特許第6010429号(P6010429)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 信越化学工業株式会社の特許一覧

特許6010429非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法、非水電解質二次電池用負極材の製造方法、及び非水電解質二次電池の製造方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6010429
(24)【登録日】2016年9月23日
(45)【発行日】2016年10月19日
(54)【発明の名称】非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法、非水電解質二次電池用負極材の製造方法、及び非水電解質二次電池の製造方法
(51)【国際特許分類】
   H01M 4/38 20060101AFI20161006BHJP
   H01M 4/134 20100101ALI20161006BHJP
【FI】
   H01M4/38 Z
   H01M4/134
【請求項の数】9
【全頁数】18
(21)【出願番号】特願2012-246220(P2012-246220)
(22)【出願日】2012年11月8日
(65)【公開番号】特開2014-96248(P2014-96248A)
(43)【公開日】2014年5月22日
【審査請求日】2014年11月25日
(73)【特許権者】
【識別番号】000002060
【氏名又は名称】信越化学工業株式会社
(74)【代理人】
【識別番号】100102532
【弁理士】
【氏名又は名称】好宮 幹夫
(72)【発明者】
【氏名】中西 鉄雄
(72)【発明者】
【氏名】谷口 一行
(72)【発明者】
【氏名】山田 佳益
【審査官】 太田 一平
(56)【参考文献】
【文献】 特開2012−204181(JP,A)
【文献】 特開2012−164481(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/00 − 4/62
H01M 10/052
(57)【特許請求の範囲】
【請求項1】
非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法であって、蒸着法によって得られた珪素含有粒子を還元性雰囲気下、600−1000℃の範囲で加熱処理することで、該珪素含有粒子に含まれる酸素含有量を0.1〜1.5質量%とすることを特徴とする非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法。
【請求項2】
請求項1に記載の非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法であって、前記還元性雰囲気下とは還元ガス雰囲気下及び/又は減圧下であることを特徴とする非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法。
【請求項3】
請求項2に記載の非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法であって、前記還元ガスとして水素、一酸化炭素、硫化水素、二酸化硫黄、メタン、エタン、アセチレン、プロパンのいずれか又はこれらの組み合わせを用いることを特徴とする非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法。
【請求項4】
請求項2に記載の非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法であって、減圧下とは、1〜500Paの減圧下又は真空であることを特徴とする非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法。
【請求項5】
前記蒸着法によって得られた珪素含有粒子として、ホウ素、アルミニウム、リン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ヒ素、ゲルマニウム、スズ、アンチモン、インジウム、タンタル、タングステン、ガリウムから選択される一種又は二種以上を含有するものを用いることを特徴とする請求項1乃至請求項4のいずれか一項に記載の非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法。
【請求項6】
請求項1乃至請求項5のいずれか一項に記載の製造方法にて製造された非水電解質二次電池用負極活物質用の珪素含有粒子を非水電解質二次電池用負極活物質として用いて非水電解質二次電池用負極材を製造することを特徴とする非水電解質二次電池用負極材の製造方法
【請求項7】
前記製造する非水電解質二次電池用負極材は、結着剤及び導電剤を含有するものであり、前記負極材に対する前記非水電解質二次電池用負極活物質の割合が60〜97質量%、前記結着剤の割合が3〜20質量%、前記導電剤の割合が0〜37質量%のものとすることを特徴とする請求項6に記載の非水電解質二次電池用負極材の製造方法
【請求項8】
非水電解質二次電池の製造方法であって、請求項6又は請求項7に記載の非水電解質二次電池用負極材の製造方法により製造した非水電解質二次電池用負極材を用い負極成型体を作製し該作製した負極成型体と、正極成型体と、セパレーターと、非水電解質とを用いて非水電解質二次電池を製造することを特徴とする非水電解質二次電池の製造方法
【請求項9】
前記非水電解質二次電池、リチウムイオン二次電池とすることを特徴とする請求項8記載の非水電解質二次電池の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法、および非水電解質二次電池用負極材、非水電解質二次電池、並びに非水電解質二次電池用負極活物質用の珪素含有粒子に関する。
【背景技術】
【0002】
近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の非水電解質二次電池が強く要望されている。
【0003】
珪素は現在実用化されている炭素材料の理論容量372mAh/gより遙かに高い理論容量4200mAh/gを示すことから、電池の小型化と高容量化において最も期待される材料である。
【0004】
例えば、特許文献1では単結晶珪素を負極活物質の支持体として使用したリチウムイオン二次電池を開示している。
また、特許文献2では、単結晶珪素、多結晶珪素及び非晶質珪素のLiSi(但し、xは0〜5)からなるリチウム合金を使用したリチウムイオン二次電池を開示しており、特に非晶質珪素を用いたLiSiが好ましく、モノシランをプラズマ分解した非晶質珪素で被覆した結晶性珪素の粉砕物が例示されている。
しかしながら、この場合においては、実施例にあるように珪素分は30部、導電剤としてのグラファイトを55部使用しており、珪素の電池容量を十分発揮させることができなかった。
【0005】
また、特許文献3〜5では、蒸着法により電極集電体に非晶質珪素薄膜を堆積させ、負極として利用する方法が開示されている。
この集電体に直接珪素を気相成長させる方法において、成長方向を制御することで体積膨張によるサイクル特性の低下を抑制する方法も開示されている(特許文献6参照)。この方法によれば高容量かつサイクル特性の良い負極が製造可能であるとしているが、生産速度が限られるためコストが高く、また珪素薄膜の厚膜化が困難であり、更に負極集電体である銅が珪素中に拡散するという問題があった。
【0006】
このため近年では、珪素含有粒子を用いながら、珪素の電池容量利用率を制限して体積膨張を抑制する方法(特許文献7〜9等参照)、多結晶粒子の粒界を体積変化の緩衝帯とする方法としてアルミナを添加した珪素融液を急冷する方法(特許文献10参照)、α,β−FeSiの混相多結晶体からなる多結晶粒子を用いる方法(特許文献11参照)、単結晶珪素インゴットの高温塑性加工法(特許文献12参照)が開示されている。
【0007】
以上のように、珪素を活物質として利用するために、種々の結晶構造を持つ金属珪素や珪素合金が提案されているが、そのいずれもがコスト的に不利であり、安価に大量合成が可能な製造方法を提案するに至っていなかった。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特許第2964732号公報
【特許文献2】特許第3079343号公報
【特許文献3】特許第3702223号公報
【特許文献4】特許第3702224号公報
【特許文献5】特許第4183488号公報
【特許文献6】特開2006−338996号公報
【特許文献7】特開2000−173596号公報
【特許文献8】特許第3291260号公報
【特許文献9】特開2005−317309号公報
【特許文献10】特開2003−109590号公報
【特許文献11】特開2004−185991号公報
【特許文献12】特開2004−303593号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、上記問題点に鑑みてなされたものであって、非水電解質二次電池用負極活物質として用いた際に、充放電時の体積変化が少なく、高い初期効率とともにサイクル特性に優れた非水電解質二次電池とすることができる非水電解質二次電池用負極活物質用の珪素含有粒子を安価に製造する方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するために、本発明では、非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法において、蒸着法によって得られた珪素含有粒子を還元性雰囲気下で加熱処理するようにした。
【0011】
このような製造方法で製造された非水電解質二次電池用負極活物質用の珪素含有粒子であれば、粒子に含まれる酸素量が少なく、かつBET比表面積が小さい非水電解質二次電池用負極活物質用の珪素含有粒子となるため、非水電解質二次電池用負極活物質として用いることで、高い初期効率を有し、かつ高容量で長寿命な非水電解質二次電池を提供できる安価な非水電解質二次電池用負極活物質用の珪素含有粒子となる。
【0012】
また、蒸着法によって得られた珪素含有粒子を加熱処理する際の前記還元性雰囲気下とは還元ガス雰囲気下及び/又は減圧下とすることが好ましい。
【0013】
更に、前記還元ガスとして水素、一酸化炭素、硫化水素、二酸化硫黄、メタン、エタン、アセチレン、プロパンのいずれか又はこれらの組み合わせを使うことが好ましい。
【0014】
また、本発明の非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法における加熱処理の前記減圧雰囲気は1〜500Paの減圧下又は真空とすることが好ましい。
【0015】
本発明の製造方法における加熱処理工程を所定減圧雰囲気又は真空とすることで雰囲気中の酸素を減らすことができるので、製造された珪素含有粒子に含まれる酸素含有量が確実に少なくなり、この粒子を使った非水電解質二次電池は高い初期効率と電池容量を備えた高容量で長寿命なものとなる。
【0016】
このとき、前記蒸着法によって得られた珪素含有粒子は、ホウ素、アルミニウム、リン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ヒ素、ゲルマニウム、スズ、アンチモン、インジウム、タンタル、タングステン、ガリウムから選択される一種又は二種以上を含有するものであることが好ましい。
【0017】
このような元素から選択される一種又は二種以上を含有するものであれば、体積抵抗率が低下して、導電率に優れた非水電解質二次電池用負極活物質用の珪素含有粒子となる。
【0018】
また、本発明の非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法において、蒸着法によって得られた珪素含有粒子を還元性雰囲気下の加熱処理温度を400−1100℃の範囲とすることが好ましい。
【0019】
蒸着法によって得られた珪素含有粒子をこの温度範囲で加熱処理することにより、粒子に含まれる酸素量を確実に低減させ、BET比表面積を小さくするとともに、堆積粒子の内部歪みを緩和させることができる。
【0020】
また、本発明の製造方法にて製造された非水電解質二次電池用負極活物質用の珪素含有粒子を非水電解質二次電池用負極活物質として非水電解質二次電池用負極材に用いることが好ましい。
【0021】
本発明の非水電解質二次電池用負極活物質用の珪素含有粒子を非水電解質二次電池用負極活物質として用いたものであれば、高容量で長寿命な非水電解質二次電池を安価で提供できる非水電解質二次電池用負極材となる。
【0022】
このとき、前記非水電解質二次電池用負極材は、結着剤及び導電剤を含有するものであり、前記負極材に対する前記非水電解質二次電池用負極活物質の割合が60〜97質量%、前記結着剤の割合が3〜20質量%、前記導電剤の割合が0〜37質量%であることが好ましい。
【0023】
このように結着剤及び導電剤を含有するものであれば、充放電による体積膨張に追随した集電体からの剥離や活物質の分離の発生を抑制することができる非水電解質二次電池用負極材となる。
【0024】
また、このような割合で含まれることで、負極材の導電性が効果的に向上され、さらに負極活物質の分離が防止された非水電解質二次電池用負極材となる。
【0025】
また、非水電解質二次電池であって、本発明の非水電解質二次電池用負極材を用いた負極成型体と、正極成型体と、セパレーターと、非水電解質とを具備することが好ましい。
【0026】
このような本発明の非水電解質二次電池用負極材を用いたものであれば、高容量で長寿命な非水電解質二次電池となる。
【0027】
このとき、本発明の非水電解質二次電池用負極材を用いた前記非水電解質二次電池が、リチウムイオン二次電池であることが好ましい。
【0028】
本発明の製造方法による非水電解質二次電池用負極活物質用の珪素含有粒子を非水電解質二次電池用負極材に用いた非水電解質二次電池は、現行のグラファイトなどと比較して高容量でかつ不可逆容量が小さく、充放電に伴う体積変化が小さくコントロールされ、サイクル特性が優れているので、特にリチウムイオン二次電池に好適である。
【0029】
また、本発明の非水電解質二次電池用負極活物質用の珪素含有粒子は、蒸着法によって得られた珪素含有粒子を還元性雰囲気下で加熱処理して製造された非水電解質二次電池用負極活物質用の珪素含有粒子であって、前記非水電解質二次電池用負極活物質用の珪素含有粒子に含まれる酸素含有量が0.1〜1.5質量%であるようにした。
【0030】
非水電解質二次電池用負極活物質用の珪素含有粒子の酸素含有量が0.1〜1.5質量%であれば、この非水電解質二次電池用負極活物質用の珪素含有粒子を非水電解質二次電池用負極材として使った非水電解質二次電池の初回充放電特性(初回の充放電において充電容量に対する放電容量の割合)において向上が見られ、体積変化倍率が低く、充電容量に優れた非水電解質二次電池を作ることができる。
【発明の効果】
【0031】
本発明によれば、非水電解質二次電池用負極活物質として用いることで、高容量で長寿命な非水電解質二次電池を提供できる安価な非水電解質二次電池用負極活物質用の珪素含有粒子を提供することができる。
【発明を実施するための形態】
【0032】
本発明者らは、体積当たりの電池容量が、炭素材料の844mAh/cmを大幅に超える珪素系活物質や、その安価な製造方法について鋭意検討を重ねた。
【0033】
その結果、蒸着法により得られた珪素含有粒子を還元性雰囲気下で、例えば400〜1100℃で加熱処理することで、非水電解質二次電池用負極活物質用の珪素含有粒子に含まれる酸素含有量が0.1〜1.5質量%と少なく、かつBET比表面積が小さな非水電解質二次電池用負極活物質用の珪素含有粒子が得られる。これにより、1500mAh/cmを超えるような高い初期効率と電池容量を備え、その上サイクル特性に優れ、充放電時の体積変化が抑制された非水電解質二次電池の負極用として有効な活物質を製造することが出来、しかも安価な金属珪素を原料とすることができるため、製造コストも従来に比べて大幅に削減できることを見出し、本発明を完成させた。
【0034】
以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
【0035】
本発明は、酸素含有量が0.1〜1.5質量%である非水電解質二次電池用負極活物質用の珪素含有粒子であって、該珪素粒子は蒸着法によって得られた珪素含有粒子を還元性雰囲気下、例えば400〜1100℃で加熱処理することを特徴とする製造方法によって得られる。
【0036】
このような製造方法で製造した非水電解質二次電池用負極活物質用の珪素含有粒子を、非水電解質を用いる二次電池用の負極活物質に用いた場合、粒子内に含まれる酸素量が少なく、かつBET比表面積が小さい非水電解質二次電池用負極活物質用の珪素含有粒子となり、かつ充放電時の体積変化が抑制されて結晶粒界での応力が緩和されるため、珪素の高い初期効率と電池容量が維持されつつも、サイクル特性に優れた非水電解質二次電池が得られる。また、安価な金属珪素を原料にすることができるため、上記のような優れた電池特性を有する負極活物質に好適な多結晶である非水電解質二次電池用負極活物質用の珪素含有粒子を大量に製造することができ、従来に比べて製造コストの大幅な削減が可能となる。
【0037】
上記珪素含有粒子は、他元素を添加することによって、電子伝導性を向上させて体積抵抗率を著しく低下させる場合も、同様に用いることができる。
添加する元素としては、蒸気圧と効果の点において、ホウ素、アルミニウム、リン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ヒ素、ゲルマニウム、スズ、アンチモン、インジウム、タンタル、タングステン、ガリウムから選択される一種又は二種以上とすることが特に好ましい。このような他元素の添加量は必要に応じて添加され、概ね10質量%以下であれば良いが、好ましくは0.001〜1質量%であり、さらに0.01〜0.6質量%であることがより好ましい。0.001質量%以上であれば体積抵抗率が確実に低下し、一方、1質量%以下であれば添加元素の偏析が生じにくく、体積膨張の増加を防止できる。
【0038】
以上のようにして得られた非水電解質二次電池用負極活物質用の珪素含有粒子は、非晶質及び結晶質の粒界を有し、非晶質層及び結晶粒界の応力緩和効果によって、充放電サイクルでの粒子崩壊が減じられる。よって、非水電解質二次電池の負極に用いることによって、充放電による体積膨張変化の応力に耐えることができ、高容量で長寿命の電池特性を示す。
【0039】
次に、本発明の非水電解質二次電池用負極活物質用の珪素含有粒子の製造方法や、その得られた非水電解質二次電池用負極活物質用の珪素含有粒子を負極活物質として用いた負極材、負極、非水電解質二次電池について詳細に説明するが、もちろんこれらに限定されるものではない。
【0040】
まず、例えば減圧下において蒸着基板上に珪素を蒸着によって堆積させることができ、さらに、珪素と、ホウ素、アルミニウム、リン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ヒ素、ゲルマニウム、スズ、アンチモン、インジウム、タンタル、タングステン、ガリウムから選択される一種又は二種以上とを原料として、蒸着によって珪素合金を堆積させることも好ましい。
【0041】
ここで、原料として用いる珪素は、結晶性の違いにより単結晶珪素、多結晶珪素、非晶質珪素、あるいは純度の違いにより金属珪素と呼ばれるケミカルグレード珪素、冶金グレード珪素のいずれでも良い。とりわけ安価である金属珪素が好ましい。
【0042】
珪素の蒸着方法は真空蒸着あるいはスパッタリングによって達成されるが、蒸着速度が速く効率的な真空蒸着法が好ましい。真空蒸着法は蒸着材料や蒸着基板の違いにより種々選択され、抵抗加熱、電子線加熱、誘導加熱、レーザー加熱法などが挙げられる。またよりも熱効率が良い電子線加熱法が有利である。
電子線加熱法による珪素の蒸着方法は、例えば、金属珪素からなる原料を銅製のハースに収容し、チャンバーを減圧する。特に銅製のハースには黒鉛製あるいはWC製のハースライナーを設置することによって、照射電子線による熱効率が向上する。
【0043】
このような電子線加熱法により珪素含有粒子を蒸着させる際、金属珪素に電子ビームを照射して蒸着させる条件としては、概ね20kg以下の熔湯量であれば50−250kWとすることが良く、ハースライナーを併用することによって50−150kWとすることができる。面積あたりの電子線出力で示すと0.2−5kW/cmであり、0.2kW/cm以上とすれば蒸着速度が十分確保され、生産性が高く、一方5kW/cm以下の出力とすれば熔湯液面が不安定となり突沸が起こるようなこともない。また、好ましくは0.5−3.5kW/cmであり、この範囲で電子線を照射することによって、生産性の高い結晶粒子を得ることができる。
【0044】
また、その他の条件としてチャンバー減圧度は、一般的に1×10−5〜1×10−2Paとすることができる。減圧度が小さいほど蒸着量の増大が見込まれるが、1×10−5Pa以上の減圧度であれば、減圧装置の負荷を小さくでき、低コストの装置となる。一方、1×10−2Pa以下であれば、電子銃の出力が安定し、電子線による加熱が容易となる。
【0045】
蒸着基板としては、珪素堆積時に珪素と合金化しない材料からなるものを用いることが望ましい。ここで珪素堆積時に珪素と合金化しないとは、珪素を堆積させる際に珪素が固着せず合金化しにくく、蒸着後に珪素を剥がしやすいことを意味するものであり、このような材料としては、例えばSUS304やSUS340などのステンレス、さらにはステンレス表面を鏡面仕上げしたものでも良いが、メッキあるいはコーティングしたものも使用できる。
【0046】
このように、蒸着基板を珪素堆積時に珪素と合金化しない材料からなるものとすることによって、蒸着後に堆積させた珪素を基板から容易に剥がすことができ、粉砕・分級を容易に行うことができる。よって、生産性を高くすることができ、より安価に本発明の非水電解質二次電池用負極活物質用の珪素含有粒子を製造することができる。
【0047】
また、蒸着基板は温度制御を行うことが好ましい。制御温度は200−1000℃の範囲で行うことが好ましく、特に300−500℃が好ましい。方法としては、蒸着基板に熱線を埋め込む方法、赤外線ヒーターなどによる間接加熱方法などが挙げられ、蒸着基板を円筒状とする場合は、上記埋め込みヒーターのほかに熱媒体を用いても良い。また、蒸着中に溶湯の輻射熱により蒸着基板が所望の温度より上昇することがあることから、加熱用熱媒体と同様に冷却用の冷媒を使用することが望ましい。なお、蒸着基板の温度制御は、シース熱電対や白金測温抵抗体などによる直接方式や、放射温度計あるいは光高温計による非接触方式を採用してよい。
【0048】
こうして得られた堆積珪素塊あるいは珪素粒子は、還元性雰囲気下400−1100℃にて加熱処理を行うことで、粒子に含まれる酸素量を低減させ、BET比表面積を小さくするとともに、堆積粒子の内部歪みを緩和させることができる。本発明における還元性雰囲気下とは水素、一酸化炭素、硫化水素、二酸化硫黄のほか、メタン、エタン、アセチレン、プロパンなどの炭化水素ガスのように熱分解で炭素を生成し、酸素と反応するガス雰囲気下を示す。特に、水素、一酸化炭素が好ましく、熱分解温度が低いアセチレンも好適に使用される。炭化水素ガスを使用する場合は炭素が珪素表面に蒸着する温度以下で処理するのが好ましく、アセチレンを使用する場合では900℃以下であることが好ましい。
【0049】
加熱処理を行う装置は減圧下あるいは常圧下でも良いが、減圧とは圧力が常圧より低いことを意味し、真空としても良い。特には1−500Paである状態が良く、好ましくは1−100Pa、より好ましくは2−50Paである。上記圧力の範囲内であれば、還元性ガスの他にアルゴン、ヘリウム等の不活性ガスを通気しても良い。加熱処理は堆積後の珪素塊の状態で行っても粉砕・分級後に行っても良く、概ね1〜5時間程度で行うことが好ましく、特に600−1000℃にて1−3時間で処理することが好ましい。
【0050】
尚、堆積させた珪素は、基板から回収し、所定の粒子径とするために、公知の方法によって粉砕・分級する。
【0051】
用いる粉砕機としては、例えば、ボール、ビーズなどの粉砕媒体を運動させ、その運動エネルギーによる衝撃力や摩擦力、圧縮力を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミル、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミル、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミル、剪断力を利用するコロイドミルや高圧湿式対向衝突式分散機「アルティマイザー」などを用いることができる。
そして粉砕は、湿式、乾式共に用いることができる。
【0052】
また、粒度分布を整えるために、粉砕後に乾式分級や湿式分級もしくはふるい分け分級が行われる。
乾式分級は、主として気流を用い、分散、分離(細粒子と粗粒子の分離)、捕集(固体と気体の分離)、排出のプロセスが逐次もしくは同時に行われる。粒子相互間の干渉、粒子の形状、気流の流れの乱れ、速度分布、静電気の影響などで分級効率を低下させないように、分級をする前に前処理(水分、分散性、湿度などの調整)を行うか、使用される気流の水分や酸素濃度を調整して行うことができる。
また、乾式で分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。
【0053】
そして、粉砕・分級は、非水電解質二次電池用負極活物質用の珪素含有粒子の粒子径がレーザー回折散乱式粒度分布測定法による体積平均値D50(即ち、累積体積が50%となる時の粒子径又はメジアン径)で、1μm以上20μm以下となるように行うことができる。
50を1μm以上のものとすることによって、嵩密度が低下し、単位体積あたりの充放電容量が低下する危険性を極力低くすることができる。
また、D50を20μm以下とすることによって、負極膜を貫通してショートする原因となるおそれを最小限に抑えることができるとともに、電極の形成が難しくなることもなく、集電体からの剥離の可能性を十分に低いものとすることができる。
【0054】
更に、予め所定の粒度まで粉砕した上記非水電解質二次電池用負極活物質用の珪素含有粒子を、常圧下又は減圧下で600〜1200℃(好ましくは800〜1000℃)の温度で、可能な限り短時間で炭化水素系化合物ガス及び/又は蒸気を導入して熱化学蒸着処理を施すことにより、非水電解質二次電池用負極活物質用の珪素含有粒子表面にカーボン膜を形成して、導電性の更なる改善を図っても良い。
【0055】
同様に、予め所定の粒度まで粉砕した上記非水電解質二次電池用負極活物質用の珪素含有粒子を酸化アルミニウムや酸化チタン、酸化亜鉛、酸化ジルコニウムなどの金属酸化物で表面被覆しても良い。
【0056】
このような本発明の方法で製造された非水電解質二次電池用負極活物質用の珪素含有粒子(気相蒸着で得られた珪素又は珪素合金の粒子を還元処理したもの)は、非水電解質二次電池用負極の負極活物質として用いることで、現行のグラファイトなどと比較して高容量で、酸化珪素及び酸化珪素を原料にした材料(例えば、酸化珪素を不均化して得られる(珪素/二酸化珪素)分散複合体)と比較しても不可逆容量が小さい電池を提供できる。更に、金属珪素そのものと比較しても、充放電に伴う体積変化が小さくコントロールされ、粒子と結着剤間の接着性も優れるなど、サイクル特性の優れた非水電解質二次電池、特に、リチウムイオン二次電池を製造することができるものである。
【0057】
また、安価な金属珪素を原料にして製造できるので、優れた電池特性を有する負極活物質でありながら非常に安価であるという利点も有しており、非水電解質二次電池の製造コストの削減も可能である。
【0058】
そして、本発明の非水電解質二次電池用負極活物質用の珪素含有粒子から負極材を作製する場合、結着剤を含有するものとすることが好ましく、この結着剤としては特にポリイミド樹脂を用いることが好ましい。またポリイミド樹脂の他にも、ポリアミド樹脂、ポリアミドイミド樹脂、特に芳香族ポリイミド樹脂も採用し得る。
【0059】
例えば芳香族ポリイミド樹脂は耐溶剤性に優れ、充放電による体積膨張に追随した集電体からの剥離や活物質の分離の発生を抑制することができる。
【0060】
ところで、芳香族ポリイミド樹脂は一般に有機溶剤に対して難溶性であり、特に電解液に対して膨潤あるいは溶解しないことが必要である。
このため一般的に高沸点の有機溶剤、例えばクレゾールなどに溶解するのみであることから、電極ペーストの作製にはポリイミドの前駆体であって、種々の有機溶剤、例えばジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、酢酸エチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジオキソランに比較的易溶であるポリアミック酸の状態で添加し、300℃以上の温度で長時間加熱処理することにより、脱水、イミド化させて結着剤とすることが望ましい。
【0061】
この場合、芳香族ポリイミド樹脂は、テトラカルボン酸二無水物とジアミンより構成される基本骨格を有するが、具体例としては、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物及びビフェニルテトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物及びシクロヘキサンテトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が好適に用いられる。
【0062】
また、ジアミンとしては、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、2,2’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノベンゾフェノン、2,3−ジアミノナフタレン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ジ(4−アミノフェノキシ)ジフェニルスルホン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン等の芳香族ジアミン、脂環式ジアミン、脂肪族ジアミンが挙げられる。
【0063】
そして、ポリアミック酸中間体の合成方法としては、通常は溶液重合法が好適に用いられる。この溶液重合法に使用される溶剤としては、N,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド及びブチロラクトン等が挙げられる。これらは単独でも又は混合して使用してもよい。
【0064】
このときの反応温度は、通常、−20〜150℃の範囲内であるが、特に−5〜100℃の範囲が望ましい。
【0065】
更に、ポリアミック酸中間体をポリイミド樹脂に転化するには、通常は、加熱により脱水閉環する方法がとられる。この加熱脱水閉環温度は140〜400℃、好ましくは150〜250℃の任意の温度を選択できる。この脱水閉環に要する時間は、上記反応温度にもよるが30秒間〜10時間、好ましくは5分間〜5時間が適当である。
【0066】
このようなポリイミド樹脂としては、ポリイミド樹脂粉末のほか、ポリイミド前駆体のN−メチルピロリドン溶液などが入手できるが、例えばU−ワニスA、U−ワニスS、UIP−R、UIP−S(宇部興産(株)製)やKAYAFLEX KPI−121(日本化薬(株)製)、リカコートSN−20、PN−20、EN−20(新日本理化(株)製)が挙げられる。
【0067】
本発明の負極材中の負極活物質の配合量は、負極材全体に対して60〜97質量%(特に70〜95質量%、とりわけ75〜95質量%)とすることができる。なお、後述する導電剤を負極材中に配合した場合は、負極活物質の配合量の上限は96質量%以下(特には94質量%以下、とりわけ93質量%以下)とすることが好ましい。
また、上記負極材中の結着剤の配合量は、負極材全体に対して3〜20質量%(より望ましくは5〜15質量%)の割合が良い。この結着剤の配合量を上記範囲とすることによって、負極活物質が分離してしまう危険性を極力低くすることができ、また空隙率が減少して絶縁膜が厚くなり、Liイオンの移動を阻害する危険性を極力低くすることができる。
【0068】
活物質としての上記非水電解質二次電池用負極活物質用の珪素含有粒子と、結着剤としてのポリイミド樹脂等を用いて負極材を作製する場合、これらに加えて、黒鉛等の導電剤を添加して導電性を向上させることができる。
【0069】
この場合、導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維、又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛などを用いることができる。
【0070】
また、これらの導電剤は、予め水あるいはN−メチル−2−ピロリドン等の溶剤の分散物を作製し、添加することで、非水電解質二次電池用負極活物質用の珪素含有粒子に均一に付着・分散した電極ペーストを作製することができることから、上記溶剤分散物として添加することがよい。なお、導電剤は上記溶剤に公知の界面活性剤を用いて分散を行うこともできる。また、導電剤に用いる溶剤は、結着剤に用いる溶剤と同一のものであることが望ましい。
【0071】
導電剤を用いる場合、その添加量は、負極材全体に対して0〜37質量%(更には1〜37%)であり、また水や溶剤に導電剤を配合する場合は、配合量は1〜37質量%(更には1〜20質量%、特には2〜10質量%)がよい。
この導電剤の添加量・配合量を上記範囲とすることによって、負極材の導電性が乏しくなって、初期抵抗が高くなることを確実に抑制することができる。そして、導電剤の量が増加して、電池容量の低下につながるおそれも無くすことができる。
【0072】
また、上記ポリイミド樹脂等の結着剤の他に、粘度調整剤としてカルボキシメチルセルロース、ポリアクリル酸ソーダ、その他のアクリル系ポリマーあるいは脂肪酸エステル等を添加してもよい。
そして上記のように得られる本発明の非水電解質二次電池用の負極材は、例えば以下のように負極とすることができる。
【0073】
即ち、上記負極活物質と、導電剤と、結着剤と、その他の添加剤とからなる負極材に、N−メチルピロリドンあるいは水などの結着剤の溶解、分散に適した溶剤を混練してペースト状の合剤とし、該合剤を集電体にシート状に塗布する。この場合、集電体としては、銅箔、ニッケル箔など、通常、負極の集電体として使用されている材料であれば、特に厚さ、表面処理の制限なく使用することができる。なお、合剤をシート状に成形する成形方法は特に限定されず、公知の方法を用いることができる。
このような非水電解質二次電池用負極材を含む負極は、充放電での体積変化が従来の珪素含有粒子に比べて大幅に小さい本発明の非水電解質二次電池用負極活物質用の珪素含有粒子からなる負極活物質から主に構成されており、充電前後の膜厚変化が3倍(特には2.5倍)を超えないものとなっている。
【0074】
このようにして得られた負極を用いた負極成型体を用いることにより、非水電解質二次電池、特にはリチウムイオン二次電池を製造することができる。
この場合、非水電解質二次電池は、上記負極成型体を用いる点に特徴を有し、その他の正極(成型体)、セパレーター、電解液、非水電解質などの材料及び電池形状などは特に限定されない。
【0075】
例えば正極活物質としては、リチウムイオンを吸蔵及び離脱することが可能な酸化物あるいは硫化物等が挙げられ、これらのいずれか1種又は2種以上が用いられる。
具体的には、TiS、MoS、NbS、ZrS、VSあるいはV、MoO及びMg(V等のリチウムを含有しない金属硫化物もしくは酸化物、又はリチウム及びリチウムを含有するリチウム複合酸化物が挙げられ、また、NbSe等の複合金属、オリビン酸鉄も挙げられる。中でも、エネルギー密度を高くするには、LiMetOを主体とするリチウム複合酸化物が望ましい。なお、Metは、コバルト、ニッケル、鉄及びマンガンのうちの少なくとも1種が良く、pは、通常、0.05≦p≦1.10の範囲内の値である。このようなリチウム複合酸化物の具体例としては、層構造を持つLiCoO、LiNiO、LiFeO、LiNiCo1−r(但し、q及びrの値は電池の充放電状態によって異なり、通常、0<q<1、0.7<r≦1)、スピネル構造のLiMn及び斜方晶LiMnOが挙げられる。更に高電圧対応型として置換スピネルマンガン化合物としてLiMetMn1−s(0<s<1)も使用されており、この場合のMetはチタン、クロム、鉄、コバルト、ニッケル、銅及び亜鉛等が挙げられる。
【0076】
なお、上記のリチウム複合酸化物は、例えば、リチウムの炭酸塩、硝酸塩、酸化物あるいは水酸化物と、遷移金属の炭酸塩、硝酸塩、酸化物あるいは水酸化物とを所望の組成に応じて粉砕混合し、酸素雰囲気中において600〜1000℃の範囲内の温度で焼成することにより調製することができる。
【0077】
更に、正極活物質としては有機物も使用することができる。例示すると、ポリアセチレン、ポリピロール、ポリパラフェニレン、ポリアニリン、ポリチオフェン、ポリアセン、ポリスルフィド化合物等である。
【0078】
以上の正極活物質は、負極合材に使用した導電剤や結着剤と共に混練して集電体に塗布され、公知の方法により正極成型体とすることができる。
【0079】
また、正極と負極の間に用いられるセパレーターは、電解液に対して安定であり、保液性に優れていれば特に制限はないが、一般的にはポリエチレン、ポリプロピレン等のポリオレフィン及びこれらの共重合体やアラミド樹脂などの多孔質シート又は不織布が挙げられる。これらは単層あるいは多層に重ね合わせて使用してもよく、表面に金属酸化物等のセラミックスを積層してもよい。また、多孔質ガラス、セラミックス等も使用される。
【0080】
そして、本発明に使用される非水電解質二次電池用溶媒としては、非水電解液として使用できるものであれば特に制限はない。
一般にエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の非プロトン性高誘電率溶媒や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、ジプロピルカーボネート、ジエチルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,3−ジオキソラン、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、アニソール、メチルアセテート等の酢酸エステル類あるいはプロピオン酸エステル類等の非プロトン性低粘度溶媒が挙げられる。これらの非プロトン性高誘電率溶媒と非プロトン性低粘度溶媒を適当な混合比で併用することが望ましい。
更には、イミダゾリウム、アンモニウム、及びピリジニウム型のカチオンを用いたイオン液体を使用することができる。対アニオンは特に限定されるものではないが、BF、PF、(CFSO等が挙げられる。イオン液体は前述の非水電解液溶媒と混合して使用することが可能である。
【0081】
固体電解質やゲル電解質とする場合には、シリコーンゲル、シリコーンポリエーテルゲル、アクリルゲル、シリコーンアクリルゲル、アクリロニトリルゲル、ポリ(ビニリデンフルオライド)等を高分子材料として含有することが可能である。なお、これらは予め重合していてもよく、注液後重合してもよい。これらは単独もしくは混合物として使用可能である。
【0082】
また、電解質塩としては、例えば、軽金属塩が挙げられる。
軽金属塩にはリチウム塩、ナトリウム塩、あるいはカリウム塩等のアルカリ金属塩、又はマグネシウム塩あるいはカルシウム塩等のアルカリ土類金属塩、又はアルミニウム塩などがあり、目的に応じて1種又は複数種が選択される。例えば、リチウム塩であれば、LiBF、LiClO、LiPF、LiAsF、CFSOLi、(CFSONLi、CSOLi、CFCOLi、(CFCONLi、CSOLi、C17SOLi、(CSONLi、(CSO)(CFSO)NLi、(FSO)(CFSO)NLi、((CFCHOSONLi、(CFSOCLi、(3,5−(CFBLi、LiCF、LiAlClあるいはCBOLiが挙げられ、これらのうちのいずれか1種又は2種以上が混合して用いられる。
【0083】
非水電解液の電解質塩の濃度は、電気伝導度の点から、0.5〜2.0mol/Lが望ましい。なお、この電解質の温度25℃における導電率は0.01S/cm以上であることが望ましく、電解質塩の種類あるいはその濃度により調整される。
【0084】
更に、非水電解液中には必要に応じて各種添加剤を添加してもよい。
例えば、サイクル寿命の向上を目的としたビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4−ビニルエチレンカーボネート等や、過充電防止を目的としたビフェニル、アルキルビフェニル、シクロヘキシルベンゼン、t−ブチルベンゼン、ジフェニルエーテル、ベンゾフラン等や、脱酸や脱水を目的とした各種カーボネート化合物、各種カルボン酸無水物、各種含窒素及び含硫黄化合物が挙げられる。
【0085】
そして、非水電解質二次電池の形状は任意であり、特に制限はない。一般的にはコイン形状に打ち抜いた電極とセパレーターを積層したコインタイプ、電極シートとセパレーターをスパイラル状に捲回した角型あるいは円筒型等の電池が挙げられる。
【実施例】
【0086】
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
なお、下記の例において酸素量は酸素窒素同時分析装置(Lecoジャパン製TCH−600)にて測定し、BET比表面積は自動比表面積計(日本ベル株式会社製BELSORP−mini II)により測定した。体積抵抗率は四探針式体積抵抗率計(三菱化学株式会社製MCP−PD51)により測定し、20kN荷重時の値を示した。また、累積体積50%径D50はレーザー光回折式粒度分布測定機(日機装株式会社製MT3300EX II)により湿式法にて測定した。元素分析はICPAES(アジレント・テクノロジー製Agilent730)を用いて絶対検量線法による分析を行った。
【0087】
(実施例1)
油拡散ポンプ、メカニカルブースターポンプおよび油回転真空ポンプからなる排気装置を有した真空チャンバー内部に、厚さ20mmのカーボン製ハースライナーを有する銅坩堝を設置し、金属珪素塊8kgを投入してチャンバー内を減圧とした。2時間後の到達圧力は2×10−4Paであった。
次に、チャンバーに設置した電子ビーム直進型電子銃によって金属珪素塊の溶解を開始し、金属珪素塊の溶解後、出力120kW、ビーム面積74cmにて蒸着を2時間継続した。蒸着中、ステンレスからなる蒸着基板の温度を600℃に制御した。チャンバーを開放して蒸着珪素塊3.5kgを得た。
【0088】
製造した蒸着珪素は、ジェットミル(株式会社栗本鐵工所製KJ−25)を用いて粉砕・分級し、D50=8.0μm、酸素量0.5%、BET比表面積は2.66m/gである珪素含有粒子を得た。蒸着法によって得られた珪素含有粒子を10%−H/Ar気流下にて900℃に保持されたアルミナ製炉心管を有する電気炉中に静置して3時間熱処理を行い、D50=8.0μm、酸素量0.8%、BET比表面積は2.13m/gである非水電解質二次電池用負極活物質用の珪素含有粒子を得た。
【0089】
(実施例2)
金属珪素塊8kgに代えて5.0質量%のアルミニウムを含む金属珪素塊8kgを投入した以外は実施例1と同様の手法で珪素含有粒子を得た。蒸着法によって得られた珪素含有粒子を10%−アセチレン/Ar気流下にて800℃に保持されたアルミナ製炉心管を有する電気炉中に静置して3時間熱処理を行った。得られた非水電解質二次電池用負極活物質用の珪素含有粒子はD50=8.0μm、酸素量1.1%、BET比表面積は2.09m/gであった。
【0090】
(実施例3)
金属珪素塊8kgに代えて5質量%のコバルトを含む金属珪素塊8kgを投入した以外は実施例1と同様の手法で蒸着法によって得られた珪素粒子を得た。蒸着法によって得られた珪素含有粒子を200Paの減圧下、10%−アセチレン/Ar気流下にて800℃に保持されたアルミナ製炉心管を有する電炉中に静置して3時間熱処理を行った。得られた非水電解質二次電池用負極活物質用の珪素含有粒子はD50=8.5μm、酸素量0.6%、BET比表面積は1.90m/gであった。
【0091】
(実施例4)
金属珪素塊8kgに代えて5.0質量%のゲルマニウムを含む金属珪素塊8kgを投入した以外は実施例1と同様の手法で蒸着法によって得られた珪素含有粒子を得た。蒸着法によって得られた珪素含有粒子を10%−アセチレン/Ar気流下にて800℃に保持されたアルミナ製炉心管を有する電気炉中に静置して3時間熱処理を行った。得られた非水電解質二次電池用負極活物質用の粒子はD50=8.2μm、酸素量0.7%、BET比表面積は2.04m/gであった。
【0092】
(実施例5)
金属珪素塊8kgに代えて10.0質量%のチタンを含む金属珪素塊8kgを投入した以外は実施例1と同様の手法で蒸着法によって得られた珪素含有粒子を得た。蒸着法によって得られた珪素含有粒子を100Paの減圧下、10%一酸化炭素/Ar気流下にて800℃に保持されたアルミナ製炉心管を有する電気炉中に静置して3時間熱処理を行った。得られた非水電解質二次電池用負極活物質用の珪素含有粒子はD50=8.3μm、酸素量0.5%、BET比表面積は1.99m/gであった。
【0093】
(比較例1)
加熱処理をアルゴン雰囲気下で行なった以外は実施例1と同様の手法で珪素含有粒子を得た。得られた非水電解質二次電池用負極活物質用の珪素含有粒子はD50=8.0μm、酸素量1.6%、BET比表面積は2.25m/gであった。
【0094】
(比較例2)
加熱処理をアルゴン雰囲気下で行なった以外は実施例2と同様の手法で非水電解質二次電池用負極活物質用の珪素含有粒子を得た。得られた非水電解質二次電池用負極活物質用の珪素含有粒子はD50=8.0μm、酸素量2.0%、BET比表面積は2.23m/gであった。
【0095】
(比較例3)
加熱処理をアルゴン雰囲気下で行なった以外は実施例3と同様の手法で非水電解質二次電池用負極活物質用の珪素含有粒子を得た。得られた非水電解質二次電池用負極活物質用の珪素含有粒子はD50=8.5μm、酸素量1.6%、BET比表面積は2.20m/gであった。
【0096】
実施例1−5、比較例1−3の製造方法によって得られた非水電解質二次電池用負極活物質用の珪素含有粒子の累積体積50%径D50、酸素含有量、BET比表面積、20kN荷重時の体積抵抗率を表1にまとめて示す。
【0097】
【表1】
【0098】
表1に示すように、実施例1−5の条件にて製造した非水電解質二次電池用負極活物質は、比較例1−3の条件にて製造した負極活物質に比べ酸素含有量が1.5質量%以下と少なく、またBET比表面積の値も2.20cm/g以下となっており、小さいことが判明した。
【0099】
また、表1に示すように、体積抵抗率の比較を行うと、珪素単体から調整した実施例1と比較して他元素をドープした実施例2−5の非水電解質二次電池用負極活物質用の珪素含有粒子は、体積抵抗率が低下しており、導電性に優れていることが判った。
【0100】
<電池特性の評価>
実施例1−5、比較例1−3で得られた非水電解質二次電池用負極活物質用の珪素含有粒子について、負極活物質としての有用性を確認するため、電池特性の評価を行った。
負極活物質として実施例1−5、比較例1−3の非水電解質二次電池用負極活物質用の珪素含有粒子を85質量%と、導電剤として人造黒鉛(平均粒子径D50=3μm)を2.5%と、アセチレンブラックのN−メチルピロリドン分散物(固形分17.5%)を固形分換算で2.5質量%とからなる混合物を、N−メチルピロリドンで希釈した。これに結着剤として、宇部興産(株)製ポリイミド樹脂(商標名:U−ワニスA、固形分18%)を固形分換算で10質量%を加え、スラリーとした。
【0101】
このスラリーを厚さ12μmの銅箔に75μmのドクターブレードを使用して塗布し、予備乾燥後60℃のローラープレスにより電極を加圧成形し、200℃で2時間乾燥後、2cmに打ち抜き、負極成型体とした。
【0102】
得られた負極成型体を、対極にリチウム箔を使用し、非水電解質としてリチウムビス(トリフルオロメタンスルホニル)イミドをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1mol/Lの濃度で溶解した非水電解質溶液を用い、セパレーターに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を各4個作製した。
そして作製したリチウムイオン二次電池を一晩室温でエージングし、この内2個を解体して、負極の厚み測定を行い、電解液膨潤状態での初期重量に基づく電極密度を算出した。なお、電解液及び充電によるリチウム増加量は含まないものとした。
【0103】
また、2個を二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで0.15cの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が0.02cを下回った時点で充電を終了し、充電容量を算出した。なお、cは負極の理論容量を1時間で充電する電流値である。
【0104】
充電終了後、これらの評価用リチウムイオン二次電池を解体し、負極の厚みを測定した。測定した厚みから同様にして電極密度を算出し、充電時の体積当たり充電容量を求めた。その結果を表2に示す。
【0105】
<サイクル特性の評価>
得られた負極成型体のサイクル特性を評価するために、実施例1−5、比較例1−3の負極活物質から作製した負極成型体を準備した。正極材料としてLiCoOを正極活物質、集電体としてアルミ箔を用いた単層シート(パイオニクス(株)製、商品名;ピオクセル C−100)を用いて、正極成型体を作製した。非水電解質には六フッ化リン酸リチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1mol/Lの濃度で溶解した非水電解質溶液を用い、セパレーターに厚さ30μmのポリエチレン製微多孔質フィルムを用いたコイン型リチウムイオン二次電池を作製した。
【0106】
作製した4種類のコイン型リチウムイオン二次電池を、二晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が4.2Vに達するまで1.2mA(正極基準で0.25c)の定電流で充電を行い、4.2Vに達した後は、セル電圧を4.2Vに保つように電流を減少させて充電を行った。そして、電流値が0.3mAを下回った時点で充電を終了した。放電は0.6mAの定電流で行い、セル電圧が2.5Vに達した時点で放電を終了し、放電容量を求めた。
【0107】
これを100サイクル継続して初回の放電容量と100サイクル後の放電容量比を表2に示した。
【0108】
【表2】
【0109】
表2に示すように、実施例1−5は酸素含有量の低減により初回充放電特性の向上が見られ、体積変化倍率が比較例1−3に対して低く、充電容量に優れていることが判った。
【0110】
表2に示すように、実施例1−5の負極活物質を用いたリチウムイオン二次電池は、比較例1−3の多結晶珪素含有粒子の負極活物質を用いたリチウムイオン二次電池と比較して、高いサイクル特性を示すことが判った。
【0111】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。