【実施例】
【0029】
次に、実施例に基づいて本発明を説明する。以下に示す実施例は、理解を容易にするためのものであり、これらの実施例によって本発明を制限するものではない。すなわち、本発明の技術思想に基づく変形及び他の実施例は、当然本発明に含まれる。
【0030】
純度99.995%のタンタル原料を電子ビーム溶解し、これを鋳造して直径195mmφのインゴットとした。次に、このインゴットを室温で締め鍛造して直径150mmφとし、これを1100〜1400℃の温度で再結晶焼鈍した。
再度、これを室温で鍛伸−据え込み鍛造を繰り返して厚さ100mm、直径150mmφとし(一次鍛造)、これを再結晶温度〜1400℃の温度で再結晶焼鈍した。さらに、これを室温で鍛伸−据え込み鍛造を繰り返して厚さ70〜100mm、直径150〜185mmφとし(二次鍛造)、これを再結晶温度〜1400℃の温度で再結晶焼鈍して、ターゲット素材を得た。
【0031】
(実施例1)
実施例1では、得られたターゲット素材を、圧延ロール径400mmの圧延ロールを用いて、圧延速度10m/min、圧延率86%、1パスの最大圧下率を10%として冷間圧延して厚さ14mm、直径520mmφとし、これを1000℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。
以上の工程により、(100)面の配向率が30%、(111)面の配向率が50%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。このスパッタリングターゲットを使用して、スパッタリングを実施した。
【0032】
次に、ターゲットのエロ―ジョン最深部厚みが8mm程度となった時点で、スパッタリングを一時停止し、スパッタリング装置(真空容器)内に窒素ガスを60秒間導入した。これによって、ターゲットの表面に、厚みが200Å程度の窒化膜を形成した。
次に、スパッタリング装置を大気に解放し、内部の機器の交換又は洗浄を実施した。この後、再度スパッタリング装置を密閉し、スパッタリングを再開した。バーンインは75kwhと電力量は少なく、短時間でスパッタリングが可能となり、かつスパッタリング後の膜の抵抗変動は14%となり、膜特性の変化は少なかった。
【0033】
タンタル膜の成膜は、下記の条件で行った(以下の実施例、比較例も同様とした)。
<成膜条件>
電源:直流方式
電力:15kW
到達真空度:5×10
-8Torr
雰囲気ガス組成:Ar
スパッタガス圧:5×10
-3Torr
スパッタ時間:15秒
【0034】
(実施例2)
実施例2では、得られたターゲット素材を、圧延ロール径400mmの圧延ロールを用いて、圧延速度8m/min、圧延率88%、1パスの最大圧下率を10%として冷間圧延して厚さ14mm、直径520mmφとし、これを900℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。
以上の工程により、(100)面の配向率が50%、(111)面の配向率が20%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。このスパッタリングターゲットを使用して、スパッタリングを実施した。
【0035】
次に、ターゲットのエロ―ジョン最深部厚みが8mm程度となった時点で、スパッタリングを一時停止し、スパッタリング装置(真空容器)内に窒素ガスを60秒間導入した。これによって、ターゲットの表面に、厚みが320Å程度の窒化膜を形成した。
次に、スパッタリング装置を大気に解放し、内部の機器の交換又は洗浄を実施した。この後、再度スパッタリング装置を密閉し、スパッタリングを再開した。バーンインは50kwhと電力量は少なく、短時間でスパッタリングが可能となり、かつスパッタリング後の膜の抵抗変動は10%となり、膜特性の変化は少なかった。
【0036】
(実施例3)
実施例3では、得られたターゲット素材を、圧延ロール径400mmの圧延ロールを用いて、圧延速度5m/min、圧延率85%、1パスの最大圧下率を10%として冷間圧延して厚さ14mm、直径520mmφとし、これを1100℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。
以上の工程により、(100)面の配向率が70%、(111)面の配向率が15%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。このスパッタリングターゲットを使用して、スパッタリングを実施した。
【0037】
次に、ターゲットのエロ―ジョン最深部厚みが8mm程度となった時点で、スパッタリングを一時停止し、スパッタリング装置(真空容器)内に窒素ガスを60秒間導入した。これによって、ターゲットの表面に、厚みが450Å程度の窒化膜を形成した。
次に、スパッタリング装置を大気に解放し、内部の機器の交換又は洗浄を実施した。この後、再度スパッタリング装置を密閉し、スパッタリングを再開した。バーンインは35kwhと電力量は少なく、短時間でスパッタリングが可能となり、かつスパッタリング後の膜の抵抗変動は7%となり、膜特性の変化は少なかった。
【0038】
(実施例4)
実施例4では、得られたターゲット素材を、圧延ロール径500mmの圧延ロールを用いて、圧延速度5m/min、圧延率90%、1パスの最大圧下率を5%として、冷間圧延して厚さ14mm、直径520mmφとし、これを800℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。
以上の工程により、(100)面の配向率が90%、(111)面の配向率が5%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。このスパッタリングターゲットを使用して、スパッタリングを実施した。
【0039】
次に、ターゲットのエロ―ジョン最深部厚みが8mm程度となった時点で、スパッタリングを一時停止し、スパッタリング装置(真空容器)内に窒素ガスを60秒間導入した。これによって、ターゲットの表面に、厚みが500Å程度の窒化膜を形成した。
次に、スパッタリング装置を大気に解放し、内部の機器の交換又は洗浄を実施した。この後、再度スパッタリング装置を密閉し、スパッタリングを再開した。バーンインは25kwhと電力量は少なく、短時間でスパッタリングが可能となり、かつスパッタリング後の膜の抵抗変動は5%となり、膜特性の変化は少なかった。
【0040】
(比較例1)
比較例1では、得られたターゲット素材を、圧延ロール径400mmの圧延ロールを用いて、圧延速度5m/min、圧延率85%、1パスの最大圧下率を10%として、冷間圧延して厚さ14mm、直径520mmφとし、これを1100℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。
以上の工程により、(100)面の配向率が70%、(111)面の配向率が15%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。このスパッタリングターゲットを使用して、スパッタリングを実施した。
【0041】
次に、ターゲットのエロ―ジョン最深部厚みが8mm程度となった時点で、スパッタリングを一時停止し、スパッタリング装置を大気に解放し、内部の機器の交換又は洗浄を実施した。この後、再度スパッタリング装置を密閉し、スパッタリングを再開した。バーンインは300kwhと電力量は少なく、短時間でスパッタリングが可能となり、かつスパッタリング後の膜の抵抗変動は35%となり、膜特性の変化が最も大きくなった。これは、窒化膜が形成されておらず、酸化が急速に進んだことが原因と考えられた。
【0042】
(比較例2)
比較例2では、得られたターゲット素材を、圧延ロール径500mmの圧延ロールを用いて、圧延速度15m/min、圧延率78%、1パスの最大圧下率を15%として、冷間圧延して厚さ14mm、直径520mmφとし、これを800℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。
以上の工程により、(100)面の配向率が20%、(111)面の配向率が60%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。なお、この結晶配向は、本願発明から逸脱するものである。このスパッタリングターゲットを使用して、スパッタリングを実施した。
【0043】
次に、ターゲットのエロ―ジョン最深部厚みが8mm程度となった時点で、スパッタリングを一時停止し、スパッタリング装置(真空容器)内に窒素ガスを60秒間導入した。これによって、ターゲットの表面に、厚みが150Å程度の窒化膜を形成した。
次に、スパッタリング装置を大気に解放し、内部の機器の交換又は洗浄を実施した。この後、再度スパッタリング装置を密閉し、スパッタリングを再開した。バーンインは275kwhと電力量が増加し、定常のスパッタリングとなるまで長時間を要した。またスパッタリング後の膜の抵抗変動は32%となり、膜特性の変化が大きくなり、好ましくない結果となった。これは、結晶配向率が適切でないことが原因と考えられた。
【0044】
(比較例3)
比較例3では、得られたターゲット素材を、圧延ロール径400mmの圧延ロールを用いて、圧延速度5m/min、圧延率85%、1パスの最大圧下率を10%として、冷間圧延して厚さ14mm、直径520mmφとし、これを1100℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。
以上の工程により、(100)面の配向率が70%、(111)面の配向率が15%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。このスパッタリングターゲットを使用して、スパッタリングを実施した。
【0045】
次に、ターゲットのエロ―ジョン最深部厚みが8mm程度となった時点で、スパッタリングを一時停止し、スパッタリング装置(真空容器)内に窒素ガスを30秒間導入した。これによって、ターゲットの表面に、厚みが150Å程度の窒化膜を形成した。
次に、スパッタリング装置を大気に解放し、内部の機器の交換又は洗浄を実施した。この後、再度スパッタリング装置を密閉し、スパッタリングを再開した。バーンインは105kwhと電力量が増加した。定常のスパッタリングが可能となるまで長時間を要した。またスパッタリング後の膜の抵抗変動は24%となり、膜特性の変化も大きくなった。これは、窒化膜形成のための窒素フロー時間が不十分であったことが原因と考えられた。
【0046】
以上の実施例及び比較例が示すように、本願発明の条件の範囲にあるものは、タンタルターゲットの成膜特性及び成膜速度を安定化させ、かつバーンイン時間も短縮でき、時間と電力の浪費及び材料(成膜)特性を良好にすることができた。また、放電電圧のバラツキを低く抑えることができ、さらに放電異常発生率を低減できるという優れた効果を有する。