説明する。なお、第1の実施形態及び第2の実施形態において説明した構成及び動作と同一の構成及び動作は、説明を省略する。
本実施形態の形状測定装置10が備える参照光生成部19は、測定光(パターン光)により測定対象M上に形成される所定の光量分布と同じ光量分布が測定対象M上に形成されるように参照光を生成する。このとき、測定光により測定対象M上に形成されるパターン光と同様の強度分布の光を参照光として測定対象Mに照射しても良いし、異なる強度分布の光を参照光としても良い。一方、検出部20は、参照光が投射されたときの撮像画像を取得して、撮像画像によって、対象範囲を検出する。例えば、参照光生成部19は、第1の実施形態において説明した
図7(a)、(b)に示す参照光に代えて、
図5(a)〜(d)に示すパターン光が形成された画像として撮像されるように
照射された参照光を生成する。これにより、本実施形態の形状測定装置10は、形状測定処理による三次元データを生成することができる範囲と、領域判定処理による三次元データを生成することができる範囲との一致度を高めることができ、効率的に形状測定作業を行うことができる。
【0062】
なお、本実施形態の参照光生成部19は、測定対象Mに初期位相の異なる複数のパターンのパターン光が形成された複数の画像として撮像部13により撮像されるように照射部14と撮像部13を制御してもよい。また、本実施形態の検出部20は、撮像部13で測定対象M上に各初期位相のパターンのパターン光が形成されたように撮像された複数の撮像画像の各画素の信号強度を、複数の撮像画像間の対応する画素ごとに積算した積算量に基づいて、対象範囲を検出してもよい。
これにより、本実施形態の形状測定装置10は、形状測定処理によって三次元データを生成するさいに必要となる演算にくらべて演算量の少ない積算値によって対象範囲を検出することができる。つまり、本実施形態の形状測定装置10は、形状測定処理による三次元データを生成することができる範囲と、領域判定処理による三次元データを生成することができる範囲との一致度を高めることができ、効率的に形状測定作業を行うことができる。また、本実施形態の形状測定装置10は、複雑な演算を行うことなく対象範囲を検出することができるため、演算に必要な時間と電力を低減することができる。
【0063】
なお、本実施形態の形状測定装置10の検出部20は、参照光が測定対象Mに照射されて撮像された撮像画像のコントラストに基づいて、対象範囲を検出してもよい。ここで、撮像画像のコントラストとは、撮像画像が有する各画素のうち、近傍の画素間の信号強度の差である。本実施形態の形状測定装置10は、例えば、測定対象Mが平面に近い場合には、1枚の撮像画像のコントラストを検出して、対象範囲を検出してもよい。これにより、本実施形態の形状測定装置10は、1枚の撮像画像によって対象範囲を検出することができるため、2枚以上の撮像画像によって対象範囲を検出する場合に比べ、撮像に要する時間を低減することができるため、効率的に形状測定作業を行うことができる。
【0064】
なお、本実施形態の形状測定装置10の検出部20は、測定光(パターン光)の照射範囲に比べて狭い照射範囲に照射される参照光によって、対象範囲を検出してもよい。これにより、本実施形態の形状測定装置10は、領域判定処理の対象になる画素数が少ないため、領域判定処理に要する時間を低減することができる。したがって、本実施形態の形状測定装置10によれば、効率的に形状測定作業を行うことができる。
【0065】
[第4の実施形態]
次に、
図13を参照して、本発明の第4の実施形態を説明する。なお、第1の実施形態から第3の実施形態において説明した構成及び動作と同一の構成及び動作は、説明を省略する。
図13は、本発明の第4の実施形態に係る一例としての形状測定装置10の構成を示す図である。
本実施形態の形状測定装置10は、参照光生成部19の制御により参照光を測定対象Mに照射する参照光照射部24を備えている。これにより、本実施形態の形状測定装置10は、参照光の照射に適した参照光専用の照射部によって参照光を照射することができる。つまり、形状測定装置10は、形状測定処理による三次元データを生成することができる範囲と、領域判定処理による三次元データを生成することができる範囲との一致度を高めることができる参照光を照射することができる。したがって、本実施形態の形状測定装置10によれば、効率的に形状測定作業を行うことができる。
【0066】
[第5の実施形態]
次に、
図14を参照して、本発明の第5の実施形態を説明する。なお、第1の実施形態から第4の実施形態において説明した構成及び動作と同一の構成及び動作は、説明を省略する。
図14は、本発明の第5の実施形態に係る一例としての形状測定装置10の構成を示す図である。
本実施形態の形状測定装置10は、照射部14の姿勢を検出する検出センサー25を備えている。
検出センサー25は、例えば角速度センサーであり、形状測定装置10の姿勢(位置)の変化を検出する。
参照光生成部19は、検出部20によって検出された検出センサー25の出力信号が変わる毎に、繰り返して参照光を照射する。
検出部20は、参照光が
照射された撮像画像が入力される毎に、領域判定処理によって対象範囲を検出する。
これにより、本実施形態の形状測定装置10は、例えば、使用者が撮像条件を変化させて好ましい領域判定結果を得るために、形状測定装置10の姿勢(位置)を移動させた場合に、使用者が操作することなく領域判定処理を行うことができる。したがって、本実施形態の形状測定装置10によれば、効率的に形状測定作業を行うことができる。
【0067】
[第6の実施形態]
次に、本実施形態の形状測定装置10を用いた構造物製造システム、及び構造物製造方法について説明する。
図15は、本実施形態の構造物製造システム100の構成を示す図である。本実施形態の構造物製造システム100は、上記の実施形態において説明したような形状測定装置10と、設計装置60と、成形装置30と、制御装置(検査装置)40と、リペア装置50とを備える。制御装置40は、座標記憶部41及び検査部42を備える。
【0068】
設計装置60は、構造物の形状に関する設計情報を作製し、作製した設計情報を成形装置30に送信する。また、設計装置60は、作製した設計情報を制御装置40の座標記憶部41に記憶させる。設計情報は、構造物の各位置の座標を示す情報を含む。
成形装置30は、設計装置60から入力された設計情報に基づいて、上記の構造物を作製する。成形装置30の成形は、例えば鋳造、鍛造、切削等が含まれる。形状測定装置10は、作製された構造物(測定対象物)の座標を測定し、測定した座標を示す情報(形状情報)を制御装置40へ送信する。なお、ここで言う構造物は、形状測定装置10の測定対象となる。
【0069】
制御装置40の座標記憶部41は、設計情報を記憶する。制御装置40の検査部42は、座標記憶部41から設計情報を読み出す。検査部42は、形状測定装置10から受信した座標を示す情報(形状情報)と、座標記憶部41から読み出した設計情報とを比較する。検査部42は、比較結果に基づき、構造物が設計情報通りに成形されたか否かを判定する。換言すれば、検査部42は、作製された構造物が良品であるか否かを判定する。検査部42は、構造物が設計情報通りに成形されていない場合に、構造物が修復可能であるか否か判定する。検査部42は、構造物が修復できる場合、比較結果に基づいて不良部位と修復量を算出し、リペア装置50に不良部位を示す情報と修復量を示す情報とを送信する。
リペア装置50は、制御装置40から受信した不良部位を示す情報と修復量を示す情報とに基づき、構造物の不良部位を加工する。
【0070】
図16は、本実施形態の構造物製造方法を示すフローチャートである。本実施形態において、
図16に示す構造物製造方法の各処理は、構造物製造システム100の各部によって実行される。
構造物製造システム100は、まず、設計装置60が構造物の形状に関する設計情報を作製する(ステップS31)。次に、成形装置30は、設計情報に基づいて上記構造物を作製する(ステップS32)。次に、形状測定装置10は、作製された上記構造物の形状を測定する(ステップS33)。次に、制御装置40の検査部42は、形状測定装置10で得られた形状情報と上記の設計情報とを比較することにより、構造物が設計情報通りに作製されたか否か検査する(ステップS34)。
【0071】
次に、制御装置40の検査部42は、作製された構造物が良品であるか否かを判定する(ステップS35)。構造物製造システム100は、作製された構造物が良品であると検査部42が判定した場合(ステップS35:YES)、その処理を終了する。また、検査部42は、作製された構造物が良品でないと判定した場合(ステップS35:NO)、作製された構造物が修復できるか否か判定する(ステップS36)。
【0072】
構造物製造システム100は、作製された構造物が修復できると検査部42が判定した場合(ステップS36:YES)、リペア装置50が構造物の再加工を実施し(ステップS37)、ステップS33の処理に戻る。構造物製造システム100は、作製された構造物が修復できないと検査部42が判定した場合(ステップS36:NO)、その処理を終了する。
【0073】
本実施形態の構造物製造システム100は、上記の実施形態における形状測定装置10が構造物の座標を正確に測定することができるので、作製された構造物が良品であるか否か判定することができる。また、構造物製造システム100は、構造物が良品でない場合、構造物の再加工を実施し、修復することができる。
【0074】
なお、本実施形態におけるリペア装置50が実行するリペア工程は、成形装置30が成形工程を再実行する工程に置き換えられてもよい。その際には、制御装置40の検査部42が修復できると判定した場合、成形装置30は、成形工程(鍛造、切削等)を再実行する。具体的には、例えば、成形装置30は、構造物において本来切削されるべき箇所であって切削されていない箇所を切削する。これにより、構造物製造システム100は、構造物を正確に作製することができる。
【0075】
以上、本発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。
【0076】
なお、上記の各実施形態における形状測定装置10、制御装置40、成形装置30、リペア装置50又は設計装置60(以下、これらを総称して制御部CONTと記載する)、又はこの制御部CONTが備える各部は、専用のハードウェアにより実現されるものであってもよく、また、メモリおよびマイクロプロセッサにより実現させるものであってもよい。
【0077】
なお、この制御部CONT又はこの制御部CONTが備える各部は、専用のハードウェアにより実現されるものであってもよく、また、この制御部CONT又はこの制御部CONTが備える各部はメモリおよびCPU(中央演算装置)により構成され、制御部CONT、又はこの制御部CONTが備える各部の機能を実現するためのプログラムをメモリにロードして実行することによりその機能を実現させるものであってもよい。
【0078】
また、制御部CONT、又はこの制御部CONTが備える各部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、制御部CONT、又はこの制御部CONTが備える各部による処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
【0079】
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。