特許第5998004号(P5998004)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立ハイテクノロジーズの特許一覧

<>
  • 特許5998004-荷電粒子線装置 図000002
  • 特許5998004-荷電粒子線装置 図000003
  • 特許5998004-荷電粒子線装置 図000004
  • 特許5998004-荷電粒子線装置 図000005
  • 特許5998004-荷電粒子線装置 図000006
  • 特許5998004-荷電粒子線装置 図000007
  • 特許5998004-荷電粒子線装置 図000008
  • 特許5998004-荷電粒子線装置 図000009
  • 特許5998004-荷電粒子線装置 図000010
  • 特許5998004-荷電粒子線装置 図000011
  • 特許5998004-荷電粒子線装置 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5998004
(24)【登録日】2016年9月2日
(45)【発行日】2016年9月28日
(54)【発明の名称】荷電粒子線装置
(51)【国際特許分類】
   H01L 21/66 20060101AFI20160915BHJP
   H01J 37/22 20060101ALI20160915BHJP
   H01J 37/28 20060101ALI20160915BHJP
【FI】
   H01L21/66 J
   H01J37/22 502H
   H01J37/28 B
【請求項の数】15
【全頁数】22
(21)【出願番号】特願2012-229221(P2012-229221)
(22)【出願日】2012年10月16日
(65)【公開番号】特開2014-82326(P2014-82326A)
(43)【公開日】2014年5月8日
【審査請求日】2015年6月29日
(73)【特許権者】
【識別番号】501387839
【氏名又は名称】株式会社日立ハイテクノロジーズ
(74)【代理人】
【識別番号】100091096
【弁理士】
【氏名又は名称】平木 祐輔
(74)【代理人】
【識別番号】100105463
【弁理士】
【氏名又は名称】関谷 三男
(74)【代理人】
【識別番号】100102576
【弁理士】
【氏名又は名称】渡辺 敏章
(72)【発明者】
【氏名】平井 大博
(72)【発明者】
【氏名】中垣 亮
(72)【発明者】
【氏名】小原 健二
【審査官】 堀江 義隆
(56)【参考文献】
【文献】 国際公開第03/044821(WO,A1)
【文献】 国際公開第2011/089911(WO,A1)
【文献】 特開2007−266017(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/66
H01J 37/22
H01J 37/28
(57)【特許請求の範囲】
【請求項1】
試料上の欠陥を観察する欠陥観察装置を備える荷電粒子線装置であって、
制御部と、
表示部と、を備え、
前記制御部が、
前記欠陥観察装置で取得された1枚以上の画像に対して複数の補正条件でドリフト補正処理を実行し、
前記複数の補正条件と、前記ドリフト補正処理を実行した複数の補正画像とを対応させて前記表示部に第1の画面として表示することを特徴とする荷電粒子線装置。
【請求項2】
請求項1に記載の荷電粒子線装置において、
前記制御部が、前記複数の補正画像に対して欠陥自動観察処理を実行して、前記欠陥自動観察処理によって検出された欠陥位置を、前記複数の補正画像に重ねて前記第1の画面に表示することを特徴とする荷電粒子線装置。
【請求項3】
請求項2に記載の荷電粒子線装置において、
前記制御部が、前記複数の補正画像に対する前記欠陥自動観察処理のスループット情報を、前記複数の補正条件に対応させて前記第1の画面に表示することを特徴とする荷電粒子線装置。
【請求項4】
請求項2に記載の荷電粒子線装置において、
前記制御部が、ユーザが選択した前記複数の補正条件の分布及び前記複数の補正条件毎の前記欠陥自動観察処理の検出率の少なくとも一方を前記表示部に第2の画面として表示することを特徴とする荷電粒子線装置。
【請求項5】
請求項4に記載の荷電粒子線装置において、
前記制御部が、前記1枚以上の画像に対する前記ドリフト補正処理の実行時間及び前記複数の補正画像に対する前記欠陥自動観察処理のスループット情報の少なくとも一方を前記第2の画面に表示することを特徴とする荷電粒子線装置。
【請求項6】
請求項1に記載の荷電粒子線装置において、
前記制御部が、前記複数の補正画像に対して欠陥自動分類処理を実行して、前記欠陥自動分類処理によって得られた分類結果を、前記複数の補正画像に対応させて前記第1の画面に表示することを特徴とする荷電粒子線装置。
【請求項7】
請求項6に記載の荷電粒子線装置において、
前記制御部が、前記複数の補正画像に対する前記欠陥自動分類処理のスループット情報を、前記複数の補正条件に対応させて前記第1の画面に表示することを特徴とする荷電粒子線装置。
【請求項8】
請求項6に記載の荷電粒子線装置において、
前記制御部が、ユーザが選択した前記複数の補正条件の分布及び前記複数の補正条件毎の前記欠陥自動分類処理の正解率の少なくとも一方を第2の画面として前記表示部に表示することを特徴とする荷電粒子線装置。
【請求項9】
請求項8に記載の荷電粒子線装置において、
前記制御部が、前記1枚以上の画像に対する前記ドリフト補正処理の実行時間及び前記複数の補正画像に対する前記欠陥自動分類処理のスループット情報の少なくとも一方を前記第2の画面に表示することを特徴とする荷電粒子線装置。
【請求項10】
請求項1に記載の荷電粒子線装置において、
前記制御部が、前記1枚以上の画像に対する前記ドリフト補正処理の実行時間を、前記複数の補正条件に対応させて前記第1の画面に表示することを特徴とする荷電粒子線装置。
【請求項11】
請求項1に記載の荷電粒子線装置において、
前記制御部が、前記ドリフト補正処理前の前記1枚以上の画像を、前記複数の補正条件に対応させて前記第1の画面に表示することを特徴とする荷電粒子線装置。
【請求項12】
請求項1に記載の荷電粒子線装置において、
前記制御部が、ユーザが選択した前記複数の補正条件の分布を前記表示部に第2の画面として表示することを特徴とする荷電粒子線装置。
【請求項13】
請求項12に記載の荷電粒子線装置において、
前記制御部が、前記1枚以上の画像に対する前記ドリフト補正処理の実行時間を、前記複数の補正条件の前記分布に対応させて前記第2の画面に表示することを特徴とする荷電粒子線装置。
【請求項14】
請求項1に記載の荷電粒子線装置において、
前記制御部が、
前記複数の補正画像に対して欠陥自動観察処理を実行して、前記欠陥自動観察処理によって検出された欠陥位置を、前記複数の補正画像に重ねて前記第1の画面に表示し、
前記複数の補正画像に対して欠陥自動分類処理を実行して、前記欠陥自動分類処理によって得られた分類結果を、前記複数の補正画像に対応させて前記表示部に第2の画面として表示することを特徴とする荷電粒子線装置。
【請求項15】
請求項14に記載の荷電粒子線装置において、
前記制御部が、前記複数の補正画像に対する前記欠陥自動観察処理のスループット情報と、前記複数の補正画像に対する前記欠陥自動分類処理のスループット情報とを前記第2の画面に区別して表示することを特徴とする荷電粒子線装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体デバイスの欠陥観察装置を備える荷電粒子線装置に関するものである。
【背景技術】
【0002】
半導体製造において高い歩留りを確保するためには、製造工程で発生する欠陥を早期に発見して、対策を施すことが重要である。近年、半導体の微細化に伴い、その歩留りに影響を与える欠陥も多様化しており、観察対象とすべき製造工程も増加している。例えば、試料への帯電に起因して、像ドリフトが発生するような製造工程が、欠陥観察の対象工程になる事例が増えている。
【0003】
SEM(Scanning Electron Microscope)式欠陥観察装置は、このような多種多様な欠陥を観察するための装置であり、一般に上位の欠陥検査装置で検出した欠陥位置の画像を、上位の欠陥検査装置より高画質で観察するものである。具体的には、上位の欠陥検査装置が出力した欠陥座標に試料ステージを移動して、観察対象となる欠陥が視野内に入る程度の低倍率で撮像し、正確な欠陥位置を特定し、欠陥位置が視野の中心に来るように試料ステージを移動、あるいは撮像中心を移動して欠陥観察に好適な高倍率で観察用の画像を取得する。このように低倍率画像で欠陥位置を特定するのは、上位の欠陥検査装置が出力する欠陥座標には、装置仕様の範囲内で誤差が含まれているためであり、SEM式欠陥観察装置で高画質の欠陥画像を取得する際には、この誤差を補正するための処理が必要となる。高画質の欠陥画像を取得する工程を自動化したものがADR(Automatic Defect ReviewまたはRedetection)である。
【0004】
ADRでは、上位の欠陥検査装置の欠陥座標検出精度や試料の特性に応じて、低倍率画像の取得条件、高倍率画像の取得条件などを、ADRの欠陥検出率と画像取得時間を含むADRのスループットを両立させるために最適化する必要があるが、一般に、ADRの欠陥検出率とスループットはトレードオフの関係にあるため、経験を積んだ熟練者であっても最適条件を決定するのは困難な作業であり、最適条件設定作業の容易化が望まれている。
【0005】
また、高画質で取得した欠陥画像をもとに、欠陥種を特定する作業を自動化したADC(Automatic Defect Classification)も実用化されており、特に、量産ラインにおいてADCの適用工程が拡大している。ADCにおいても、ADCの欠陥分類正解率と画像取得時間を含むADCのスループットはトレードオフの関係にあるため、最適な条件を決定するのは困難な作業であり、最適条件設定作業の容易化が望まれている。
【0006】
特許文献1では、走査電子顕微鏡において、観察視野を走査して得られるフレーム画像を複数枚取得して、各フレーム画像間のドリフト量を算出して、ドリフト量を補正してフレーム画像を重ね合わせることで、像ドリフトが発生した場合でも鮮明な画像を得る技術が開示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】国際公開2010/070815号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、特許文献1の技術は、自動測長を行う場合の像ドリフトを対象としている。特許文献1では、高倍率画像における測長値を安定して算出することができるが、欠陥観察装置に適用した場合には、以下の課題が生じる。
【0009】
特許文献1が想定している製造パタンの自動測長を目的とした走査電子顕微鏡では、ユーザが測長対象となる製造パタンをサンプル、あるいはレシピ毎に設定するものであり、一つのサンプル、あるいはレシピ内で測長対象となる製造パタンの種類は限定的である。つまり、自動測長では、予め決められた座標において、予め決められた製造パタンを測長するので、例えば、サンプル間で最適なパラメータが変わるということはない。
【0010】
これに対して、SEM式欠陥観察装置では、上位の欠陥検査装置が検出した欠陥位置の画像を取得するため、欠陥の位置によって取得すべき座標及び製造パタンが変わる。したがって、同一サンプル、あるいはレシピ内でも、取得すべき座標位置及び製造パタンが多種多様となる。これにより、取得した画像において、帯電に起因する像ドリフトの程度も製造パタン毎等によって変化するため、最適なパラメータの設定が課題となる。従来は、像ドリフトが発生する製造工程が欠陥観察の対象となることは稀であったが、近年の半導体の微細化や製造工程の複雑化により、像ドリフトが発生する製造工程に対しても、SEM式欠陥観察装置により高画質な欠陥画像を取得して、欠陥を解析する必要性が増してきている。
【0011】
本発明はこのような状況に鑑みてなされたものであり、欠陥観察装置を備える荷電粒子線装置において、像ドリフトが発生した場合でも観察画像の最適なパラメータの条件を容易に決定することができる技術を提供する。
【課題を解決するための手段】
【0012】
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、試料上の欠陥を観察する欠陥観察装置を備える荷電粒子線装置であって、制御部と、表示部と、を備え、前記制御部が、前記欠陥観察装置で取得された1枚以上の画像に対して複数の補正条件でドリフト補正処理を実行し、前記複数の補正条件と、前記ドリフト補正処理を実行した複数の補正画像とを対応させて前記表示部に第1の画面として表示する荷電粒子線装置が提供される。
【発明の効果】
【0013】
本発明によれば、欠陥観察装置を備える荷電粒子線装置において、像ドリフトが発生した場合でも観察画像の最適なパラメータの条件を容易に決定することができる。
【0014】
本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成および効果は、以下の実施例の説明により明らかにされる。
【図面の簡単な説明】
【0015】
図1】本発明のSEM式欠陥観察装置の全体構成を示す模式図である。
図2図1の全体制御部および解析部の詳細図を示す図である。
図3】像ドリフト補正の概念図である。
図4】第1実施例に係るフレーム積算枚数の設定処理のフローチャートである。
図5】フレーム画像の積算枚数最適化設定のためのGUIの一例であり、図4のステップ403で表示される画面の第1の例である。
図6】フレーム画像の積算枚数最適化設定のためのGUIの一例であり、図4のステップ403で表示される画面の第2の例である。
図7】第2実施例に係る条件設定処理のフローチャートであり、ADRの欠陥検出率とスループットを両立させる条件設定処理のフローチャートである。
図8】DRの欠陥検出率とスループットを両立させる条件設定のためのGUIの一例であり、図7のステップ704で表示される画面の例である。
図9】第3実施例に係る条件設定処理のフローチャートであり、ADCの分類正解率とスループットを両立させる条件設定処理のフローチャートである。
図10】ADCの分類正解率とスループットを両立させる条件設定のためのGUIの一例であり、図9のステップ904で表示される画面の例である。
図11】第4実施例に係る条件設定処理のフローチャートであり、ADRの欠陥検出率とスループットの両立、及びADCの分類正解率とスループットの両立を実現する条件設定処理のフローチャートである。
【発明を実施するための形態】
【0016】
以下、添付図面を参照して本発明の実施例について説明する。なお、添付図面は本発明の原理に則った具体的な実施例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。
【0017】
荷電粒子線装置は、電子や陽イオンなどの電荷をもつ粒子(荷電粒子)を電界で加速し、試料に照射する装置である。荷電粒子線装置は、試料と荷電粒子との相互作用を利用して、試料の観察、分析、加工などを行う。荷電粒子線装置の例として、電子顕微鏡、電子線描画装置、イオン加工装置、イオン顕微鏡などが挙げられる。これら荷電粒子線装置の中において、走査型電子顕微鏡(SEM:Scanning Electron Microscope)は、電子を試料に照射し、電子と試料との相互作用を信号として検出することで微細構造の観察や構成元素の分析を行う装置である。以下、欠陥観察装置を備える荷電粒子線装置の一例として、SEM式欠陥観察装置について述べる。
【0018】
以下では、SEM式欠陥観察装置の構成例を説明する。システムの一構成例として、SEM式欠陥観察装置でレシピ設定を行う例について説明するが、システム構成はこれに限らず、システムを構成する装置の一部または全部が異なる装置で構成されていてもよい。例えば、本実施例のレシピ設定処理をSEM式欠陥観察装置とネットワーク接続されたレシピ管理装置、あるいは欠陥自動分類装置で行ってもよい。
【0019】
SEM式欠陥観察装置とは、光学式あるいはSEM式検査装置などの上位の欠陥検査装置で検出した欠陥座標を、あるいは設計レイアウトデータに基づくシミュレーションなどにより抽出した観察点の座標情報を入力情報として、欠陥あるいは観察座標の高画質なSEM画像を、観察や解析に適した条件で取得する装置である。
【0020】
図1は、本実施例のSEM式欠陥観察装置の全体構成を示す模式図である。図1のSEM式欠陥観察装置は、電子銃101と、レンズ102と、走査偏向器103と、対物レンズ104と、試料105と、二次粒子検出器109などの光学要素により構成される電子光学系を備える。
【0021】
また、SEM式欠陥観察装置は、観察対象となる試料105を保持する試料台をXY面内に移動させるステージ106と、当該電子光学系に含まれる各種の光学要素を制御する電子光学系制御部110と、二次粒子検出器109の出力信号を量子化するA/D変換部111と、ステージ106を制御するステージ制御部112とを備える。上述した電子光学系、電子光学系制御部110、A/D変換部111、ステージ106、及びステージ制御部112は、SEM画像の撮像手段である走査電子顕微鏡(SEM)を構成する。また、SEM式欠陥観察装置は、上位の欠陥検査装置として光学式顕微鏡117を備えてもよい。
【0022】
さらに、SEM式欠陥観察装置は、全体制御部および解析部113と、画像処理部114と、操作部115と、記憶装置116とを備える。操作部115は、ディスプレイ(表示部)、キーボード、マウスなどを備える。記憶装置116には、SEMにより取得した画像が格納される。
【0023】
SEM式欠陥観察装置において、電子銃101から発射された一次電子ビーム107は、レンズ102で収束され、走査偏向器103で偏向される。さらに、一次電子ビーム107は、走査偏向器103で偏向された後、対物レンズ104で収束されて、試料105に照射される。
【0024】
一次電子ビーム107が照射された試料105から、試料105の形状や材質に応じて二次電子や反射電子などの二次粒子108が発生する。発生した二次粒子108は、二次粒子検出器109で検出された後、A/D変換部111でデジタル信号に変換される。デジタル信号に変換された二次粒子検出器109の出力信号を画像信号と称する場合もある。
【0025】
A/D変換部111の出力信号は、画像処理部114に出力されて、画像処理部114がSEM画像を形成する。画像処理部114は、生成したSEM画像を使用して、ドリフト補正処理を実行する。また、画像処理部114は、生成したSEM画像を使用して、欠陥検出などの画像処理を実行するADR処理や、欠陥を種類別に自動分類するADC処理など、各種の画像解析処理を実行してもよい。
【0026】
レンズ102、走査偏向器103、対物レンズ104などの電子光学系の制御は、電子光学系制御部110で実行される。また、試料105の位置制御は、ステージ制御部112で制御されたステージ106で実行される。全体制御部および解析部113は、SEM式欠陥観察装置全体を統括的に制御する制御部であり、ディスプレイ、キーボード、マウスなどを備えた操作部115及び記憶装置116からの入力情報を処理し、電子光学系制御部110、ステージ制御部112、画像処理部114などを制御して、必要に応じて操作部115に含まれる表示部や、記憶装置116に処理結果を出力する。
【0027】
画像処理部114、全体制御部および解析部113は、コンピュータなどの情報処理装置によって構成されている。例えば、全体制御部および解析部113は、CPUと、記憶部(例えば、メモリおよびハードディスクなど)と、ディスプレイ、キーボード、マウスなどを備えた操作部115とから構成される。この場合、全体制御部および解析部113は、ソフトウェアにより実現することができ、CPUにより所望の演算処理のプログラムを実行することで実現できる。同様に、画像処理部114もソフトウェアにより実現できる。なお、画像処理部114、全体制御部および解析部113は、別々の情報処理装置で構成してもよいし、1つの情報処理装置で構成してもよい。
【0028】
また、画像処理部114、全体制御部および解析部113で実行される処理は、ハードウェアの方式でも実現可能である。ハードウェアにより実行する場合には、処理を実行する複数の演算器を配線基板上、あるいは半導体チップ、ないしはパッケージ内に集積することにより実現できる。
【0029】
図2は、図1の全体制御部および解析部113の詳細図を示している。図2に示す操作・解析部201は、図1の全体制御部および解析部113と操作部115を統合して表現したものである。
【0030】
操作・解析部201は、欠陥データ記憶部202と、画像データ記憶部203と、解析パラメータ記憶部204と、解析結果データ記憶部205とを備える。欠陥データ記憶部202と、画像データ記憶部203と、解析パラメータ記憶部204と、解析結果データ記憶部205は、全体制御部および解析部113を構成する情報処理装置のハードディスクで構成されてもよい。また、操作・解析部201が、図1に示すSEM式欠陥観察装置に組み込まれる場合には、欠陥データ記憶部202、画像データ記憶部203、解析パラメータ記憶部204、及び解析結果データ記憶部205は、図1の記憶装置116に統合されてもよい。
【0031】
欠陥データ記憶部202には、上位の検査装置において検出した欠陥座標などの欠陥情報が格納されている。画像データ記憶部203には、SEM式欠陥観察装置で撮像した欠陥画像が格納されている。ここで、欠陥画像は、欠陥検査装置で撮像した低倍率の画像、及び、ADR処理後の高倍率の画像を含んでよい。解析パラメータ記憶部204には、画像取得や画像解析時に実行する複数の実行条件(複数のパラメータ)が格納されている。複数の実行条件の例としては、フレームの積算枚数、加速電圧の電圧値、プローブ電流の電流値などのパラメータがある。また、複数の実行条件として、ADR条件、ADC条件などのパラメータが格納されていてもよい。解析結果データ記憶部205には、操作・解析部201による処理結果のデータが格納される。例えば、解析結果データ記憶部205には、複数の実行条件で処理された画像や、各実行条件によって処理された場合の処理時間またはスループットの情報などが格納される。
【0032】
操作・解析部201は、操作部115からの操作指示に応じて、全体制御部および解析部113に組み込まれたCPUによって、所定のプログラムを実行する。これにより、操作・解析部201が、複数の機能を実現することができる。例えば、操作・解析部201は、欠陥データ記憶部202から欠陥情報を取得し、画像データ記憶部203から欠陥画像を取得する。そして、操作・解析部201は、解析パラメータ記憶部204から複数の実行条件を取得し、各実行条件について欠陥画像に対して処理を実行する。操作・解析部201は、処理が実行された画像などの情報を解析結果データ記憶部205に格納する。
【0033】
なお、図1に示したような全体制御部および解析部113をSEM式欠陥観察装置に組み込んだ構成に限らず、図1に示したSEM式欠陥観察装置とは独立して、図2に示す操作・解析部201を構成してもよい。この場合、SEM式欠陥観察装置と操作・解析部201は、例えば、ネットワークを介して接続される。
【0034】
図3は、像ドリフト補正の概念図である。ここでは、ドリフトが発生している3枚の第1フレーム画像301、第2フレーム画像302、第3フレーム画像303に対して、ドリフト補正を実行する例を説明する。まず、第2フレーム画像302を基準として、第1フレーム画像301のドリフト量を算出し、算出したドリフト量に対応した量だけ重ね合わせ位置をずらして積算する(304)。同様に、第2フレーム画像302を基準として、第3フレーム画像303のドリフト量を算出し、算出したドリフト量に対応した量だけ重ね合わせ位置をずらして積算する(304)。算出したドリフト量を考慮して3枚のフレーム画像を重ね合わせた結果が、フレーム積算画像304である。
【0035】
図3の例示では、第2フレーム画像302を基準にドリフト量を算出しているが、最初に取得した第1フレーム画像301を基準としてもよいし、連続するフレーム画像間でドリフト量を算出する処理を繰り返してもよい。また、ここでは最終的なドリフト補正画像305として、フレーム積算画像304において、全3枚のフレーム画像301、302、303の共通部分を切出しているが、所望の画像サイズに対して不足する領域を特定の画素値で埋める、あるいは、周辺画素値から画像処理により算出した画素値で不足する領域を埋めるなどの処理を施してもよい。これらの像ドリフト補正処理は、画像処理部114で実行される。なお、像ドリフト補正処理は、全体制御部および解析部113で実行するようにしてもよい。
【0036】
<第1実施例>
以下では、SEM式欠陥観察装置における第1実施例に係る実行条件の最適化処理を説明する。図4は、フレーム画像積算枚数最適化処理のフローチャートである。以下では、実行条件の一例として、フレーム画像の積算枚数を最適化する処理について説明する。ここでは、以下の処理の主体は、全体制御部および解析部113とする。
【0037】
ステップ401において、まず、全体制御部および解析部113は、解析パラメータ記憶部204からフレーム積算枚数に関する複数のパラメータを取得する。そして、全体制御部および解析部113は、評価対象となる最大数のフレーム画像を画像データ記憶部203から取得する。
【0038】
ステップ402において、全体制御部および解析部113は、画像処理部114を用いて、取得したフレーム画像に対して、フレーム積算枚数を変化させて(すなわち、取得した複数のパラメータに従って)、ドリフト補正処理を実行する。全体制御部および解析部113は、ドリフト補正処理などの実行結果を解析結果データ記憶部205に格納する。
【0039】
次に、ステップ403において、全体制御部および解析部113は、フレーム積算枚数と各積算枚数におけるドリフト補正処理結果の画像を、対応関係が分る形式で、操作部115の表示部(例えば、ディスプレイ)に一覧表示する。この操作部115の表示部の画面の詳細については後述する。
【0040】
次に、ステップ404において、ユーザは一覧表示されたドリフト補正画像の中から、最適な画像を選択する。全体制御部および解析部113は、操作部115を介して、ユーザによって選択された画像の情報を受け取る。これにより、最適なドリフト補正条件を容易に設定することができる。
【0041】
最後に、ステップ405において、全体制御部および解析部113は、設定されたドリフト補正条件を、記憶装置116に格納されているレシピに反映させる。これにより、次回以降の欠陥観察に適用できるようになる。このようなフローチャートに従えば、ユーザは最適なドリフト補正条件を、容易に設定することができる。
【0042】
図5は、フレーム画像の積算枚数最適化設定のためのGUI(第1の画面)の一例であり、図4のステップ403で表示される画面の第1の例である。
【0043】
図5のGUIは、フレーム積算枚数表示部501と、補正処理前の積算画像を表示する補正処理前画像表示部502と、補正処理後の積算画像を表示する補正処理後画像表示部503と、補正処理の実行時間を表示する処理時間表示部504とを備える。
【0044】
フレーム積算枚数表示部501には、評価対象となる最小フレーム積算枚数、最小フレーム積算枚数の2倍、最小フレーム積算枚数の4倍を比較評価するフレーム積算枚数が表示されている。なお、フレーム積算枚数の選択は、この方法に限らず、最小値、中央値、最大値の組合せでもよいし、固定値ではなく、ユーザが任意に設定できるようにしてもよい。また、比較数も3種類に限定するものではなく、評価対象とするフレーム積算枚数を全て一覧表示してもよいし、選択処理を複数回繰り返して、段階的に最適値を絞り込んでいく方式を採用してもよい。
【0045】
補正処理前画像表示部502には、各積算枚数に関して補正処理前の積算画像が表示される。図5に示すように、像ドリフトが発生している場合、画像を積算することにより、評価対象の画像に含まれるパタンのエッジ部分のズレが目立って(太く)表示される。この例では、像ドリフトが発生しているため、積算枚数が増えるほど、評価対象の画像に含まれるパタンのエッジ部分のズレが大きく表示されている。なお、欠陥観察の対象となるサンプルには、ドリフト補正処理を実行する必要がないサンプルも存在しているため、ドリフト補正処理を実行していないフレーム積算画像を表示することで、ドリフト補正処理の要否も判断することができる。
【0046】
また、補正処理後画像表示部503には、各積算枚数に関して補正処理後の積算画像が表示される。補正処理によって、各積算枚数においてパタンのエッジ部分のズレが小さくなっている。このように、各フレーム積算枚数に対応する補正処理前の画像及び補正処理後の画像は、フレーム積算枚数と対応できる形式で表示される。
【0047】
また、処理時間表示部504には、各フレーム積算枚数、各フレーム積算画像との対応関係が分る形式で、ドリフト補正処理時間が表示される。ユーザは、実際にドリフト補正処理を実行した結果のドリフト補正画像(503)と、ドリフト補正処理に要した処理時間(504)の組合せの中から、最適な条件を容易に選択することができる。図5の例では、積算枚数が8枚の画像が選択されている(505)。最適な画像を選択した後にボタン506を押すと、選択した最適条件(ここでは、積算枚数=8)が、次回以降のドリフト補正条件としてレシピに保存される。
【0048】
以下では、フレーム画像の積算枚数最適化設定において表示される別の画面の例を説明する。図6は、フレーム画像の積算枚数最適化設定のためのGUI(第2の画面)の一例であり、図4のステップ403で表示される画面の第2の例である。
【0049】
SEM式欠陥観察装置において、上位の欠陥検査装置が検出した欠陥座標を観察する場合、欠陥が発生している製造パタンは多種多様であるため、多種多様な製造パタンに対応した条件設定を行うことが重要である。理想的には、多種多様な製造パタンに対して有効なパラメータが存在すれば、そのパラメータを採用すれば良いが、このようなパラメータは、一方で処理時間が長いことが多い。ユーザは、処理時間とのバランスを考慮して最適なパラメータを設定する必要があり、難易度が高い作業となっている。
【0050】
図6は、図5で例示したフレーム積算枚数の最適化設定を、複数の評価サンプルに対して適用した結果を、累積度数表示したものである。図6のグラフでは、横軸にフレーム積算枚数601、縦軸(左)に累積度数602、縦軸(右)にドリフト補正処理時間603をとる。また、図6のグラフには、各フレーム積算枚数における平均のドリフト補正処理時間がプロットされており、そのプロットされた点の近似直線605が表示されている。図6の例示では、補正処理時間を直線近似して表示しているが、補正処理アルゴリズムによっては直線状に表示されない場合もあり、このような場合には、近似曲線で表示してもよく、複数の評価サンプルに対する累積度数と、各フレーム積算枚数におけるドリフト補正処理時間が確認できればよい。
【0051】
このようにグラフ表示することで、複数の評価サンプルに対して、ユーザが最適と判断した結果を総合的に確認することができる。例えば、累積度数が100%になるフレーム積算枚数(604)から、全ての評価サンプルに対して、ユーザが満足できる画質を実現する最小フレーム積算枚数を判断することができる。図6の例示では、フレーム積算数が14の場合に累積度数が100%になっている。したがって、フレーム積算数を14にすれば、全ての評価サンプルに対して、ユーザが最適と判断した画質が得られる。なお、その時は、ドリフト補正処理時間は300ms程度であることが確認できる。
【0052】
また、ドリフト補正処理時間の制約がある場合には、例えば、制約となるドリフト補正処理時間606a、606bを表示させることもできる。この制約時間は、予め設定されていてもよいし、ユーザが任意に入力できるようにしてもよい。例えば、606aは、制約となるドリフト補正処理時間の制約時間を350msに設定した場合である。この場合、全ての積算フレーム数のドリフト補正処理時間は、制約の時間未満であるため、ユーザは、累積度数が100%になっているフレーム積算数を選択すればよい。
【0053】
例えば、606bは、制約となるドリフト補正処理時間の制約時間を250msに設定した場合である。この制約時間を満たすのは、フレーム積算数が12以下であることがわかる。ここで、フレーム積算数が12の場合は、累積度数が95%であり、ユーザが最適と判断した画質は、95%程度であったことが確認できる。ユーザは、この制約時間ではフレーム積算数を12にすれば、ほぼユーザが満足する画質が得られることが分かる。このように、フレーム積算数毎の累積度数602とドリフト補正処理時間603の両方を考慮して、最適なパラメータを選択することができる。ユーザは、最適なフレーム積算数を選択した後にボタン608を押すと、選択した最適条件(ここでは、積算枚数=14)が、次回以降のドリフト補正条件としてレシピに保存される。
【0054】
なお、上述の例では、実行条件の一例として、フレーム積算枚数を最適化する処理について説明したが、最適化する実行条件(パラメータ)はフレーム積算枚数に限定されない。上述したように、実行条件としては、加速電圧の電圧値、プローブ電流の電流値などのパラメータについても最適化処理が可能である。この場合、複数の加速電圧の条件に関して表示部に画像が表示され、ユーザが最適な加速電圧の条件を選択することになる。なお、加速電圧などの条件を設定する場合は、フレーム積算枚数の最適化処理の前に実行するのがよい。
【0055】
本実施例によれば、複数のドリフト補正条件(フレーム積算数)に対してドリフト補正処理を実行し、複数のドリフト補正条件と、複数のドリフト補正条件で補正処理を実行したドリフト補正画像とを対応させて表示する。したがって、像ドリフトが発生した場合でも観察画像の最適な補正条件を容易に決定することができる。また、観察対象となる製造パタンの多様性により、最適なドリフト補正条件が評価サンプル毎に変化する場合でも、ユーザは最適な条件を容易に設定することができる。
【0056】
<第2実施例>
以下では、SEM式欠陥観察装置における第2実施例に係る実行条件の最適化処理を説明する。第2実施例は、欠陥自動観察(ADR:Automatic Defect ReviewまたはRedetection)の欠陥検出率とスループットを両立させる最適な観察条件設定処理に関するものである。ADRは、上位の欠陥検査装置が出力する欠陥座標の誤差を補正し、欠陥領域、欠陥座標などを検出し、高画質の欠陥画像を取得する処理である。図7は、ADRの欠陥検出率とスループットを両立させる条件設定処理のフローチャートである。以下では、実行条件の一例として、フレーム画像の積算枚数を最適化する処理について説明する。
【0057】
SEM式欠陥観察装置において、上位の欠陥検査装置が検出した欠陥座標の画像をADRで自動撮像する場合、欠陥検査装置の欠陥検出座標精度を考慮して、まず、欠陥が視野内に収まるような低倍率で画像を取得して、取得した低倍率の画像を用いて欠陥検出を行い、次に、検出した欠陥座標が視野中心となるように、高画質な高倍率画像を取得する。欠陥検出を行う低倍率画像は、ユーザの見た目の印象よりも、ADRで欠陥検出できることが重要である。したがって、ADRが欠陥検出を行う低倍率画像においては、ADRが正しく欠陥位置を検出できるか否かがパラメータ設定の重要な指標となる。
【0058】
一般に、フレーム積算画像では、積算枚数を増やすにつれてノイズ成分が減少するため、欠陥検出率の観点からは、積算枚数は多い方が望ましいが、積算枚数を増やすと処理時間も増加してしまう。特に、ドリフト補正処理を行う場合には、各フレーム画像間のドリフト量を算出する処理が必要なため、フレーム積算に要する処理時間の増加が問題となる。このような条件下で、ADRの欠陥検出率とフレーム積算処理時間を含むADRのスループットとのバランスを考慮して、最適な条件を設定する必要があり、レシピ設定において難易度が高い設定項目になっている。
【0059】
以下、図7のフローチャートについて説明する。ここでは、以下の処理の主体は、全体制御部および解析部113とする。
ステップ701において、まず、全体制御部および解析部113は、解析パラメータ記憶部204からフレーム積算枚数に関する複数のパラメータを取得する。そして、全体制御部および解析部113は、評価対象となる最大数のフレーム画像を画像データ記憶部203から取得する。
【0060】
次に、ステップ702において、全体制御部および解析部113は、画像処理部114を用いて、取得したフレーム画像に対して、フレーム積算枚数を変化させて(すなわち、取得した複数のパラメータに従って)、ドリフト補正処理を実行する。
【0061】
次に、ステップ703において、まず、全体制御部および解析部113は、ドリフト補正処理前の各フレーム積算画像に対して、ADR処理を実行する。さらに、全体制御部および解析部113は、フレーム積算枚数を変化させてドリフト補正処理を実行した各フレーム積算画像に対して、ADR処理を実行する。そして、全体制御部および解析部113は、ADR処理の実行結果を解析結果データ記憶部205に格納する。
【0062】
次に、ステップ704において、全体制御部および解析部113は、各フレーム積算枚数におけるドリフト補正画像と、各ドリフト補正画像に対してADRが検出した欠陥位置と、各ドリフト補正画像におけるADRのスループットとを、対応関係が分る形式で、操作部115の表示部(例えば、ディスプレイ)に一覧表示する。この操作部115の表示部の画面の詳細については後述する。
【0063】
次に、ステップ705において、ユーザは一覧表示されたドリフト補正画像とADR実行結果の中から、最適な画像を選択する。全体制御部および解析部113は、操作部115を介して、ユーザによって選択された画像の情報を受け取る。これにより、ADRを考慮した最適なドリフト補正条件を容易に設定することができる。
【0064】
最後に、ステップ706において、全体制御部および解析部113は、ADRを考慮した最適なドリフト補正条件を、記憶装置116に格納されているレシピに反映させる。これにより、次回以降の欠陥観察に適用できるようになる。このようなフローチャートに従えば、ユーザはADRを考慮した最適なドリフト補正条件を容易に設定することができる。
【0065】
図8は、ADRの欠陥検出率とスループットを両立させる条件設定のためのGUIの一例であり、図7のステップ704で表示される画面の例である。
【0066】
図8のGUIは、ADR結果の表示選択部801と、フレーム積算枚数表示部802と、補正処理前の積算画像を表示する補正処理前画像表示部803と、補正処理後の積算画像を表示する補正処理後画像表示部806と、補正処理の実行時間を表示する処理時間表示部807と、ADRのスループットを表示するスループット表示部808とを備える。
【0067】
ADR結果の表示選択部801は、ADRの結果も重ねて表示するかを選択するものであり、チェックされた場合には、ADRの結果(欠陥領域804及び欠陥座標805)が、画像に重なる形式で表示される。図8の例示では、ADRが検出した欠陥領域804を多角形でグルーピングした結果を表示しているが、グルーピング処理せずに、検出した全ての欠陥領域をオーバーレイ表示してもよい。また、図8の例示では、ADRが検出した欠陥座標805は、欠陥領域804の重心を採用しているが、例えば、画素値を考慮するなど欠陥の特徴量(例えば、輝度など)を定義して、最も欠陥らしいと判断した画素を欠陥座標としてもよく、ADRの欠陥検出アルゴリズムに対応した定義を採用すればよい。
【0068】
フレーム積算枚数表示部802には、評価対象となる最小フレーム積算枚数、最小フレーム積算枚数の2倍、最小フレーム積算枚数の4倍を比較評価するフレーム積算枚数が表示されている。なお、フレーム積算枚数の選択は、この方法に限らず、最小値、中央値、最大値の組合せでもよいし、固定値ではなく、ユーザが任意に設定できるようにしてもよい。また、比較数も3種類に限定するものではなく、評価対象とするフレーム積算枚数を全て一覧表示してもよいし、選択処理を複数回繰り返して、段階的に最適値を絞り込んでいく方式を採用してもよい。
【0069】
補正処理前画像表示部803には、各積算枚数に関して補正処理前の積算画像が表示される。像ドリフトが発生している場合、画像を積算することにより、評価対象の画像に含まれるパタンや欠陥のエッジ部分のズレが目立って(太く)表示される。図8の例では、像ドリフト及びノイズ成分のために、積算枚数が少ないほど欠陥領域804が広く検出されている。その結果、フレーム積算枚数が4、8の場合では、欠陥位置811に対して欠陥座標805がズレて検出されている。なお、欠陥観察の対象となるサンプルには、ドリフト補正処理を実行する必要がないサンプルも存在しているため、ドリフト補正処理を実行していないフレーム積算画像を表示することで、ドリフト補正処理の要否も判断することができる。
【0070】
また、補正処理後画像表示部806には、各積算枚数に関して補正処理後の積算画像が表示される。図8に示すように、各フレーム積算枚数に対応する補正処理前の画像及び補正処理後の画像は、フレーム積算枚数と対応できる形式で表示される。なお、補正処理によって、各積算枚数においてパタンや欠陥のエッジ部分のズレが小さくなり、その結果、欠陥領域804が補正処理前に比べて小さくなる。これにより、欠陥位置811に対して欠陥座標805のズレも小さくなる。
【0071】
また、ドリフト補正処理時間が、各フレーム積算枚数、ADR結果が表示された各フレーム積算画像との対応関係が分る形式で、処理時間表示部807に表示される。さらに、ドリフト補正処理時間を含むADRのスループットが、各フレーム積算枚数、ADR結果が表示された各フレーム積算画像との対応関係が分る形式でスループット表示部808に表示される。ADRを適用した場合の処理時間は、ドリフト補正処理時間を含むADRのスループットとして議論される場合が多いので、ドリフト補正処理時間(807)だけでなく、ADRのスループット(808)を併記するのが望ましい。
【0072】
このようなGUIを用いれば、ユーザは、実際にドリフト補正処理を実行した画像と、各ドリフト補正画像に対するADR結果と、各ドリフト補正画像に対するADRのスループットの組合せの中から、最適な条件を容易に選択することができる(809)。最適な画像を選択した後にボタン810を押すと、選択した最適条件(ここでは、積算枚数=8)が、次回以降のADRを考慮したドリフト補正条件としてレシピに保存される。
【0073】
また、図7のステップ704において、図6で例示した画面と同様の内容を表示してもよい。複数のサンプルに対するADRを考慮したドリフト補正条件の最適化は、図6で例示した内容と同様に対応できる。図6では、図5でユーザが最適と判断した画像の累積度数を表示している。これに対して、ADRを考慮したドリフト補正条件最適化の場合には、図8で、ユーザがADRを考慮して最適と判断した画像の累積度数を表示すると考えればよい。なお、本実施例では、累積度数に限定されず、他の情報も表示してもよい。例えば、ユーザが最適と判断した画像は、正しく欠陥座標が検出できていることを意味するため、ユーザが最適と判断した画像の欠陥座標と他のフレーム積算数の画像の欠陥座標とを比較することによって、各フレーム積算数について欠陥の検出率を算出することができる。この場合、グラフには、各フレーム積算数に対する検出率も表示される。また、図6では、ドリフト補正処理時間を第二軸としてグラフ表示していたが、ADRを考慮したドリフト補正条件最適化の場合には、ドリフト補正処理時間を含むADRのスループットをグラフ表示してもよい。
【0074】
本実施例によれば、観察対象となる製造パタンの多様性により、最適なドリフト補正条件がサンプル毎に変化する場合でも、ADRを考慮したドリフト補正条件を容易に選択することができる。また、設定処理において、ドリフト補正処理時間を含むADCのスループットが表示されるので、ADRの欠陥検出率とスループットを両立させる条件を容易に設定することができる。
【0075】
<第3実施例>
以下では、SEM式欠陥観察装置における第3実施例に係る実行条件の最適化処理を説明する。第3実施例は、欠陥自動分類(ADC:Automatic Defect Classification)の分類正解率とスループットを両立させる最適な観察条件設定処理に関するものである。ADCは、高画質で取得した欠陥画像をもとに、欠陥の種類を分類する(欠陥種を特定する)処理である。図9は、ADCの分類正解率とスループットを両立させる条件設定処理のフローチャートである。以下では、実行条件の一例として、フレーム画像の積算枚数を最適化する処理について説明する。
【0076】
ADCで正解率を確保するためには、欠陥を高画質で解析する必要があり、ADCの対象となる高倍率画像の取得条件が重要となる。ADCのアルゴリズムによっては、高倍率画像だけでなく、低倍率画像を併用することもあるが、ここでは、ADCの正解率に与える影響が大きい画像は高倍率画像であるとして説明する。
【0077】
一般に、ドリフト補正を行ったフレーム積算画像では、積算枚数を増やすにつれてノイズ成分が減少するため、ADCの分類正解率の観点からは、積算枚数は多い方が望ましいが、積算枚数を増やすと、ドリフト補正処理時間を含むADC処理時間が増加してしまう。また、ユーザが目視分類するのに適した画質と、ADCで十分な正解率が得られる画質とは必ずしも一致しないため、ADCの分類正解率とフレーム積算枚数、およびドリフト補正処理時間を含むADC処理時間とのバランスを考慮して、最適な条件を設定しなければならない。このため、ADCの分類正解率とスループットを両立する条件の最適化は、レシピ設定において難易度が高い作業になっている。
【0078】
以下、図9のフローチャートについて説明する。ここでは、以下の処理の主体は、全体制御部および解析部113とする。
ステップ901において、まず、全体制御部および解析部113は、解析パラメータ記憶部204からフレーム積算枚数に関する複数のパラメータを取得する。そして、全体制御部および解析部113は、評価対象となる最大数のフレーム画像を画像データ記憶部203から取得する。
【0079】
次に、ステップ902において、全体制御部および解析部113は、画像処理部114を用いて、取得したフレーム画像に対して、フレーム積算枚数を変化させて(すなわち、取得した複数のパラメータに従って)、ドリフト補正処理を実行する。
【0080】
次に、ステップ903において、まず、全体制御部および解析部113は、ドリフト補正処理前の各フレーム積算画像に対して、ADC処理を実行する。さらに、全体制御部および解析部113は、フレーム積算枚数を変化させてドリフト補正処理を実行した各フレーム積算画像に対して、ADC処理を実行する。そして、全体制御部および解析部113は、ADC処理の実行結果を解析結果データ記憶部205に格納する。
【0081】
次に、ステップ904において、全体制御部および解析部113は、各フレーム積算枚数におけるドリフト補正画像と、各ドリフト補正画像に対するADCの分類結果と、各ドリフト補正画像におけるADCのスループットとを、対応関係が分る形式で、操作部115の表示部(例えば、ディスプレイ)に一覧表示する。この操作部115の表示部の画面の詳細については後述する。
【0082】
次に、ステップ905において、ユーザは一覧表示されたドリフト補正画像とADCの分類結果の中から、最適な画像を選択する。全体制御部および解析部113は、操作部115を介して、ユーザによって選択された画像の情報を受け取る。これにより、ADCを考慮した最適なドリフト補正条件を容易に設定することができる。
【0083】
最後に、ステップ906において、全体制御部および解析部113は、ADCを考慮した最適なドリフト補正条件を、記憶装置116に格納されているレシピに反映させる。これにより、次回以降の欠陥観察に適用できるようになる。このようなフローチャートに従えば、ユーザはADCを考慮した最適なドリフト補正条件を容易に設定することができる。
【0084】
図10は、ADCの分類正解率とスループットを両立させる条件設定のためのGUIの一例であり、図9のステップ904で表示される画面の例である。
【0085】
図10のGUIは、ADC結果の表示選択部1001と、フレーム積算枚数表示部1002と、補正処理前の積算画像を表示する補正処理前画像表示部1003と、補正処理前の積算画像に対するADC結果を表示する第1のADC結果表示部1004と、補正処理後の積算画像を表示する補正処理後画像表示部1006と、補正処理後の積算画像に対するADC結果を表示する第2のADC結果表示部1007と、補正処理の実行時間を表示する処理時間表示部1008と、ADCのスループットを表示するスループット表示部1009とを備える。
【0086】
ADC結果の表示選択部1001は、ADCの結果も重ねて表示するかを選択するものであり、チェックされた場合には、ADCの結果(欠陥領域1005、第1のADC結果表示部1004、第2のADC結果表示部1007)が表示される。図10の例示では、ADCが検出した欠陥領域1005を多角形でグルーピングした結果を表示しているが、グルーピング処理せずに、検出した全ての欠陥領域をオーバーレイ表示してもよい。
【0087】
フレーム積算枚数表示部1002には、評価対象となる最小フレーム積算枚数、最小フレーム積算枚数の2倍、最小フレーム積算枚数の4倍を比較評価するフレーム積算枚数が表示されている。なお、フレーム積算枚数の選択は、この方法に限らず、最小値、中央値、最大値の組合せでもよいし、固定値ではなく、ユーザが任意に設定できるようにしてもよい。また、比較数も3種類に限定するものではなく、評価対象とするフレーム積算枚数を全て一覧表示してもよいし、選択処理を複数回繰り返して、段階的に最適値を絞り込んでいく方式を採用してもよい。
【0088】
補正処理前画像表示部1003には、各積算枚数に関して補正処理前の積算画像が表示される。像ドリフトが発生している場合、画像を積算することにより、評価対象の画像に含まれるパタンや欠陥のエッジ部分のズレが目立って(明るく)表示される。図10の例では、像ドリフト及びノイズ成分のために、積算枚数が少ないほど欠陥領域1005が広く検出されている。なお、欠陥観察の対象となるサンプルには、ドリフト補正処理を実行する必要がないサンプルも存在しているため、ドリフト補正処理を実行していないフレーム積算画像を表示することで、ドリフト補正処理の要否も判断することができる。
【0089】
第1のADC結果表示部1004には、各積算枚数に関して、補正処理前の積算画像に対するADC結果が表示される。図10の例では、フレーム積算枚数が4の場合は、ADCの分類結果が確定されず、「Unknown」と表示されている。フレーム積算枚数が8の場合は、「Short」(短絡)と分類されており、この例においては、正しい分類結果が得られていない。また、フレーム積算枚数が16の場合は、「Dust」(異物)と分類されており、正しい分類結果が得られている。
【0090】
また、補正処理後画像表示部1006には、各積算枚数に関して補正処理後の積算画像が表示される。図10に示すように、各フレーム積算枚数に対応する補正処理前の画像及び補正処理後の画像は、フレーム積算枚数と対応できる形式で表示される。なお、補正処理によって、各積算枚数においてパタンや欠陥のエッジ部分のズレが小さくなり、その結果、欠陥領域1005が補正処理前に比べて小さくなっている。
【0091】
第2のADC結果表示部1007には、各積算枚数に関して、補正処理後の積算画像に対するADC結果が表示される。図10の例では、フレーム積算枚数が4の場合は、補正処理後でもADCの分類結果が確定されず、「Unknown」と表示されている。フレーム積算枚数が8の場合は、「Dust」と分類されており、補正処理前に対して正しい結果が得られている。また、フレーム積算枚数が16の場合は、「Dust」と分類されている。
【0092】
また、ドリフト補正処理時間が、各フレーム積算枚数、ADC結果が表示された各フレーム積算画像との対応関係が分る形式で、処理時間表示部1008に表示される。さらに、ドリフト補正処理時間を含むADCのスループットが、各フレーム積算枚数、ADC結果が表示された各フレーム積算画像との対応関係が分る形式でスループット表示部1009に表示される。ADCを適用した場合の処理時間は、ドリフト補正処理時間を含むADCのスループットとして議論される場合が多いので、ドリフト補正処理時間(1008)だけでなく、ADCのスループット(1009)を併記するのが望ましい。なお、ADC処理はADR処理と並列にパイプライン処理されることが多い。特に、処理対象のサンプル数によっては、ADCとADRのスループットが同等になる場合があるので、ここではADCとADRのスループットを特に区別せずに表示している。しかし、ADCのスループットを正確に認識したい場合には、ADCとADRのスループットを区別して表示するようにしてもよい。
【0093】
このようなGUIを用いれば、ユーザは、実際にドリフト補正処理を実行した画像と、各ドリフト補正画像に対するADC結果と、各ドリフト補正画像に対するADCのスループットの組合せの中から、最適な条件を容易に選択することができる(1010)。最適な画像を選択した後にボタン1011を押すと、選択した最適条件(ここでは、積算枚数=8)が、次回以降のADCを考慮したドリフト補正条件としてレシピに保存される。
【0094】
また、図9のステップ904において、図6で例示した画面と同様の内容を表示してもよい。複数のサンプルに対するADCを考慮したドリフト補正条件の最適化は、図6で例示した内容と同様に対応できる。図6では、図5でユーザが最適と判断した画像の累積度数を表示している。これに対して、ADCを考慮したドリフト補正条件最適化の場合には、図10で、ユーザがADCを考慮して最適と判断した画像の累積度数を表示すると考えればよい。なお、本実施例では、累積度数に限定されず、他の情報も表示してもよい。例えば、ユーザが最適と判断した画像は、正しく欠陥分類が行われた画像を意味するため、ユーザが最適と判断した画像のADC結果と他のフレーム積算数の画像のADC結果とを比較することによって、各フレーム積算数について欠陥分類の正解率を算出することができる。この場合、グラフには、各フレーム積算数に対する欠陥分類の正解率も表示される。また、図6では、ドリフト補正処理時間を第二軸としてグラフ表示していたが、ADCを考慮したドリフト補正条件最適化の場合には、ドリフト補正処理時間を含むADCのスループットをグラフ表示してもよい。
【0095】
本実施例によれば、観察対象となる製造パタンの多様性により、最適なドリフト補正条件がサンプル毎に変化する場合でも、ADCを考慮したドリフト補正条件を容易に選択することができる。また、設定処理において、ドリフト補正処理時間を含むADCのスループットが表示されるので、ADCの欠陥分類正解率とスループットを両立させる条件を容易に設定することができる。
【0096】
<第4実施例>
以下では、SEM式欠陥観察装置における第4実施例に係る実行条件の最適化処理を説明する。第4実施例は、ADRの欠陥検出率とスループットの両立、及びADCの分類正解率とスループットの両立を実現する観察条件設定処理に関するものである。図11は、ADRの欠陥検出率とスループットの両立、及びADCの分類正解率とスループットの両立を実現する条件設定処理のフローチャートである。以下では、実行条件の一例として、フレーム画像の積算枚数を最適化する処理について説明する。
【0097】
図11は、図7で例示したフローと、図8で例示したフローを統合したものである。ここでは、以下の処理の主体は、全体制御部および解析部113とする。
ステップ1101において、まず、全体制御部および解析部113は、解析パラメータ記憶部204からフレーム積算枚数に関する複数のパラメータを取得する。そして、全体制御部および解析部113は、評価対象となる最大数のフレーム画像を画像データ記憶部203から取得する。
【0098】
次に、ステップ1102において、全体制御部および解析部113は、画像処理部114を用いて、取得したフレーム画像に対して、フレーム積算枚数を変化させて(すなわち、取得した複数のパラメータに従って)、ドリフト補正処理を実行する。
【0099】
次に、ステップ1103において、まず、全体制御部および解析部113は、ドリフト補正処理前の各フレーム積算画像に対して、ADR処理を実行する。全体制御部および解析部113は、フレーム積算枚数を変化させてドリフト補正処理を実行した各フレーム積算画像に対して、ADR処理を実行する。そして、全体制御部および解析部113は、ADR処理の実行結果を解析結果データ記憶部205に格納する。
【0100】
次に、ステップ1104において、全体制御部および解析部113は、各フレーム積算枚数におけるドリフト補正画像と、各ドリフト補正画像に対してADRが検出した欠陥位置と、各ドリフト補正画像におけるADRのスループットとを、対応関係が分る形式で、操作部115の表示部(例えば、ディスプレイ)に一覧表示する。ここでは、図8の画面が表示される。
【0101】
次に、ステップ1105において、ユーザは一覧表示されたドリフト補正画像とADR実行結果の中から、最適な画像を選択する。全体制御部および解析部113は、操作部115を介して、ユーザによって選択された画像の情報を受け取る。
【0102】
次に、ステップ1106において、まず、全体制御部および解析部113は、ドリフト補正処理前の各フレーム積算画像に対して、ADC処理を実行する。さらに、全体制御部および解析部113は、フレーム積算枚数を変化させてドリフト補正処理を実行した各フレーム積算画像に対して、ADC処理を実行する。そして、全体制御部および解析部113は、ADC処理の実行結果を解析結果データ記憶部205に格納する。
【0103】
次に、ステップ1107において、全体制御部および解析部113は、各フレーム積算枚数におけるドリフト補正画像と、各ドリフト補正画像に対するADCの分類結果と、各ドリフト補正画像におけるADCのスループットとを、対応関係が分る形式で、操作部115の表示部(例えば、ディスプレイ)に一覧表示する。ここでは、図10の画面が表示される。
【0104】
次に、ステップ1108において、ユーザは一覧表示されたドリフト補正画像とADCの分類結果の中から、最適な画像を選択する。全体制御部および解析部113は、操作部115を介して、ユーザによって選択された画像の情報を受け取る。
【0105】
最後に、ステップ1109において、全体制御部および解析部113は、ADRを考慮した最適なドリフト補正条件、及び、ADCを考慮した最適なドリフト補正条件を、記憶装置116に格納されているレシピに反映させる。
【0106】
このようなフローチャートに従えば、ユーザはADRの欠陥検出率とスループットを両立する最適条件と、ADCの分類正解率とスループットを両立する最適条件を、容易に設定することができる。
【0107】
本実施例によれば、ADRとADCの両方のドリフト補正条件を連続して設定できる。上述したように、ADCとADRのスループットが同等にならない場合もあるので、例えば、ステップ1107において、ADCとADRのスループットを区別して表示することも可能となる。これにより、ADCとADRの両方のスループットを見比べながら最適なドリフト補正条件を決定することもできる。また、ADRとADCの両方のドリフト補正条件を連続して設定することにより、ステップ1102で処理されたドリフト補正画像をステップ1106でそのまま利用することができ、処理時間を短縮することもできる。
【0108】
なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることがあり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【0109】
また、上述したように、全体制御部および解析部113は、画像処理部114は、実施例の機能を実現するソフトウェアのプログラムコードで実現してもよい。この場合、プログラムコードを記録した記憶媒体を情報処理装置に提供し、その情報処理装置(またはCPU)が記憶媒体に格納されたプログラムコードを読み出すようにしてもよい。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施例の機能を実現することになり、そのプログラムコード自体、およびそれを記憶した記憶媒体は本発明を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD−ROM、DVD−ROM、ハードディスク、光ディスク、光磁気ディスク、CD−R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。なお、プログラムが記録された記録媒体により、既存の装置をアップグレードすることも可能である。
【0110】
また、プログラムコードの指示に基づき、情報処理装置上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施例の機能が実現されるようにしてもよい。さらに、実施例の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することにより、それを情報処理装置の記憶装置またはCD−RW、CD−R等の記憶媒体に格納し、使用時にその情報処理装置のCPUが当該記憶装置や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしてもよい。
【0111】
本発明は、具体例に関連して記述したが、これらは、すべての観点に於いて限定の為ではなく説明の為である。本分野にスキルのある者には、本発明を実施するのに相応しいハードウェア、ソフトウェア、およびファームウエアの多数の組み合わせがあることが解るであろう。例えば、本実施例に記載の機能を実現するプログラムコードは、アセンブラ、C/C++、perl、Shell、PHP、Java(登録商標)等の広範囲のプログラムまたはスクリプト言語で実装できる。
【0112】
また、図面における制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていてもよい。
【符号の説明】
【0113】
101 :電子銃
102 :レンズ
103 :走査偏向器
104 :対物レンズ
105 :試料
106 :ステージ
107 :一次電子ビーム
108 :二次粒子
109 :二次粒子検出器
110 :電子光学系制御部
111 :A/D変換部
112 :ステージ制御部
113 :全体制御部および解析部
114 :画像処理部
115 :操作部
116 :記憶装置
117 :光学式顕微鏡
201 :操作・解析部
202 :欠陥データ記憶部
203 :画像データ記憶部
204 :解析パラメータ記憶部
205 :解析結果データ記憶部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11