特許第5996385号(P5996385)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 新日本無線株式会社の特許一覧

<>
  • 特許5996385-マイクロ波ドップラー検出装置 図000002
  • 特許5996385-マイクロ波ドップラー検出装置 図000003
  • 特許5996385-マイクロ波ドップラー検出装置 図000004
  • 特許5996385-マイクロ波ドップラー検出装置 図000005
  • 特許5996385-マイクロ波ドップラー検出装置 図000006
  • 特許5996385-マイクロ波ドップラー検出装置 図000007
  • 特許5996385-マイクロ波ドップラー検出装置 図000008
  • 特許5996385-マイクロ波ドップラー検出装置 図000009
  • 特許5996385-マイクロ波ドップラー検出装置 図000010
  • 特許5996385-マイクロ波ドップラー検出装置 図000011
  • 特許5996385-マイクロ波ドップラー検出装置 図000012
  • 特許5996385-マイクロ波ドップラー検出装置 図000013
  • 特許5996385-マイクロ波ドップラー検出装置 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5996385
(24)【登録日】2016年9月2日
(45)【発行日】2016年9月21日
(54)【発明の名称】マイクロ波ドップラー検出装置
(51)【国際特許分類】
   G01S 13/56 20060101AFI20160908BHJP
   G01S 7/03 20060101ALI20160908BHJP
   G08B 13/16 20060101ALI20160908BHJP
【FI】
   G01S13/56
   G01S7/03 246
   G08B13/16 A
【請求項の数】5
【全頁数】12
(21)【出願番号】特願2012-248251(P2012-248251)
(22)【出願日】2012年11月12日
(65)【公開番号】特開2014-95657(P2014-95657A)
(43)【公開日】2014年5月22日
【審査請求日】2015年9月7日
(73)【特許権者】
【識別番号】000191238
【氏名又は名称】新日本無線株式会社
(74)【代理人】
【識別番号】100098372
【弁理士】
【氏名又は名称】緒方 保人
(72)【発明者】
【氏名】及川 和夫
(72)【発明者】
【氏名】佐々木 理志
【審査官】 ▲高▼場 正光
(56)【参考文献】
【文献】 特開2005−283448(JP,A)
【文献】 特開2007−179167(JP,A)
【文献】 特開2006−275943(JP,A)
【文献】 特開2008−096136(JP,A)
【文献】 特開2011−223343(JP,A)
【文献】 特開2009−300390(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 13/00 − G01S 15/96
(57)【特許請求の範囲】
【請求項1】
アンテナ面を有し、移動体を検知するためのマイクロ波ドップラーセンサと、
このドップラーセンサの前方に配置され、上記アンテナ面に平行な略平面又は少なくとも垂直方向で上記アンテナ面から略同一距離に形成された曲面を有する保護カバーと、
90度位相の異なる2つのドップラー信号を出力するための直交検波回路と、
この直交検波回路の出力を入力し、雫、水膜の動きに対応する低い周波数を減衰させるハイパスフィルタと、
このハイパスフィルタの出力を増幅するアンプと、
このアンプからの出力に基づき、90度位相の異なる2つのI,Q信号を所定の間隔でサンプリングし、これらI信号又はQ信号のいずれかをドップラー信号の中心周波数において略1/4周期ずらした信号ともう一方の信号との積を求め、かつこの積の移動平均を算出するIQ信号積/移動平均処理を実行し、このIQ信号積/移動平均処理によって移動体の検知を行う処理回路と、を有してなるマイクロ波ドップラー検出装置。
【請求項2】
上記ハイパスフィルタのフィルタ特性を可変にすると共に、制御回路を設け、
この制御回路は、上記ドップラーセンサの出力に基づき検知状態が所定の時間以上継続したとき、上記ハイパスフィルタの低域カットオフ周波数を高く設定することを特徴とする請求項1記載のマイクロ波ドップラー検出装置。
【請求項3】
上記制御回路は、上記ドップラーセンサの出力に基づき検知状態が所定の時間以上継続したとき、上記IQ信号積/移動平均処理を実行することを特徴とする請求項1又は2記載のマイクロ波ドップラー検出装置。
【請求項4】
上記保護カバーを、球面状又は円筒面状の形状としたことを特徴とする請求項1乃至3のいずれかに記載のマイクロ波ドップラー検出装置。
【請求項5】
上記保護カバーの上方に、水よけのひさしを設けたことを特徴とする請求項1乃至4のいずれかに記載のマイクロ波ドップラー検出装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はマイクロ波ドップラー検出装置、特に屋外に設置され、直接、雨がかかる可能性のある装置・機器に組み込まれ、ドップラー信号により人等の移動体の接近を検知する検出装置の構成に関する。
【背景技術】
【0002】
従来から、マイクロ波を用い、ドップラー効果によって移動体を検知する装置が用いられており、この種の検出装置では、降雨による誤検知を低減すること等の雨の影響の軽減や、環境雑音レベルの変動の影響の軽減に関し、下記の特許文献の技術が提案されている。
【0003】
特許文献1(特許第4799173号公報)のセキュリティ装置では、雨がドップラーセンサに対し常に遠ざかる方向となるように、このドップラーセンサをプラスチック窓に対し45度の角度を持たせて設置し、また直交ミキサ出力を用いることで、接近と離反を判定し、雨の流れる方向をセンサから離反方向として無視し、接近する人等だけを検知する。
特許文献2(特開2006−71499号公報)のセンシング手段及び接近警告システムでは、ドップラー検出部(電波発信部及び電波受信部)を斜め下方に向けることで、重力によって下方に向けて進行する雨滴や雪粒を検出部から全て遠ざかる方向に進行させ、これを検知対象から排除することにより、雨滴や雪粒により生じる誤検知の発生頻度を低減する。
【0004】
また、特許文献3(特開2006−275885号公報)の障害物検知センサでは、ドップラー信号を出力周波数毎に異なる増幅率で伝達し、状況に応じて、適切に感度を調節しながら、障害物の有無を検知する。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第4799173号公報
【特許文献2】特開2006−71499号公報
【特許文献3】特開2006−275885号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、従来のドップラー検出装置では、降雨等によって窓(保護カバー)に水滴が集まって流れる雫や水膜ができると、この雫や水膜の流れによって良好な移動体検知ができないという問題があった。例えば、自動販売機等の装置で人(購入者)等をマイクロ波ドップラーセンサで検知する場合、その検知範囲が狭く、人体等で反射される電波が比較的大きいため、ドップラーセンサ及びそれを組み込んだ装置に雨が直接かからなければ、降雨等の影響はあまり問題とはならない。しかし、雨が直接、装置にかかり、マイクロ波を放射するためのプラスチック製の窓(保護カバー)や筐体等に水滴、水膜ができるときは、それによって反射される電波が非常に大きくなり、センサ出力を増幅するアンプが飽和することで、検知状態が持続してしまうという問題が発生する。
【0007】
また、上述した特許文献1及び2では、角度を持ってセンサを斜めに配置し、雨を離反として接近する人等を見分けようとするが、雫や水膜による雑音レベルは大きく、またプラスチック製窓にセンサを斜めに配置することで、マイクロ波の大半が反射されてしまい、人等の検知が良好にできないという問題がある。
【0008】
本発明は上記問題点に鑑みてなされたものであり、その目的は、雨、雫や水膜の影響を軽減し、安価なマイコン等でも移動体の検知を良好に行うことができるマイクロ波ドップラー検出装置を提供することにある。
【課題を解決するための手段】
【0009】
上記目的を達成するために、請求項1の発明に係るマイクロ波ドップラー検出装置は、アンテナ面を有し、移動体を検知するためのマイクロ波ドップラーセンサと、このドップラーセンサの前方に配置され、上記アンテナ面に平行な略平面又は少なくとも垂直方向で上記アンテナ面から略同一距離に形成された曲面を有する保護カバーと、90度位相の異なる2つのドップラー信号を出力するための直交検波回路と、この直交検波回路の出力を入力し、雫、水膜の動きに対応する低い周波数を減衰させるハイパスフィルタと、このハイパスフィルタの出力を増幅するアンプと、このアンプからの出力に基づき、90度位相の異なる2つのI,Q信号を所定の間隔でサンプリングし、これらI信号又はQ信号のいずれかをドップラー信号の中心周波数において略1/4周期ずらした信号ともう一方の信号との積を求め、かつこの積の移動平均を算出するIQ信号積/移動平均処理を実行し、このIQ信号積/移動平均処理によって移動体の検知を行う処理回路と、を有してなることを特徴とする。
請求項2の発明は、上記ハイパスフィルタのフィルタ特性を可変にすると共に、制御回路を設け、この制御回路は、上記ドップラーセンサの出力に基づき検知状態が所定の時間(期間)以上継続したとき、上記ハイパスフィルタの低域カットオフ周波数を高く設定することを特徴とする。
【0010】
請求項の発明は、上記制御回路は、上記ドップラーセンサの出力に基づき検知状態が所定の時間以上継続したとき、上記IQ信号積/移動平均処理を実行することを特徴とする。
請求項の発明は、上記保護カバーを、球面状又は円筒面状の形状としたことを特徴とする。
請求項の発明は、上記保護カバーの上方に、水よけのひさし(屋根)を設けたことを特徴とする。
【0011】
上記の構成によれば、保護カバー(検出窓)をドップラーセンサのアンテナ面に平行な平面又は少なくとも垂直方向でセンサから略同一距離に形成された曲面(例えば球面状又は円筒面状)としたので、雨等により形成される雫(水滴)、水膜においては、センサに対するマイクロ波伝搬方向と直角方向に流れる成分が主となる。これにより、水の流れによるセンサ出力は、周波数が0Hz付近に偏り、近接と離反が同時に存在するため方向性を持たないランダム雑音として検知される。そして、このセンサ出力は低周波側が急峻に減衰するハイパスフィルタを通過させた後、増幅することで、雨、雫、水膜による雑音成分の大半が除去されるので、アンプ(増幅器)の飽和が防止される。
【0012】
即ち、直交検波回路から得られたI,Q信号につき、ドップラー信号の中心周波数におけるIQ信号積/移動平均処理が実行されることで、移動体の動きを良好に検知することができる。上述したセンサと保護カバーの構成の場合、水の流れによるI,Q信号は、信号間に相関のないランダム雑音として検出されるが、一方の人の動きによるドップラー信号(I,Q信号)は、位相が90度異なった相関のある信号として観測される。このI又はQ信号のいずれかをドップラー信号の中心周波数において略1/4周期ずらした信号ともう一方の信号との積は、I,Q信号間に相関があり、約90度の位相差がある信号の場合、図4(B),(C)に示すように、位相をずらす方向によりプラス又はマイナスの値だけとなるため、移動平均を求めることで、プラス又はマイナスの値が得られるが、ランダム雑音で相関がない場合は、一方をずらして積をとってもその結果はプラスとマイナスがランダムに含まれるため、移動平均は0に近い値となる。このような処理によって、雨、雫や水膜等による雑音は低減し、人の動きが良好な感度で検知される。
【0013】
上記の1/4周期をずらす操作は、サンプリングがドップラー信号の中心周波数において1/8周期以下の時間間隔で行われている場合には、I,Q信号の一方を略1/4周期前にサンプリングされたデータを用い、もう一方のデータとの積をとることで行えるため、メモリの少ないマイコン等でも容易に実現することができる。
【0014】
請求項2、3の構成によれば、検知が継続する状態のとき(降雨状態等が判定されるとき)に、ハイパスフィルタの低域カットオフ周波数を高くしたり、IQ信号積/移動平均処理を実行したりすることで、雑音を低減し安定した検知が可能となる。
【0015】
また、特に、保護カバーを例えば半球面状又は半円筒面状とし、少なくとも垂直方向でセンサから略同一距離に配置した場合は、保護カバーの表面を流れる水は常にセンサからの距離が変わらないので、平面の保護カバーに比べると、水の流れによる信号成分が低周波側に集中することになる。従って、ハイパスフィルタによる雫、水膜成分(雑音成分)の除去効果が高くなる。
【発明の効果】
【0016】
本発明のマイクロ波ドップラー検出装置によれば、降雨による雫や水膜の影響を軽減すると共に、センサを保護カバーに対し斜めに配置する場合に比べてマイクロ波の反射も少なくなり、移動体の検知を良好に行うことができる。従って、自動販売機等の各種装置では、購入者、使用者等が近づいた時に、表示灯、電灯を点灯させる等、必要な動作を実行することで、省エネ等を図ることが可能となり、また検知演算に安価なマイコン等を使用することができ、コストの低減を図ることも可能となる。
【図面の簡単な説明】
【0017】
図1】本発明の実施例に係るマイクロ波ドップラー検出装置の信号処理回路を示すブロック図である。
図2】実施例のドップラー検出装置の設置例(自動販売機等)を示す側面図(断面ハッチ省略)である。
図3】実施例における移動体の入射角とドップラー周波数の関係を説明するための図である。
図4】実施例におけるIQ信号の一方を1/4周期ずらした信号ともう一方の信号の積を相関のある信号とランダム信号で説明するための波形図である。
図5】実施例のセンサ回路部で得られるドップラー信号を示し、図(A)は実施例の構成図、図(B)は直交検波回路からの出力(IQ信号)波形図、図(C)は周波数成分の図である。
図6】センサが45度の角度で配置された場合に得られるドップラー信号を示し、図(A)はその構成図、図(B)は直交検波回路からの出力(IQ信号)波形図、図(C)は周波数成分の図である。
図7】実施例のハイパスフィルタを通過させたときの出力(IQ信号)波形図[図(A)]と、その周波数成分を示す図[図(B)]である。
図8】実施例の直交検波回路からの出力(IQ信号)を示し、図(A)は人の動きによるドップラー波形図、図(B)は雨、雫、水膜による波形図である。
図9】実施例において、雨、雫、水膜の雑音と同時に人の動きが検知された場合のセンサ回路部からの出力(IQ信号)波形図[図(A)]と、このセンサ回路部出力に対し信号処理を施した後の波形図[図(B)]である。
図10】実施例のマイクロ波ドップラー検出装置で保護カバーを球面状としたときの構成を示し、図(A)は側面図(断面ハッチ省略)、図(B)は正面図である。
図11】実施例のマイクロ波ドップラー検出装置で保護カバーを円筒面状としたときの構成を示し、図(A)は側面図(断面ハッチ省略)、図(B)は正面図である。
図12】実施例の保護カバーを平面にした場合と球面状/円筒状にした場合で、雨、雫、水膜により生じる雑音の周波数成分を示すグラフ図である。
図13】実施例のマイクロ波ドップラー検出装置でひさしを設けたときの構成を示し、図(A)は側面図(断面ハッチ省略)、図(B)は正面図である。
【発明を実施するための形態】
【0018】
図1及び図2には、本発明の実施例に係るマイクロ波ドップラー検出装置の構成が示されており、図2は、自動販売機等に取り付けられた例である。図2に示されるように、自動販売機10の前面に、電波を透過させるプラスチック製等の平面カバー(保護カバー、平面板)11が設けられ、この平面カバー11の内側に、ドップラーセンサ12が取り付けられており、このドップラーセンサ12の前面のアンテナ面(検出面)12Aは、平面カバー11に平行となるように配置される。
【0019】
図1には、実施例の信号処理回路が示されており、図1のセンサ回路部14は、上記ドップラーセンサ12を含むと共に、直交検波(ミキサ)回路等を備えることにより、センサ12で受信した信号から90度位相の異なるI信号とQ信号を出力する。このセンサ回路部14の後段に、2つのIQ信号出力に対応して、雨、雫や水膜の動きに対応する低い周波数を減衰させるハイパスフィルタ(HPF)15a,15bが設けられており、実施例のハイパスフィルタ15a,15bは、低域カットオフ周波数を例えば50Hz程度に設定している。このハイパスフィルタ15a,15bには、アンプ(増幅器)16a,16b、AD(アナログ/デジタル)変換器17a,17b、そしてメモリを持つマイコン18が接続される。
【0020】
即ち、上記アンプ16a,16bでは、雫や水膜等の動きに対応する低周波域を除去したIQ信号を増幅し、上記AD変換器17a,17bでは、増幅後のIQ信号を例えばドップラー信号中心周波数の1/8周期以下のサンプリング時間でサンプリングし、マイコン18では、サンプリングしたIQ信号のそれぞれにつき、ドップラー信号中心周波数の略1/4周期に相当する時間毎の複数の(時系列)データを所定時間分だけ、データ列としてメモリに記憶し、このIQ信号の各データ列に基づいてIQ信号積/移動平均処理を実行する。
【0021】
実施例は以上の構成からなり、ドップラーセンサ12のアンテナ面(検出面)12Aを平面カバー11に平行に配置することで、このカバー11の表面を流れる雨、雫や水膜はセンサアンテナ面12Aに対して略平行に流れるため、この雨、雫、水膜の流れは、センサ12より上側では(センサ12に対して)近接する方向、センサ12より下側では離反する方向となる。
【0022】
図3には、センサと移動体の動きとの関係が示されており、図示されるように、センサ12のドップラー出力周波数fdは、移動体50の速度vとセンサ12に対する移動体の角度αから、次の数式1で表される。
[数1]
fd = 2・f(v/C)・cosα
ここで、Cは光速、fはドップラーセンサ12の送信周波数である。
上記のようにアンテナ面12Aに平行に水が流れる場合は、角度αが90度に近いためドップラー出力の周波数成分は低い周波数側に集中する。
【0023】
図5には、アンテナ面12Aと平面カバー11(水の流れ)が平行の場合[図(A)]のドップラー信号出力波形[図(B)]とその周波数成分[図(C)]が示され、図6には、アンテナ面12Aと平面カバー11の角度が45度の場合[図(A)]のドップラー信号出力波形[図(B)]とその周波数成分[図(C)]が示されており、図5(C)と図6(C)を比較すると、アンテナ面12Aと平面カバー11が平行、即ち水の流れが平行の場合の方が、周波数成分はより低い周波数に集中していることが分かる。
【0024】
そこで、実施例では、ハイパスフィルタ15a,15bを設け、上記ドップラー信号の低周波成分を除去しており、これによって、雨、雫や水膜による雑音成分が大幅に減衰し、後段のアンプ16a,16bの飽和も防ぐことができる。
図7には、センサ回路部14から出力された信号[図5(B)の信号]をハイパスフィルタ15a,15b(例えばカットオフ周波数80Hz)を通過させた信号波形[図(A)]とその周波数成分[図(B)]が示されており、ハイパスフィルタ15a,15bを通すことで、図7(B)のように、低周波域側が減衰する結果となる。
【0025】
次に、実施例では、上記ハイパスフィルタ15a,15bを介してアンプ16a,16bから出力されたIQ信号につき、IQ信号積/移動平均処理が施される。即ち、上記のハイパスフィルタ15a,15bを用いることで、水の流れによ雑音をある程度減衰できるが、例えば24GHzのセンサ12を用いた場合、時速2kmで近づいて来た人の動きによるドップラー周波数は、約80Hzとなるため、雨、雫や水膜による雑音をフィルタで完全に消すことはできない。また、マイクロ波は雨、雫や水膜で減衰されるため人の動きのドップラー信号は検知レベルも小さくなり、雨が強い場合には結果として人の動きの信号が雨の影響による雑音に埋もれてしまい、検知のための閾値が設定できなくなる。そこで、実施例では、IQ信号積/移動平均処理を実行し、強い雨、雫や水膜の影響を良好に軽減し、人の動きによる検知をし易くしている。
【0026】
図8には、人の動きによるドップラー信号(IQ信号)波形[図(A)]と、雨、雫や水膜によるIQ信号波形[図(B)]を比較したものが示されており、この波形図から明らかなように、人の動きに対するドップラー信号波形は、Q信号がI信号に対し90度の位相遅れを示しているが、I,Q信号で相似の形となっている。これに対し、雨、雫や水膜による出力は、I,Q信号間に相関性のないランダムな波形となる。このことを利用し、雨の影響を軽減し、人の動きを検知しやすいような処理を行う。
【0027】
実施例では、I信号とQ信号の間の位相差が90度であることと、人の動きの速度範囲があまり広くないことに着目し、上記ハイパスフィルタ15a,15bによって低周波側の信号を減衰させ、ドップラー周波数の範囲を制限した上で、効率的にIQ信号積/移動平均処理を行っている。
【0028】
まず、上記アンプ16a,16bからのI,Q信号出力の各々がAD変換器17a,17bへ入力され、ドップラー中心周波数(fd0)の例えば1/8周期以下のサンプリング時間でサンプリングされる。人の動きのドップラー周波数は、ある範囲に限定できるので、サンプリング時間は取得したいドップラー周波数の中心周波数で、1/8周期より短い間隔とすることが好ましい。
【0029】
次に、AD変換されたデジタルデータが所定の時間分、マイコン18のメモリに保存され、IQ信号の一方の信号の現時点からドップラー中心周波数(fd0)の1/4周期に相当する時間分前に取得されデータ(例えばIデータ)と、他方の信号の現時点のデータ(例えばQデータ)との積の値を時系列で求め、これをデータ列(複数の積データ)としてメモリに保存する。そして、上記データ列において現在の時刻から一定時間前までのデータの平均値(移動平均値)を計算し、これを検知データとする。この結果、IQ信号に相関性のない雨、雫や水膜の雑音成分が低減され、相関性のある人(移動体)のドップラー信号が抽出される。
【0030】
図4(A)には、90度位相差のあるI信号とQ信号の波形とその現時点での値同士の積の波形が示されており、この積の値はプラスとマイナスが交互に存在するため、このまま移動平均をとると値は0に近くなってしまう。図4(B),(C)には、I信号或いはQ信号のいずれか一方の略1/4周期前の時間に相当する信号と、もう一方の現在時刻の信号との積の波形が示される。I信号とQ信号のいずれを1/4周期前に相当する時間の信号として用いるかで、図4(B),(C)のように、積の値はプラス側かマイナス側のいずれかの値だけになる。そのため、この値の移動平均はプラスかマイナスのある大きさの値となる。
【0031】
一方、図4(D)に示すようなランダム雑音の場合は、I信号またはQ信号のいずれかを1/4周期前の時間を用いてもう一方の現在時刻との積を求めても、相関性がないため積の結果はプラスとマイナスの値がランダムに現れる。この結果を移動平均した場合は0に近い値となるため、本実施例の処理で雨、雫や水膜のランダム雑音成分を減衰し、人の動きのようなI信号、Q信号に相関のある信号のみが抽出される。なお、人が近づく場合と遠ざかる場合でI信号、Q信号の位相は180度異なるため、この処理では積の結果のプラスとマイナスが反転する。このことから、人が近づいているか、遠ざかっているかの判定も同時に可能となる。
【0032】
図9には、平面カバー11に雨、雫や水膜が流れている状態で、接近した後、離反していく人の動きを測定した場合のハイパスフィルタ15a,15bの出力波形[図(A)]と、IQ信号積/移動平均の信号処理を施した場合の出力[図(B)]が示されており、図示されるように、信号処理を施すことで、雨、雫や水膜の雑音に埋もれた人の動き(接近及び離反)を明瞭に識別することが可能となる。
【0033】
また、上述したハイパスフィルタ15a,15bにて除去される周波数と、IQ信号積/移動平均処理は、降雨状態、検知状態で変えるようにしてもよい。即ち、上記ハイパスフィルタ15a,15bのフィルタ特性を可変とし、かつ図1に示されるように、ハイパスフィルタ15a,15bの低域カットオフ周波数を変化させるためのフィルタ制御信号をマイコン18から出力するように構成し、降雨状態が判定されるとき、このハイパスフィルタの低域カットオフ周波数を高い方へ設定する。
【0034】
例えば、ハイパスフィルタ15a,15bのカットオフ周波数を比較的低い周波数faに設定したとき、検知状態が所定時間以上継続する場合に、降雨状態であると判定し、ハイパスフィルタ15a,15bのカットオフ周波数をfaよりも高い周波数fbに設定するようなアルゴリズムを用いることで、降雨状態のときは、雨、雫や水膜の影響を除去した検知が実行され、降雨状態でないときは、人等の本来の移動体を良好な感度で検知される。
【0035】
また、上述したIQ信号積/移動平均処理は、演算量が少なく安価なマイコン等で実行可能であるが、この演算を行うことで、マイコンの消費電流は増え、人等の検知に対する反応時間も移動平均処理により長くなる。このような不都合を避けるため、初期状態では上記信号処理を行わず、検知状態が一定時間以上継続した場合に、IQ信号積/移動平均処理を行うようなアルゴリズムを用いてもよい。なお、以上の処置を適用しても、集中豪雨などの場合の誤検知発生は完全には回避できないことから、上記の対応をしても、所定の検知が一定時間以上継続する場合は、検知出力を停止するようにしてもよい。
【0036】
図10には、センサ前方の保護カバー形状を球面状にした例の構成が示されており、図10の例では、ドップラーセンサ12のアンテナ面12Aの中心に対して同心円となる半球面に形成した球面カバー20が設けられる。上記平面カバー11の場合は、センサ正面から上下に離れることによりドップラー周波数が少し高い周波数になるが、この球面カバー20によれば、降雨によりその表面を流れる雨、雫や水膜とアンテナ面12Aとの相対距離が常に変わらないため、そのドップラー成分は平面カバー11と比べて更に低周波側に集中する。従って、ハイパスフィルタ15a,15bによる雫や水膜等のノイズ信号の除去効果が高まることになる。しかも、雨が斜めに吹き付けた場合や風などによって雨が横に流れた場合でも、これらはセンサから等距離で移動するので、安定した特性が得られる。
【0037】
図11には、センサ前方の保護カバー形状を円筒面状にした例の構成が示されており、図11の例では、地面に対して垂直な方向において、アンテナ面12Aの中心に対して同心円となる半円筒面に形成した円筒面カバー21が設けられる。この円筒面カバー21によっても、その表面の垂直方向に流れる雨、雫や水膜が常にアンテナ面12Aに対して同一の距離にあり、そのドップラー成分は平面カバー11と比べて低周波側に集中する。
【0038】
図12には、雨、雫や水膜に関するドップラー周波数成分の変化を、平面の保護カバーと球面状及び円筒面状の保護カバーとで比較したものが示されており、この図12からも分かるように、雨、雫や水膜の動きによるドップラー周波数成分は、球面状及び円筒面状のカバー(20,21)の方が低い周波数へシフトする。従って、球面カバー20や円筒面カバー21を適用した場合は、ハイパスフィルタ15a,15bによる雨、雫や水膜の雑音成分の除去効果を高めることができる。
【0039】
上記球面カバー20及び円筒面カバー21の雑音除去効果は、垂直な方向において同様となるが、特に球面カバー20の方は、斜めに吹き付ける雨であってもカバー表面を流れる雨、雫や水膜とセンサ12との相対距離が常に変わらないため、より効果的である。
【0040】
図13には、保護カバーの上方に雨よけのひさしを設けた例の構成が示されており、この例では、図13のように、球面カバー20の上側に、雨を左右方向へ流すひさし(屋根)23が配置される。例えば、自動販売機等のように高さのある装置では、カバー表面に当たった雨がその表面の下方へ流れるため、常に雫や水膜が形成されてしまうが、上記ひさし23を設けることで、球面カバー20に流れ込む雫や水の膜の量が減り、雑音を低減する効果がある。即ち、雨の大半、又は風により斜めに吹き付ける雨が保護カバーに当たらないようにするために、幅の広い長いひさしを設けることも可能であるが、外観上からも、自動販売機等で幅広で長いひさしを付けることは好ましくない。
【0041】
そこで、本実施例では、球面カバー20より上側に当たった雨による雫、水膜の流れが球面カバー20部分に流れ込まないよう、中心から左右に傾斜をもたせた幅狭の短めのひさしを形成することにより、上方から水が流れてくる状態をなくし、球面カバー20に雫や水の膜が流れ込むことを防ぐことで雑音を大幅に減らすことができる。斜めに吹き付ける雨であっても、球面カバー20に直接当たった雨粒によるものだけとなるため、上面からの雨が集まって流れてくる雫等に比べれば流れる水の量は少なく、雑音の発生も低く抑えられるので、雫、水膜の影響を極力軽減することができる。特に、球面カバー20の場合は、斜めに吹き付ける雨の場合、下方のみでなく球面上を左右にも流れるため、水膜の厚さは薄くなり、マイクロ波の反射による減衰が軽減される。
【0042】
上記実施例では、センサ12のアンテナ面12Aから略同一距離に形成された保護カバー(20,21)の曲面として、(半)球面状、(半)円筒面状を採用したが、アンテナ面12Aの前方の保護カバー(20,21)のアンテナ面12Aと略同一面積の中心領域を平面とし、その他の面を球面又は円筒面としてもよい。
【符号の説明】
【0043】
10…自動販売機、 11…平面カバー、
12…ドップラーセンサ、 12A…アンテナ面(検出面)、
14…センサ回路部、
15a,15b…ハイパスフィルタ(HPF)、
16a,16b…アンプ、 17a,17b…AD変換器、
18…マイコン、 20…球面カバー、
21…円筒面カバー、 23…ひさし。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13