特許第6011608号(P6011608)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本ゼオン株式会社の特許一覧

特許6011608二次電池負極用バインダー組成物、二次電池用負極、二次電池負極用スラリー組成物、製造方法及び二次電池
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6011608
(24)【登録日】2016年9月30日
(45)【発行日】2016年10月19日
(54)【発明の名称】二次電池負極用バインダー組成物、二次電池用負極、二次電池負極用スラリー組成物、製造方法及び二次電池
(51)【国際特許分類】
   H01M 4/62 20060101AFI20161006BHJP
   H01M 4/134 20100101ALI20161006BHJP
   H01M 4/1395 20100101ALI20161006BHJP
   H01M 4/36 20060101ALI20161006BHJP
   H01M 10/0566 20100101ALI20161006BHJP
   H01M 10/052 20100101ALI20161006BHJP
【FI】
   H01M4/62 Z
   H01M4/134
   H01M4/1395
   H01M4/36 E
   H01M10/0566
   H01M10/052
【請求項の数】10
【全頁数】41
(21)【出願番号】特願2014-502177(P2014-502177)
(86)(22)【出願日】2013年2月22日
(86)【国際出願番号】JP2013054529
(87)【国際公開番号】WO2013129254
(87)【国際公開日】20130906
【審査請求日】2015年9月25日
(31)【優先権主張番号】特願2012-39980(P2012-39980)
(32)【優先日】2012年2月27日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000229117
【氏名又は名称】日本ゼオン株式会社
(74)【代理人】
【識別番号】100089118
【弁理士】
【氏名又は名称】酒井 宏明
(72)【発明者】
【氏名】佐々木 智一
【審査官】 大畑 通隆
(56)【参考文献】
【文献】 特開2003−282061(JP,A)
【文献】 特開2005−166756(JP,A)
【文献】 国際公開第2012/029805(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/13 − 4/62
H01M10/052−10/0569
(57)【特許請求の範囲】
【請求項1】
粒子状バインダー、および酸性官能基を有する水溶性重合体を含み、
前記水溶性重合体が、フッ素含有(メタ)アクリル酸エステル単量体単位を含有し、前記水溶性重合体中の前記フッ素含有(メタ)アクリル酸エステル単量体単位の含有割合が1〜20重量%であり、
前記水溶性重合体のガラス転移温度が30℃〜80℃であり、
前記水溶性重合体において、分子量100,000以上の分子の個数の割合が30%以下であり、且つ分子量100以上1000以下の分子の個数の割合が0.1%以上10%以下である、
二次電池負極用バインダー組成物。
【請求項2】
前記水溶性重合体が、架橋性単量体単位を含有し、前記水溶性重合体中の前記架橋性単量体単位の含有割合が0.1〜2重量%である請求項1に記載の二次電池負極用バインダー組成物。
【請求項3】
前記水溶性重合体が、反応性界面活性剤単位を含有し、前記水溶性重合体中の前記反応性界面活性剤単位の含有割合が0.1〜5重量%であ請求項1又は2に記載の二次電池負極用バインダー組成物。
【請求項4】
前記粒子状バインダーと前記水溶性重合体の含有割合が、粒子状バインダー/水溶性重合体=99.5/0.5〜80/20(重量比)である請求項1〜3のいずれか1項に記載の二次電池負極用バインダー組成物。
【請求項5】
請求項1〜4のいずれか1項に記載の二次電池負極用バインダー組成物および負極活物質を含む二次電池用負極。
【請求項6】
前記負極活物質が、リチウムを吸蔵し、放出する金属を含む請求項5に記載の二次電池用負極。
【請求項7】
前記負極活物質が、Si含有化合物を含む請求項5または6に記載の二次電池用負極。
【請求項8】
負極活物質、請求項1〜4のいずれか1項に記載の二次電池負極用バインダー組成物および水を含む二次電池負極用スラリー組成物。
【請求項9】
請求項8に記載の二次電池負極用スラリー組成物を、集電体上に塗布し、乾燥することを含む二次電池用負極の製造方法。
【請求項10】
正極、負極、電解液、及びセパレーターを備えるリチウムイオン二次電池であって、前記負極が請求項5〜7のいずれか1項に記載の二次電池用負極である二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、二次電池負極用バインダー組成物、二次電池用負極、前記負極を製造するための二次電池負極用スラリー組成物、前記負極の製造方法、及び前記負極を備える二次電池に関する。
【背景技術】
【0002】
近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源として用いられている二次電池には、例えばニッケル水素二次電池、リチウムイオン二次電池などが多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化および高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、二次電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化および高性能化が要求されている。
【0003】
二次電池の高性能化のために、電極、電解液およびその他の電池部材の改良が検討されている。このうち、電極は、通常、水や有機溶媒等の溶媒にバインダー(結着剤)となる重合体を分散または溶解させた液状の組成物に、電極活物質および必要に応じて導電性カーボン等の導電剤を混合してスラリー組成物を得、このスラリー組成物を集電体に塗布し、乾燥して製造される。電極については、電極活物質及び集電体そのものの検討の他、電極活物質などを集電体に結着するためのバインダー、並びに各種の添加剤の検討も行われている。
【0004】
例えば、特許文献1には、ガラス転移点温度が−30〜25℃で重量平均分子量が500,000〜1,000,000であるアクリル系樹脂を非水溶媒に溶解又は分散させたバインダが開示されている。
特許文献2には、芳香族イミド基とガラス転移点が30℃以下のポリマーを形成し得るソフトセグメントとを含有する所定の分子量のウレタン樹脂をバインダーとして用いることが開示されている。
特許文献3には、−35℃以下のガラス転移温度と所定以下の分子量を有する重合体をバインダーとして用いることが開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2000−344838号公報
【特許文献2】特開2000−200608号公報
【特許文献3】特開平10−101883号公報(対応公報:欧州特許出願公開第0821368号明細書)
【発明の概要】
【発明が解決しようとする課題】
【0006】
従来の二次電池には、例えば60℃という高温環境や、−25℃という低温環境で保存すると容量が低下するものがあった。そこで、二次電池をこのような環境で保存した場合でも当該二次電池の容量の低下を抑制しうる技術の開発も望まれている。
さらに、従来の二次電池においては、高温環境での充放電の繰り返しによる容量の低下を、より少なくする技術の開発も望まれている。また、上記の性能を向上させるため、二次電池用の電極の製造において、集電体と、集電体上に形成された電極活物質層との密着性を高めることが望まれ、且つ、均質な製品を効率的に製造することも望まれている。
【0007】
従って、本発明の目的は、高温環境及び低温環境のいずれで保存した場合でも容量が低下し難く、高温環境での充放電の繰り返しによる容量の低下が少ない二次電池を実現できる二次電池負極用バインダー組成物、二次電池用負極、前記の二次電池用負極を効率的に製造できる二次電池負極用スラリー組成物及び二次電池用負極の製造方法、並びに、前記の二次電池用負極を備えた二次電池を提供することにある。
【課題を解決するための手段】
【0008】
本発明者は前記の課題を解決するべく鋭意検討し、水を媒体とする二次電池用負極用バインダー組成物が含有する水溶性重合体の構造及び物性と二次電池の性能との関係に着目した。その結果、水溶性重合体として、従来より低い所定のガラス転移温度を有し、且つ所定の分子量分布を有するものを採用することにより、上記の課題を解決しうることを見出した。つまり、所定の低いガラス転移温度を有し、かつ所定の低分子量の分布を含む分子量分布を有することにより、活物質の膨張及び収縮への追随、及び活物質への密着などの諸条件を同時に満たす水溶性重合体としうることを見出した。本発明は、これらの知見に基づくものである。
すなわち、本発明によれば以下の〔1〕〜〔12〕が提供される。
【0009】
〔1〕 粒子状バインダー、および酸性官能基を有する水溶性重合体を含み、
前記水溶性重合体のガラス転移温度が30℃〜80℃であり、
前記水溶性重合体において、分子量100,000以上の分子の個数の割合が30%以下であり、且つ分子量100以上1000以下の分子の個数の割合が0.1%以上10%以下である、
二次電池負極用バインダー組成物。
〔2〕 前記水溶性重合体が、フッ素含有(メタ)アクリル酸エステル単量体単位を含有し、前記水溶性重合体中の前記フッ素含有(メタ)アクリル酸エステル単量体単位の含有割合が1〜20重量%である〔1〕記載の二次電池負極用バインダー組成物。
〔3〕 前記水溶性重合体が、架橋性単量体単位を含有し、前記水溶性重合体中の前記架橋性単量体単位の含有割合が0.1〜2重量%である〔1〕または〔2〕記載の二次電池負極用バインダー組成物。
〔4〕 前記水溶性重合体が、反応性界面活性剤単位を含有し、前記水溶性重合体中の前記反応性界面活性剤単位の含有割合が0.1〜5重量%である〔1〕〜〔3〕のいずれか1項に記載の二次電池負極用バインダー組成物。
〔5〕 前記粒子状バインダーと前記水溶性重合体の含有割合が、粒子状バインダー/水溶性重合体=99.5/0.5〜80/20(重量比)である〔1〕〜〔4〕のいずれか1項に記載の二次電池負極用バインダー組成物。
〔6〕 〔1〕〜〔5〕のいずれか1項に記載の二次電池負極用バインダー組成物および負極活物質を含む二次電池用負極。
〔7〕 前記負極活物質が、リチウムを吸蔵し、放出する金属を含む〔6〕に記載の二次電池用負極。
〔8〕 前記負極活物質が、Si含有化合物を含む〔6〕または〔7〕に記載の二次電池用負極。
〔9〕 負極活物質、〔1〕〜〔5〕のいずれか1項に記載の二次電池負極用バインダー組成物および水を含む二次電池負極用スラリー組成物。
〔10〕 〔9〕に記載の二次電池負極用スラリー組成物を、集電体上に塗布し、乾燥することを含む二次電池用負極の製造方法。
〔11〕 正極、負極、電解液、及びセパレーターを備えるリチウムイオン二次電池であって、前記負極が〔6〕〜〔8〕のいずれか1項に記載の二次電池用負極である二次電池。
【発明の効果】
【0010】
本発明の二次電池負極用バインダー組成物及びそれを含む本発明の二次電池用負極によれば、高温環境及び低温環境のいずれで保存した場合でも容量を低下し難くすることができ、且つ、高温環境での充放電の繰り返しによる容量の低下が少ない二次電池を実現できる。さらに、本発明の二次電池用負極は、集電体と負極活物質層との密着性が高く、且つ使用に際しての密着性の低下が少ないものとして容易に製造し得るので、上記の性能を満たしながら容易に製造しうる負極である。
本発明の二次電池は、高温環境及び低温環境のいずれで保存した場合でも容量を低下し難く、且つ高温環境での充放電の繰り返しによる容量の低下が少ない。
本発明の二次電池負極用スラリー組成物を用いれば、本発明の二次電池用負極を製造できる。特に、スラリーの安定性が高いため、スラリー中に分散している粒子の偏在などの発生が少なく、その結果、性能の高い電池を容易に製造することができる。
本発明の二次電池用負極の製造方法によれば、本発明の二次電池用負極を製造できる。
【発明を実施するための形態】
【0011】
以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。本明細書において、「(メタ)アクリル」は「アクリル」又は「メタクリル」を意味する。また、「正極活物質」とは正極用の電極活物質を意味し、「負極活物質」とは負極用の電極活物質を意味する。さらに、「正極活物質層」とは正極に設けられる電極活物質層を意味し、「負極活物質層」とは負極に設けられる電極活物質層を意味する。
【0012】
[1.二次電池負極用バインダー組成物]
本発明の二次電池負極用バインダー組成物は、粒子状バインダー、および特定の水溶性重合体を含む。
【0013】
[1−1.粒子状バインダー]
本発明のバインダー組成物が含有する粒子状バインダーは、負極において電極活物質を集電体の表面に結着させる成分である。本発明の負極では、粒子状バインダーが負極活物質を結着することにより、負極活物質層からの負極活物質の脱離が抑制される。また、粒子状バインダーは通常は負極活物質層に含まれる負極活物質以外の粒子をも結着し、負極活物質層の強度を維持する役割も果たしている。
【0014】
粒子状バインダーとしては、負極活物質を保持する性能に優れ、集電体に対する密着性が高いものを用いることが好ましい。通常、粒子状バインダーの材料としては重合体を用いる。粒子状バインダーの材料としての重合体(以下、単に「粒子状バインダー重合体」ということがある。)は、単独重合体でもよく、共重合体でもよい。中でも、脂肪族共役ジエン系単量体単位を含む重合体が好ましい。脂肪族共役ジエン系単量体単位は剛性が低く柔軟な繰り返し単位であるので、脂肪族共役ジエン系単量体単位を含む重合体を粒子状バインダーの材料として用いることにより、負極活物質層と集電体との十分な密着性を得ることができる。
【0015】
脂肪族共役ジエン系単量体単位は、脂肪族共役ジエン系単量体を重合して得られる繰り返し単位である。脂肪族共役ジエン系単量体の例としては、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3ブタジエン、2−クロル−1,3−ブタジエン、置換直鎖共役ペンタジエン類、並びに置換および側鎖共役ヘキサジエン類が挙げられる。中でも、1,3−ブタジエンが好ましい。
粒子状バインダー重合体を製造するための単量体組成物は、1種類のみの脂肪族共役ジエン系単量体を含んでもよく、2種類以上の脂肪族共役ジエン系単量体を任意の比率で組み合わせて含んでもよい。したがって、粒子状バインダー重合体は、脂肪族共役ジエン系単量体単位を、1種類だけ含んでもよく、2種類以上を任意の比率で組み合わせて含んでもよい。
【0016】
粒子状バインダー重合体において、脂肪族共役ジエン系単量体単位の比率は、好ましくは20重量%以上、より好ましくは25重量%以上であり、好ましくは50重量%以下、より好ましくは45重量%以下である。脂肪族共役ジエン系単量体単位の比率を前記範囲内とすることにより、膨潤度を抑制し、電極の耐久性を高めることができる。
【0017】
粒子状バインダー重合体は、芳香族ビニル系単量体単位を含むことが好ましい。芳香族ビニル系単量体単位は安定であり、当該芳香族ビニル系単量体単位を含む粒子状バインダー重合体の電解液への溶解性を低下させて負極活物質層を安定化させることができる。
【0018】
芳香族ビニル系単量体単位は、芳香族ビニル系単量体を重合して得られる繰り返し単位である。芳香族ビニル系単量体の例としては、スチレン、α−メチルスチレン、ビニルトルエン、及びジビニルベンゼンが挙げられる。中でも、スチレンが好ましい。粒子状バインダー重合体は、脂肪族共役ジエン系単量体単位及び芳香族ビニル系単量体単位の両方を含む重合体であることが好ましく、例えばスチレン・ブタジエン共重合体が好ましい。
粒子状バインダー重合体を製造するための単量体組成物は、1種類のみの芳香族ビニル系単量体を含んでもよく、2種類以上の芳香族ビニル系単量体を任意の比率で組み合わせて含んでもよい。したがって、粒子状バインダー重合体は、芳香族ビニル系単量体単位を、1種類だけ含んでもよく、2種類以上を任意の比率で組み合わせて含んでもよい。
【0019】
粒子状バインダー重合体の製造に、脂肪族共役ジエン系単量体及び芳香族ビニル系単量体を用いる場合、得られる粒子状バインダー重合体には、残留単量体として未反応の脂肪族共役ジエン系単量体及び未反応の芳香族ビニル系単量体が含まれることがある。その場合、粒子状バインダー重合体が含む未反応の脂肪族共役ジエン系単量体の量は、好ましくは50ppm以下、より好ましくは10ppm以下であり、粒子状バインダー重合体が含む未反応の芳香族ビニル系単量体の量は、好ましくは1000ppm以下、より好ましくは200ppm以下である。粒子状バインダー重合体が含む脂肪族共役ジエン系単量体の量が前記範囲内であると、本発明に係る二次電池負極用スラリー組成物を集電体の表面に塗布及び乾燥させて負極を製造する際に、負極の表面に発泡による荒れが生じたり、臭気による環境負荷を引き起こしたりすることを防止できる。また、粒子状バインダー重合体が含む芳香族ビニル系単量体の量が前記範囲内であると、乾燥条件に応じて生じる環境負荷及び負極表面の荒れを抑制でき、更には粒子状バインダー重合体の耐電解液性を高めることができる。
【0020】
粒子状バインダー重合体において、芳香族ビニル系単量体単位の比率は、好ましくは30重量%以上、より好ましくは35重量%以上であり、好ましくは79.5重量%以下、より好ましくは69重量%以下である。芳香族ビニル系単量体単位の比率を前記範囲の下限値以上とすることによって、本発明の二次電池用負極の耐電解液性を高めることができ、また、上限値以下とすることによって、本発明に係る二次電池負極用スラリー組成物を集電体に塗布した際に負極活物質層と集電体との十分な密着性を得ることができる。
【0021】
粒子状バインダー重合体は、エチレン性不飽和カルボン酸単量体単位を含むことが好ましい。エチレン性不飽和カルボン酸単量体単位は、負極活物質及び集電体への吸着性を高めるカルボキシル基(−COOH基)を含み、強度が高い繰り返し単位であるので、負極活物質層からの負極活物質の脱離を安定して防止でき、また、負極の強度を向上させることができる。
【0022】
エチレン性不飽和カルボン酸単量体単位は、エチレン性不飽和カルボン酸単量体を重合して得られる繰り返し単位である。エチレン性不飽和カルボン酸単量体の例としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などのモノカルボン酸及びジカルボン酸並びにその無水物が挙げられる。中でも、本発明に係る二次電池負極用スラリー組成物の安定性の観点から、アクリル酸、メタクリル酸、イタコン酸、及びこれらの組み合わせからなる群より選ばれる単量体が好ましい。
粒子状バインダー重合体を製造するための単量体組成物は、1種類のみのエチレン性不飽和カルボン酸単量体を含んでもよく、2種類以上のエチレン性不飽和カルボン酸単量体を任意の比率で組み合わせて含んでもよい。したがって、粒子状バインダー重合体は、エチレン性不飽和カルボン酸単量体単位を、1種類だけ含んでもよく、2種類以上を任意の比率で組み合わせて含んでもよい。
【0023】
粒子状バインダー重合体において、エチレン性不飽和カルボン酸単量体単位の比率は、好ましくは0.5重量%以上、より好ましくは1重量%以上、さらにより好ましくは2重量%以上であり、好ましくは10重量%以下、より好ましくは8重量%以下、さらにより好ましくは7重量%以下である。エチレン性不飽和カルボン酸単量体単位の比率を前記範囲の下限値以上とすることによって、本発明に係る二次電池負極用スラリー組成物の安定性を高めることができ、また、上限値以下とすることによって、本発明に係る二次電池負極用スラリーの粘度が過度に高くなることを防止して取り扱い易くすることができる。
【0024】
粒子状バインダー重合体は、本発明の効果を著しく損なわない限り、上述した以外にも任意の繰り返し単位を含んでいてもよい。前記の任意の繰り返し単位に対応する単量体の例としては、シアン化ビニル系単量体、不飽和カルボン酸アルキルエステル単量体、ヒドロキシアルキル基を含有する不飽和単量体、及び不飽和カルボン酸アミド単量体が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0025】
シアン化ビニル系単量体の例としては、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、及びα−エチルアクリロニトリルが挙げられる。中でも、アクリロニトリル、及びメタクリロニトリルが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0026】
不飽和カルボン酸アルキルエステル単量体の例としては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート、及び2−エチルヘキシルアクリレートが挙げられる。中でも、メチルメタクリレートが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0027】
ヒドロキシアルキル基を含有する不飽和単量体の例としては、β−ヒドロキシエチルアクリレート、β−ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3−クロロ−2−ヒドロキシプロピルメタクリレート、ジ−(エチレングリコール)マレエート、ジ−(エチレングリコール)イタコネート、2−ヒドロキシエチルマレエート、ビス(2−ヒドロキシエチル)マレエート、及び2−ヒドロキシエチルメチルフマレートが挙げられる。中でも、β−ヒドロキシエチルアクリレートが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0028】
不飽和カルボン酸アミド単量体の例としては、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、及びN,N−ジメチルアクリルアミドが挙げられる。中でも、アクリルアミド、及びメタクリルアミドが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0029】
さらに、粒子状バインダー重合体は、例えば、エチレン、プロピレン、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、塩化ビニリデン等、通常の乳化重合において使用される単量体を含んでもよい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0030】
粒子状バインダー重合体の重量平均分子量は、好ましくは10,000以上、より好ましくは20,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。粒子状バインダー重合体の重量平均分子量が上記範囲にあると、本発明の負極の強度及び負極活物質の分散性を良好にし易い。粒子状バインダー重合体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって、テトラヒドロフランを展開溶媒としたポリスチレン換算の値として求めうる。
【0031】
粒子状バインダーのガラス転移温度は、好ましくは−75℃以上、より好ましくは−55℃以上、特に好ましくは−35℃以上であり、好ましくは40℃以下、より好ましくは30℃以下、さらにより好ましくは20℃以下、特に好ましくは15℃以下である。粒子状バインダーのガラス転移温度が上記範囲であることにより、負極の柔軟性、結着性及び捲回性、負極活物質層と集電体との密着性などの特性が高度にバランスされ好適である。
【0032】
通常、粒子状バインダーは、非水溶性の重合体の粒子となる。したがって、本発明の二次電池負極用スラリー組成物においては、粒子状バインダーは溶媒である水には溶解せず、粒子となって分散している。重合体が非水溶性であるとは、25℃において、その重合体0.5gを100gの水に溶解した際に、不溶分が90重量%以上となることをいう。一方、重合体が水溶性であるとは、25℃において、その重合体0.5gを100gの水に溶解した際に、不溶分が0.5重量%未満であることをいう。
【0033】
粒子状バインダーの個数平均粒径は、好ましくは50nm以上、より好ましくは70nm以上であり、好ましくは500nm以下、より好ましくは400nm以下である。粒子状バインダーの個数平均粒径が上記範囲にあることで、得られる負極の強度および柔軟性を良好にできる。粒子の存在は、透過型電子顕微鏡法やコールターカウンター、レーザー回折散乱法などによって容易に測定することができる。
【0034】
粒子状バインダーは、例えば、上述した単量体を含む単量体組成物を水系溶媒中で重合し、重合体の粒子とすることにより製造される。
単量体組成物中の各単量体の比率は、通常、粒子状バインダー重合体における繰り返し単位(例えば、脂肪族共役ジエン系単量体単位、芳香族ビニル系単量体単位、及びエチレン性不飽和カルボン酸単量体単位)の比率と同様にする。
【0035】
水系溶媒としては、粒子状バインダーの粒子の分散が可能なものであれば格別限定されることはない。重合のための水系溶媒は、常圧における沸点が好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは350℃以下、より好ましくは300℃以下の水系溶媒から選びうる。以下、その水系溶媒の例を挙げる。以下の例示において、溶媒名の後のカッコ内の数字は常圧での沸点(単位℃)であり、小数点以下は四捨五入または切り捨てられた値である。
【0036】
水系溶媒の例としては、水(100);ダイアセトンアルコール(169)、γ−ブチロラクトン(204)等のケトン類;エチルアルコール(78)、イソプロピルアルコール(82)、ノルマルプロピルアルコール(97)等のアルコール類;プロピレングリコールモノメチルエーテル(120)、メチルセロソルブ(124)、エチルセロソルブ(136)、エチレングリコールターシャリーブチルエーテル(152)、ブチルセロソルブ(171)、3−メトキシー3メチル−1−ブタノール(174)、エチレングリコールモノプロピルエーテル(150)、ジエチレングリコールモノブチルピルエーテル(230)、トリエチレングリコールモノブチルエーテル(271)、ジプロピレングリコールモノメチルエーテル(188)等のグリコールエーテル類;並びに1,3−ジオキソラン(75)、1,4−ジオキソラン(101)、テトラヒドロフラン(66)等のエーテル類が挙げられる。中でも水は可燃性がなく、粒子状バインダーの粒子の分散体が容易に得られやすいという観点から特に好ましい。主溶媒として水を使用して、粒子状バインダーの粒子の分散状態が確保可能な範囲において上記記載の水以外の水系溶媒を混合して用いてもよい。
【0037】
重合方法は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。高分子量体が得やすいこと、並びに、重合物がそのまま水に分散した状態で得られるので再分散化の処理が不要であり、そのまま本発明に係る二次電池負極用スラリー組成物の製造に供することができることなど、製造効率の観点から、中でも乳化重合法が特に好ましい。
【0038】
乳化重合法は、通常は常法により行う。例えば、「実験化学講座」第28巻、(発行元:丸善(株)、日本化学会編)に記載された方法で行う。すなわち、攪拌機および加熱装置付きの密閉容器に水と、分散剤、乳化剤、架橋剤などの添加剤と、重合開始剤と、単量体とを所定の組成になるように加え、容器中の組成物を攪拌して単量体等を水に乳化させ、攪拌しながら温度を上昇させて重合を開始する方法である。あるいは、上記組成物を乳化させた後に密閉容器に入れ、同様に反応を開始させる方法である。
【0039】
重合開始剤の例としては、過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、t−ブチルパーオキシピバレート、3,3,5−トリメチルヘキサノイルパーオキサイド等の有機過酸化物;α,α’−アゾビスイソブチロニトリル等のアゾ化合物;過硫酸アンモニウム;並びに過硫酸カリウムが挙げられる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0040】
乳化剤、分散剤、重合開始剤などは、これらの重合法において一般的に用いられるものであり、通常はその使用量も一般に使用される量とする。また重合に際しては、シード粒子を採用してシード重合を行ってもよい。
【0041】
重合温度および重合時間は、重合方法及び重合開始剤の種類などにより任意に選択でき、通常、重合温度は約30℃以上、重合時間は0.5時間〜30時間程度である。
また、アミン類などの添加剤を重合助剤として用いてもよい。
【0042】
さらに、これらの方法によって得られる粒子状バインダーの水系分散液を、例えばアルカリ金属(例えば、Li、Na、K、Rb、Cs)の水酸化物、アンモニア、無機アンモニウム化合物(例えばNHClなど)、有機アミン化合物(例えばエタノールアミン、ジエチルアミンなど)などを含む塩基性水溶液と混合して、pHを好ましくは5〜10、より好ましくは5〜9の範囲になるように調整してもよい。なかでも、アルカリ金属水酸化物によるpH調整は、集電体と負極活物質との結着性(ピール強度)を向上させるので、好ましい。
【0043】
粒子状バインダーは、2種類以上の重合体からなる複合重合体粒子であってもよい。複合重合体粒子は、少なくとも1種類の単量体成分を常法により重合し、引き続き、他の少なくとも1種の単量体成分を重合し、常法により重合させる方法(二段重合法)などによっても得ることができる。このように単量体を段階的に重合することにより、粒子の内部に存在するコア層と、当該コア層を覆うシェル層とを有するコアシェル構造の粒子を得ることができる。
【0044】
[1−2.水溶性重合体]
本発明の二次電池負極用バインダー組成物は、酸性官能基を有する水溶性重合体(以下、単に「水溶性重合体」という場合がある。)を含む。
酸性官能基を有する水溶性重合体は、酸性官能基含有単量体、及び必要に応じて他の任意の単量体を含む単量体組成物を重合することによって調製しうる。このような方法によって、酸性官能基含有単量体単位を含む水溶性重合体を調製することができ、これを本発明の二次電池負極用バインダー組成物の水溶性重合体として用いることができる。
酸性官能基含有単量体の例としては、リン酸基含有単量体、スルホン酸基含有単量体、及びカルボキシル基含有単量体を挙げることができ、特にカルボキシル基含有単量体が好ましい。
【0045】
リン酸基含有単量体は、リン酸基、及び他の単量体と共重合しうる重合性の基を有する単量体である。リン酸基含有単量体としては、基−O−P(=O)(−OR)−OR基を有する単量体(R及びRは、独立に、水素原子、又は任意の有機基である。)、又はこの塩を挙げることができる。R及びRとしての有機基の具体例としては、オクチル基等の脂肪族基、フェニル基等の芳香族基等が挙げられる。
リン酸基含有単量体としては、例えば、リン酸基及びアリロキシ基を含む化合物、及びリン酸基含有(メタ)アクリル酸エステルを挙げることができる。リン酸基及びアリロキシ基を含む化合物としては、3−アリロキシ−2−ヒドロキシプロパンリン酸を挙げることができる。リン酸基含有(メタ)アクリル酸エステルとしては、ジオクチル−2−メタクリロイロキシエチルホスフェート、ジフェニル−2−メタクリロイロキシエチルホスフェート、モノメチル−2−メタクリロイロキシエチルホスフェート、ジメチル−2−メタクリロイロキシエチルホスフェート、モノエチル−2−メタクリロイロキシエチルホスフェート、ジエチル−2−メタクリロイロキシエチルホスフェート、モノイソプロピル−2−メタクリロイロキシエチルホスフェート、ジイソプロピル−2−メタクリロイロキシエチルホスフェート、モノn−ブチル−2−メタクリロイロキシエチルホスフェート、ジn−ブチル−2−メタクリロイロキシエチルホスフェート、モノブトキシエチル−2−メタクリロイロキシエチルホスフェート、ジブトキシエチル−2−メタクリロイロキシエチルホスフェート、モノ(2−エチルヘキシル)−2−メタクリロイロキシエチルホスフェート、ジ(2−エチルヘキシル)−2−メタクリロイロキシエチルホスフェートなどが挙げられる。
【0046】
なお、リン酸基含有単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、リン酸基含有単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
【0047】
スルホン酸基含有単量体は、スルホン酸基、及び他の単量体と共重合しうる重合性の基を有する単量体である。スルホン酸基含有単量体の例を挙げると、スルホン酸基及び重合性の基以外に官能基をもたないスルホン酸基含有単量体またはその塩、スルホン酸基及び重合性の基に加えてアミド基を含有する単量体またはその塩、並びに、スルホン酸基及び重合性の基に加えてヒドロキシル基を含有する単量体またはその塩などが挙げられる。なお、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、スルホン酸基含有単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
【0048】
スルホン酸基及び重合性の基以外に官能基をもたないスルホン酸基含有単量体としては、例えば、イソプレン及びブタジエン等のジエン化合物の共役二重結合の1つをスルホン化した単量体、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、スルホエチルメタクリレート、スルホプロピルメタクリレート、スルホブチルメタクリレートなどが挙げられる。また、その塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などが挙げられる。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0049】
スルホン酸基及び重合性の基に加えてアミド基を含有する単量体としては、例えば、2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)などが挙げられる。また、その塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などが挙げられる。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0050】
スルホン酸基及び重合性の基に加えてヒドロキシル基を含有する単量体としては、例えば、3−アリロキシ−2−ヒドロキシプロパンスルホン酸(HAPS)などが挙げられる。また、その塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などが挙げられる。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0051】
これらの中でも、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)及びその塩が好ましい。水溶性重合体の単位にスルホン酸基含有単量体単位を適宜加えることにより、酸性官能基含有単量体としての効果を発現しうるのに加えて、ガラス転移温度などの物性を所望の範囲に調整しうる。水溶性重合体におけるスルホン酸基含有単量体単位の比率は、水溶性重合体全量を基準として、好ましくは0.1重量%以上、より好ましくは0.5重量%以上であり、好ましくは10重量%以下、より好ましくは5重量%以下である。
【0052】
カルボキシル基含有単量体は、カルボキシル基及び重合可能な基を有する単量体とすることができる。カルボキシル基含有単量体の例としては、具体的には、エチレン性不飽和カルボン酸単量体を挙げることができる。
【0053】
エチレン性不飽和カルボン酸単量体の例としては、エチレン性不飽和モノカルボン酸及びその誘導体、エチレン性不飽和ジカルボン酸及びその酸無水物並びにそれらの誘導体が挙げられる。エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、及びクロトン酸が挙げられる。エチレン性不飽和モノカルボン酸の誘導体の例としては、2−エチルアクリル酸、イソクロトン酸、α−アセトキシアクリル酸、β−trans−アリールオキシアクリル酸、α−クロロ−β−E−メトキシアクリル酸、及びβ−ジアミノアクリル酸が挙げられる。エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、及びイタコン酸が挙げられる。エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、及びジメチル無水マレイン酸が挙げられる。エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等のマレイン酸メチルアリル;並びにマレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルが挙げられる。これらの中でも、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸が好ましい。得られる水溶性重合体の水に対する分散性がより高めることができるからである。
【0054】
酸性官能基含有単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、酸性官能基含有単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
【0055】
水溶性重合体における酸性官能基含有単量体単位の比率は、好ましくは25重量%以上、より好ましくは30重量%以上であり、好ましくは60重量%以下、より好ましくは55重量%以下、さらにより好ましくは50重量%以下である。酸性官能基含有単量体単位の比率を前記範囲の下限値以上とすることにより電極活物質との静電反発力を発揮して良好な分散性を得ることができる。一方、酸性官能基含有単量体単位の比率を前記範囲の上限値以下とすることにより官能基と電解液との過度の接触を避けることができ、耐久性を向上させることができる。
【0056】
水溶性重合体は、酸性官能基含有単量体単位に加えて、他の任意の単位を有することができる。かかる任意の単位の例としては、フッ素含有(メタ)アクリル酸エステル単量体単位、架橋性単量体単位、反応性界面活性剤単位、又はこれらの組み合わせを挙げることができる。これらの単位は、それぞれ、フッ素含有(メタ)アクリル酸エステル単量体、架橋性単量体、及び反応性界面活性剤単量体を重合して得られる繰り返し単位である。
【0057】
フッ素含有(メタ)アクリル酸エステル単量体としては、例えば、下記の式(I)で表される単量体が挙げられる。
【0058】
【化1】
【0059】
前記の式(I)において、Rは、水素原子またはメチル基を表す。
前記の式(I)において、Rは、フッ素原子を含有する炭化水素基を表す。炭化水素基の炭素数は、好ましくは1以上であり、好ましくは18以下である。また、Rが含有するフッ素原子の数は、1個でもよく、2個以上でもよい。
【0060】
式(I)で表されるフッ素含有(メタ)アクリル酸エステル単量体の例としては、(メタ)アクリル酸フッ化アルキル、(メタ)アクリル酸フッ化アリール、及び(メタ)アクリル酸フッ化アラルキルが挙げられる。なかでも(メタ)アクリル酸フッ化アルキルが好ましい。このような単量体の具体例としては、(メタ)アクリル酸2,2,2−トリフルオロエチル、(メタ)アクリル酸β−(パーフルオロオクチル)エチル、(メタ)アクリル酸2,2,3,3−テトラフルオロプロピル、(メタ)アクリル酸2,2,3,4,4,4−ヘキサフルオロブチル、(メタ)アクリル酸1H,1H,9H−パーフルオロ−1−ノニル、(メタ)アクリル酸1H,1H,11H−パーフルオロウンデシル、(メタ)アクリル酸パーフルオロオクチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸3[4〔1−トリフルオロメチル−2、2−ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2−ヒドロキシプロピル等の(メタ)アクリル酸パーフルオロアルキルエステルが挙げられる。
【0061】
フッ素含有(メタ)アクリル酸エステル単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、フッ素含有(メタ)アクリル酸エステル単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
【0062】
水溶性重合体におけるフッ素含有(メタ)アクリル酸エステル単量体単位の比率は、好ましくは1重量%以上、より好ましくは2重量%以上、さらにより好ましくは5重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下、さらにより好ましくは10重量%以下である。フッ素含有(メタ)アクリル酸エステル単量体単位の比率を前記範囲の下限値以上とすることにより、水溶性重合体に、電解液に対する反発力を与えることができ、膨潤性を適切な範囲内とすることができる。一方、フッ素含有(メタ)アクリル酸エステル単量体単位の比率を前記範囲の上限値以下とすることにより、水溶性重合体に、電解液に対する濡れ性を与えることができ、低温出力特性を向上させることができる。さらに、フッ素含有(メタ)アクリル酸エステル単量体単位の比率を前記範囲内で適宜調節することにより、所望のガラス転移温度及び分子量分布を有する水溶性重合体を得ることができる。
【0063】
架橋性単量体としては、重合した際に架橋構造を形成しうる単量体を用いることができる。架橋性単量体の例としては、1分子あたり2以上の反応性基を有する単量体を挙げることができる。より具体的には、熱架橋性の架橋性基及び1分子あたり1つのオレフィン性二重結合を有する単官能性単量体、及び1分子あたり2つ以上のオレフィン性二重結合を有する多官能性単量体が挙げられる。
単官能性単量体に含まれる熱架橋性の架橋性基の例としては、エポキシ基、N−メチロールアミド基、オキセタニル基、オキサゾリン基、及びこれらの組み合わせが挙げられる。これらの中でも、エポキシ基が、架橋及び架橋密度の調節が容易な点でより好ましい。
【0064】
熱架橋性の架橋性基としてエポキシ基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o−アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5−エポキシ−2−ペンテン、3,4−エポキシ−1−ビニルシクロヘキセン、1,2−エポキシ−5,9−シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4−エポキシ−1−ブテン、1,2−エポキシ−5−ヘキセン、1,2−エポキシ−9−デセンなどのアルケニルエポキシド;並びにグリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル−4−ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル−4−メチル−3−ペンテノエート、3−シクロヘキセンカルボン酸のグリシジルエステル、4−メチル−3−シクロヘキセンカルボン酸のグリシジルエステルなどの不飽和カルボン酸のグリシジルエステル類が挙げられる。
【0065】
熱架橋性の架橋性基としてN−メチロールアミド基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、N−メチロール(メタ)アクリルアミドなどのメチロール基を有する(メタ)アクリルアミド類が挙げられる。
【0066】
熱架橋性の架橋性基としてオキセタニル基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、3−((メタ)アクリロイルオキシメチル)オキセタン、3−((メタ)アクリロイルオキシメチル)−2−トリフロロメチルオキセタン、3−((メタ)アクリロイルオキシメチル)−2−フェニルオキセタン、2−((メタ)アクリロイルオキシメチル)オキセタン、及び2−((メタ)アクリロイルオキシメチル)−4−トリフロロメチルオキセタンが挙げられる。
【0067】
熱架橋性の架橋性基としてオキサゾリン基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−メチル−2−オキサゾリン、及び2−イソプロペニル−5−エチル−2−オキサゾリンが挙げられる。
【0068】
1分子あたり2つ以上のオレフィン性二重結合を有する多官能性単量体の例としては、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン−トリ(メタ)アクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、トリメチロールプロパン−ジアリルエーテル、前記以外の多官能性アルコールのアリルまたはビニルエーテル、トリアリルアミン、メチレンビスアクリルアミド、及びジビニルベンゼンが挙げられる。
【0069】
架橋性単量体としては、特に、エチレンジメタクリレート、アリルグリシジルエーテル、及びグリシジルメタクリレートを好ましく用いることができる。
【0070】
水溶性重合体における架橋性単量体単位の比率は、好ましくは0.1%重量以上、より好ましくは0.2重量%以上、さらにより好ましくは0.5重量%以上であり、好ましくは2重量%以下、より好ましくは1.5重量%以下、さらにより好ましくは1重量%以下である。架橋性単量体単位の比率を前記範囲内とすることにより、膨潤度を抑制し、電極の耐久性を高めることができる。さらに、架橋性単量体単位の比率を前記範囲内で適宜調節することにより、所望のガラス転移温度及び分子量分布を有する水溶性重合体を得ることができる。
【0071】
反応性界面活性剤単量体は、他の単量体と共重合しうる重合性の基を有し、且つ、界面活性基(親水性基及び疎水性基)を有する単量体である。反応性界面活性剤単量体の重合により得られる反応性界面活性剤単位は、水溶性重合体の分子の一部を構成し、且つ界面活性剤として機能しうる。
【0072】
通常、反応性界面活性剤単量体は重合性不飽和基を有し、この基が重合後に疎水性基としても作用する。反応性界面活性剤単量体が有する重合性不飽和基の例としては、ビニル基、アリル基、ビニリデン基、プロペニル基、イソプロペニル基、及びイソブチリデン基が挙げられる。かかる重合性不飽和基の種類は、1種類でもよく、2種類以上でもよい。
【0073】
また、反応性界面活性剤単量体は、親水性を発現する部分として、通常は親水性基を有する。反応性界面活性剤単量体は、親水性基の種類により、アニオン系、カチオン系、ノニオン系の界面活性剤に分類される。
【0074】
アニオン系の親水性基の例としては、−SOM、−COOM、及び−PO(OH)が挙げられる。ここでMは、水素原子又はカチオンを示す。カチオンの例としては、リチウム、ナトリウム、カリウム等のアルカリ金属イオン;カルシウム、マグネシウム等のアルカリ土類金属イオン;アンモニウムイオン;モノメチルアミン、ジメチルアミン、モノエチルアミン、トリエチルアミン等のアルキルアミンのアンモニウムイオン;並びにモノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミンのアンモニウムイオンが挙げられる。
カチオン系の親水基の例としては、−Cl、−Br、−I、及び−SOORが挙げられる。ここでRは、アルキル基を示す。Rの例としては、メチル基、エチル基、プロピル基、及びイソプロピル基が挙げられる。
ノニオン系の親水基の例としては、−OHが挙げられる。
【0075】
好適な反応性界面活性剤単量体の例としては、下記の式(II)で表される化合物が挙げられる。
【0076】
【化2】
【0077】
式(I)において、Rは2価の結合基を表す。Rの例としては、−Si−O−基、メチレン基及びフェニレン基が挙げられる。式(I)において、Rは親水性基を表す。Rの例としては、−SONHが挙げられる。式(I)において、nは1以上100以下の整数である。反応性界面活性剤単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0078】
好適な反応性界面活性剤の別の例としては、エチレンオキシドに基づく重合単位及びブチレンオキシドに基づく重合単位を有し、さらに末端に、末端二重結合を有するアルケニル基及び−SONHを有する化合物(例えば、商品名「ラテムルPD−104」及び「ラテムルPD−105」、花王株式会社製)を挙げることができる。
【0079】
水溶性重合体における反応性界面活性剤単位の比率は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上、さらにより好ましくは0.5重量%以上であり、好ましくは5重量%以下、より好ましくは4重量%以下、さらにより好ましくは2重量%以下である。反応性界面活性剤単位の比率を前記範囲の下限値以上とすることにより、二次電池負極用スラリー組成物の分散性を向上させることができる。一方、反応性界面活性剤単位の比率を前記範囲の上限値以下とすることにより、負極の耐久性を向上させることができる。
【0080】
水溶性重合体が有しうる任意の単位の例は、上に述べたフッ素含有(メタ)アクリル酸エステル単量体単位、架橋性単量体単位、及び反応性界面活性剤単位に限られず、さらに他の単位を含みうる。具体的には、フッ素含有(メタ)アクリル酸エステル単量体単位以外の、(メタ)アクリル酸エステル単量体単位を挙げることができる。(メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体を重合して得られる繰り返し単位である。ただし、(メタ)アクリル酸エステル単量体の中でもフッ素を含有するものは、フッ素含有(メタ)アクリル酸エステル単量体として(メタ)アクリル酸エステル単量体とは区別する。
【0081】
(メタ)アクリル酸エステル単量体の例としては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n−テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;並びにメチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n−テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルが挙げられる。
【0082】
(メタ)アクリル酸エステル単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、(メタ)アクリル酸エステル単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
【0083】
本発明に係る水溶性重合体において、(メタ)アクリル酸エステル単量体単位の比率は、好ましくは30重量%以上、より好ましくは35重量%以上、さらにより好ましくは40重量%以上であり、また、好ましくは70重量%以下である。(メタ)アクリル酸エステル単量体単位の量を上記範囲の下限値以上とすることにより負極活物質の集電体への密着性を高くすることができ、上記範囲の上限値以下とすることにより負極の柔軟性を高めることができる。
【0084】
水溶性重合体が有しうる任意の単位のさらなる例としては、下記の単量体を重合して得られる単位が挙げられる。即ち、スチレン、クロロスチレン、ビニルトルエン、t−ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α−メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド等のアミド系単量体;アクリロニトリル、メタクリロニトリル等のα,β−不飽和ニトリル化合物単量体;エチレン、プロピレン等のオレフィン類単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類単量体;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類単量体;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類単量体;並びにN−ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物単量体の1以上を重合して得られる単位が挙げられる。水溶性重合体におけるこれらの単位の割合は、好ましくは0重量%〜10重量%、より好ましくは0重量%〜5重量%である。
【0085】
水溶性重合体のガラス転移温度は、30℃以上であり、好ましくは35℃以上であり、より好ましくは40℃以上であり、一方80℃以下であり、好ましくは75℃以下であり、より好ましくは70℃以下である。このようなガラス転移温度は、概して、従来一般的な二次電池負極用バインダー組成物に用いられる水溶性重合体のものに比べて、低い範囲である。ガラス転移温度を前記範囲の下限値以上とすることにより、得られる電極の耐久性を向上させることができる。ガラス転移温度を前記範囲の上限値以下とすることにより、得られる電極活物質層と集電体との密着性を向上させることができる。
また、本発明の二次電池負極用バインダー組成物中の水溶性重合体は、分子量が異なる多数種類の分子の混合物であり、従って分子量分布を有する。
本発明の二次電池負極用バインダー組成物中の水溶性重合体においては、分子量100,000以上の分子の個数の割合は、30%以下であり、好ましくは25%以下であり、より好ましくは20%以下である。一方、分子量100,000以上の分子の個数の割合の下限は特に限定されないが、例えば10%以上とすることができる。分子量100,000以上の分子の個数の割合を前記上限値以下とすることにより、電極と集電体との密着性を構造させることができ、且つ電池の高温保存特性及び低温出力特性の向上等の、本発明の効果を得ることができる。分子量100,000以上の分子の分子量の上限は、特に限定されないが、1,000,000以下とすることができる。
本発明の二次電池負極用バインダー組成物中の水溶性重合体においては、さらに、分子量100以上1,000以下の分子の個数の割合は、0.1%以上であり、好ましくは0.5%以上であり、より好ましくは1%以上であり、一方10%以下であり、好ましくは8%以下であり、より好ましくは5%以下である。分子量100以上1,000以下の分子の個数の割合を前記上限値以下とすることにより、電極活物質層の耐久性を良好な範囲に保つことができる。また、分子量100以上1,000以下の分子の個数の割合を前記下限値以上とすることにより、電池の高温保存特性及び低温出力特性の向上等の、本発明の効果を得ることができる。
【0086】
本発明では、水溶性重合体が前記所定範囲のガラス転移温度、及び前記所定の分子量分布を有することにより、得られる電池の高温保存特性及び低温出力特性などの特性を向上させることができる。特定の理論に拘束されるものではないが、その理由としては下記のものが考えられる。即ち、負極においては、活物質が、充放電に伴い膨張及び収縮を起こすが、水溶性重合体が低いガラス転移温度及びある程度以上高い数平均分子量を有することにより、幅広い温度範囲においてかかる膨張及び収縮に追随して変形することができる。さらに、水溶性重合体が所定割合の低分子量の成分をも含むことにより、電極活物質層中で、電極活物質表面を高い被覆割合でコーティングすることが可能になる。それにより、粒子状バインダー及び水溶性重合体が、電極活物質粒子を強固に結合しながら且つその変形に柔軟に追随するようになる。その結果、負極と集電体との密着性及び負極内の電極活物質粒子間の密着性が向上し、且つ電池の使用に際しての負極の耐久性が向上し、ひいては、高温保存特性及び低温出力特性などの特性を向上させることができる。
【0087】
水溶性重合体の数平均分子量は、1,000超100,000未満の範囲内であり、好ましくは1500以上、より好ましくは2000以上であり、一方好ましくは80000以下、より好ましくは60000以下である。数平均分子量をこの範囲とすることにより、上に述べた本発明の効果を得ることができる。
水溶性重合体の数平均分子量、及びその分布は、GPCによって、ジメチルホルムアミドの10体積%水溶液に0.85g/mlの硝酸ナトリウムを溶解させた溶液を展開溶媒としたポリスチレン換算の値として求めうる。
【0088】
水溶性重合体は、任意の製造方法で製造することができる。例えば、酸性官能基含有単量体を含み且つ必要に応じて他の任意の単位を与える単量体を含む単量体組成物を、水系溶媒中で重合して、水溶性重合体を製造することができる。
単量体組成物中の各単量体の比率は、通常、水溶性重合体における繰り返し単位(例えば、酸性官能基含有単量体単位、架橋性単量体単位、フッ素含有(メタ)アクリル酸エステル単量体単位、及び反応性界面活性剤単位)の比率と同様にする。
【0089】
水溶性重合体のガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。従って、単量体の種類及び割合を適宜選択することにより、所望のガラス転移温度を有する水溶性重合体を得ることができる。
水溶性重合体の分子量分布は、単量体の種類及び割合を適宜選択することに加え、必要に応じて反応系に分子量調整剤を加えることにより調整することが可能である。具体的には、分子量調整剤を添加しない通常の重合反応では、分子量100以上〜1000以下の分子の個数の割合が0.1%未満となる場合において、ある種の分子量調整剤を反応系に添加することにより、かかる割合を0.1%以上に上昇させることができる。
【0090】
水溶性重合体の製造に用いうる分子量調整剤としては、t−ドデシルメルカプタン(TDM)、α−メチルスチレン二量体(α−MSD)、ターピノーレン、アリルアルコール、アリルアミン、アリルスルホン酸ソーダ(カリウム)、メタアリルスルホン酸ソーダ(カリウム)等を挙げることができる。
水溶性重合体を製造する工程において、分子量調整剤を反応系に添加する際の添加量は、単量体組成物100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.15重量部以上、さらにより好ましくは0.2重量部以上であり、一方好ましくは2.0重量部以下、より好ましくは1.5重量部以下、さらにより好ましくは1重量部以下である。分子量調整剤の添加量を当該範囲内とすることにより、ガラス転移温度及び分子量分布の両方を所望の範囲に調整することができる。
【0091】
重合反応に用いる水系溶媒の種類は、例えば、粒子状バインダーの製造と同様にしうる。また、重合反応の手順は、反応系に必要に応じて分子量調整剤を添加する他は、粒子状バインダーの製造における手順と同様にしうる。これにより、通常は水系溶媒に水溶性重合体を含む反応液が得られる。こうして得られた反応液は、通常は酸性であり、水溶性重合体は、水系溶媒に分散していることが多い。このように水系溶媒に分散した水溶性重合体は、通常、その反応液のpHを、例えば7〜13に調整することにより、水系溶媒に可溶にできる。こうして得られた反応液から水溶性重合体を取り出してもよい。しかし、通常は、水系溶媒として水を用い、この水に溶解した状態の水溶性重合体を用いて二次電池負極用スラリー組成物を製造し、その二次電池負極用スラリー組成物を用いて負極を製造しうる。
【0092】
水溶性重合体を水系溶媒中に含む前記の反応液を、pH7〜pH13にアルカリ化することにより水溶液の取り扱い性を向上させることができ、また、二次電池負極用スラリー組成物の塗工性を改善することができる。pH7〜pH13にアルカリ化する方法としては、例えば、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ金属水溶液;水酸化カルシウム水溶液、水酸化マグネシウム水溶液等のアルカリ土類金属水溶液;アンモニア水溶液などのアルカリ水溶液を添加する方法が挙げられる。前記のアルカリ水溶液は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0093】
[1−3.その他の成分]
本発明の二次電池負極用バインダー組成物は、粒子状バインダー及び水溶性重合体のみからなってもよいが、必要に応じて、他の任意の成分を含みうる。例えば、反応性界面活性剤単位を含有するのに代えて、又は反応性界面活性剤単位を含有するのに加えて、別途界面活性剤を含むことができる。かかる界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウムを用いることができる。
【0094】
[1−4.粒子状バインダーと水溶性重合体との割合]
本発明の二次電池負極用バインダー組成物における粒子状バインダー及び水溶性重合体の含有割合は、特に限定されず、後述する本発明の二次電池負極用スラリー組成物及び本発明の二次電池用負極を調製するのに適した割合に適宜調整することができる。例えば、粒子状バインダー/水溶性重合体の重量比として、99.5/0.5〜80/20であることが好ましく、99/1〜85/15であることがより好ましく、98/2〜90/10であることがさらにより好ましい。これらの比率をこの範囲内とすることにより、電極活物質層と集電体との密着性、及び電池の耐久性を両立させることができる。
【0095】
[2.二次電池用負極]
本発明の二次電池用負極(以下、適宜「本発明の負極」という。)は、前記本発明の二次電池負極用バインダー組成物及び負極活物質を含む。
通常、本発明の負極は、集電体と、前記集電体の表面に形成された負極活物質層とを備え、電極活物質層が前記の二次電池負極用バインダー組成物及び負極活物質を含む。
【0096】
[2−1.負極活物質]
負極活物質は、負極用の電極活物質であり、二次電池の負極において電子の受け渡しをする物質である。
例えば本発明の二次電池がリチウムイオン二次電池である場合には、負極活物質として、通常は、リチウムを吸蔵及び放出しうる物質を用いる。このようにリチウムを吸蔵及び放出しうる物質としては、例えば、金属系活物質、炭素系活物質、及びこれらを組み合わせた活物質などが挙げられる。
【0097】
金属系活物質とは、金属を含む活物質であり、通常は、リチウムの挿入(ドープともいう)が可能な元素を構造に含み、リチウムが挿入された場合の重量あたりの理論電気容量が500mAh/g以上である活物質をいう。当該理論電気容量の上限は、特に限定されないが、例えば5000mAh/g以下でもよい。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成する単体金属及びその合金、並びにそれらの酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が用いられる。
【0098】
リチウム合金を形成する単体金属としては、例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Ti等の単体金属が挙げられる。また、リチウム合金を形成する単体金属の合金としては、例えば、上記単体金属を含有する化合物が挙げられる。これらの中でもケイ素(Si)、スズ(Sn)、鉛(Pb)及びチタン(Ti)が好ましく、ケイ素、スズ及びチタンがより好ましい。したがって、ケイ素(Si)、スズ(Sn)又はチタン(Ti)の単体金属若しくはこれら単体金属を含む合金、または、それらの金属の化合物が好ましい。
【0099】
金属系活物質は、さらに、一つ以上の非金属元素を含有していてもよい。例えば、SiC、SiO(0<x≦3、0<y≦5)、Si、SiO、SiO(0<x≦2)、SnO(0<x≦2)、LiSiO、LiSnO等が挙げられる。中でも、低電位でリチウムの挿入及び脱離(脱ドープともいう)が可能なSiO、SiC及びSiOが好ましい。例えば、SiOは、ケイ素を含む高分子材料を焼成して得ることができる。SiOの中でも、容量とサイクル特性の兼ね合いから、0.8≦x≦3、2≦y≦4の範囲が好ましく用いられる。
【0100】
リチウム金属、リチウム合金を形成する単体金属及びその合金の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物としては、リチウムの挿入可能な元素の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が挙げられる。その中でも、酸化物が特に好ましい。例えば、酸化スズ、酸化マンガン、酸化チタン、酸化ニオブ、酸化バナジウム等の酸化物と、Si、Sn、PbおよびTi原子よりなる群から選ばれる金属元素とを含むリチウム含有金属複合酸化物が用いられる。
【0101】
リチウム含有金属複合酸化物としては、更にLiTiで示されるリチウムチタン複合酸化物(0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であり、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる元素を表す。)、LiMnで示されるリチウムマンガン複合酸化物(x、y、z及びMは、リチウムチタン複合酸化物における定義と同様である。)が挙げられる。中でも、Li4/3Ti5/3、LiTi、Li4/5Ti11/5、Li4/3Mn5/3が好ましい。
【0102】
これらの中でも、金属系活物質としては、ケイ素を含有する活物質が好ましい。ケイ素を含有する活物質を用いることにより、二次電池の電気容量を大きくすることが可能となる。また、一般にケイ素を含有する活物質は充放電に伴って大きく(例えば5倍程度に)膨張及び収縮するが、本発明の負極においては、ケイ素を含有する活物質の膨張及び収縮による電池性能の低下を、本発明に係る水溶性重合体によって防ぐことができる。
【0103】
ケイ素を含有する活物質の中でも、SiC、SiO及びSiOが好ましい。これらのSi及びCを組み合わせて含む活物質においては、高電位でSi(ケイ素)へのLiの挿入及び脱離が起こり、低電位でC(炭素)へのLiの挿入及び脱離が起こると推測される。このため、他の金属系活物質よりも膨張及び収縮が抑制されるので、二次電池の充放電サイクル特性を向上させることができる。
【0104】
炭素系活物質とは、リチウムが挿入可能な炭素を主骨格とする活物質をいい、例えば炭素質材料と黒鉛質材料が挙げられる。
炭素質材料としては、一般的には、炭素前駆体を2000℃以下で熱処理して炭素化させた、黒鉛化の低い(即ち、結晶性の低い)炭素材料である。前記の熱処理の下限は特に限定されないが、例えば500℃以上としてもよい。
【0105】
炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
【0106】
易黒鉛性炭素としては、例えば、石油又は石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。MCMBとは、ピッチ類を400℃前後で加熱する過程で生成したメソフェーズ小球体を分離抽出した炭素微粒子である。メソフェーズピッチ系炭素繊維とは、前記メソフェーズ小球体が成長、合体して得られるメソフェーズピッチを原料とする炭素繊維である。熱分解気相成長炭素繊維とは、(1)アクリル高分子繊維などを熱分解する方法、(2)ピッチを紡糸して熱分解する方法、又は(3)鉄などのナノ粒子を触媒として用いて炭化水素を気相熱分解する触媒気相成長(触媒CVD)法により得られた炭素繊維である。
【0107】
難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
【0108】
黒鉛質材料とは、易黒鉛性炭素を2000℃以上で熱処理することによって得られた黒鉛に近い高い結晶性を有する黒鉛質材料である。前記の熱処理温度の上限は、特に限定されないが、例えば5000℃以下としてもよい。
【0109】
黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛等が挙げられる。人造黒鉛としては、例えば、主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
【0110】
前記の炭素系活物質の中でも、炭素質材料が好ましい。炭素質材料を用いることで、二次電池の抵抗を低減することができ、入出力特性の優れた二次電池を作製することが可能となる。
【0111】
負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0112】
負極活物質は、粒子状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時に、より高密度な電極が形成できる。
【0113】
負極活物質が粒子である場合、その体積平均粒子径は、二次電池の他の構成要件との兼ね合いで適宜選択され、好ましくは0.1μm以上、より好ましくは1μm以上、さらにより好ましくは5μm以上であり、好ましくは100μm以下、より好ましくは50μm以下、さらにより好ましくは20μm以下である。
【0114】
負極活物質の粒子の50%累積体積径は、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、好ましくは1μm以上、より好ましくは15μm以上であり、好ましくは50μm以下、より好ましくは30μm以下である。50%累積体積径は、レーザー回折法によって粒径分布を測定し、測定された粒径分布において小径側から計算した累積体積が50%となる粒子径として求めることができる。
【0115】
負極活物質のタップ密度は、特に制限されないが、0.6g/cm以上のものが好適に用いられる。
【0116】
負極活物質の比表面積は、出力密度向上の観点から、好ましくは2m/g以上、より好ましくは3m/g以上、さらにより好ましくは5m/g以上であり、好ましくは20m/g以下、より好ましくは15m/g以下、さらにより好ましくは10m/g以下である。負極活物質の比表面積は、例えばBET法により測定できる。
【0117】
[2−2.負極活物質と二次電池負極用バインダー組成物との割合]
本発明の負極における負極活物質及び二次電池負極用バインダー組成物の含有割合は、特に限定されないが、負極活物質100重量部に対する二次電池負極用バインダー組成物の量として、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、且つ、好ましくは10重量部以下、より好ましくは5.0重量部以下である。負極活物質に対する二次電池負極用バインダー組成物の割合を上記範囲内とすることにより、上述した本発明の効果を安定して発揮できる。
【0118】
[2−3.負極活物質層に含まれていてもよい成分]
本発明の負極において、負極活物質層には、上述した二次電池負極用バインダー組成物及び負極活物質以外に他の成分が含まれていてもよい。その成分の例を挙げると、粘度調整剤、導電剤、補強材、レベリング剤、電解液添加剤等が挙げられる。また、電池の性能に大きな悪影響を与えない範囲において、水溶性重合体の製造の際に用いた分子量調整剤等の物質が含まれていてもよい。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0119】
粘度調整剤は、本発明の二次電池負極用スラリー組成物の粘度を調整して二次電池負極用スラリー組成物の分散性及び塗工性を改善するために用いられる成分である。通常、二次電池負極用スラリー組成物に含まれていた粘度調整剤は、負極活物質層に残留することになる。
【0120】
粘度調整剤としては、水溶性の多糖類を使用することが好ましい。多糖類としては、例えば、天然系高分子化合物、セルロース系半合成系高分子化合物などが挙げられる。粘度調整剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0121】
天然系高分子化合物として、例えば、植物もしくは動物由来の多糖類及びたんぱく質等が挙げられる。また、場合により微生物等による発酵処理、熱による処理などがされた天然系高分子化合物も例示できる。これらの天然系高分子化合物は、植物系天然系高分子化合物、動物系天然系高分子化合物及び微生物系天然系高分子化合物等として分類することができる。
【0122】
植物系天然系高分子化合物としては、例えば、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンナン、クインスシード(マルメロ)、アルケコロイド(ガッソウエキス)、澱粉(コメ、トウモロコシ、馬鈴薯、小麦等に由来するもの)、グリチルリチン等が挙げられる。また、動物系天然系高分子化合物としては、例えば、コラーゲン、カゼイン、アルブミン、ゼラチン等が挙げられる。さらに、微生物系天然系高分子化合物としては、キサンタンガム、デキストラン、サクシノグルカン、ブルラン等が挙げられる。
【0123】
セルロース系半合成系高分子化合物は、ノニオン性、アニオン性及びカチオン性に分類することができる。
【0124】
ノニオン性セルロース系半合成系高分子化合物としては、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース等のアルキルセルロース;ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロース;などが挙げられる。
【0125】
アニオン性セルロース系半合成系高分子化合物としては、上記のノニオン性セルロース系半合成系高分子化合物を各種誘導基により置換したアルキルセルロース並びにそのナトリウム塩及びアンモニウム塩などが挙げられる。具体例を挙げると、セルロース硫酸ナトリウム、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース(CMC)及びそれらの塩等が挙げられる。
【0126】
カチオン性セルロース系半合成系高分子化合物としては、例えば、低窒素ヒドロキシエチルセルロースジメチルジアリルアンモニウムクロリド(ポリクオタニウム−4)、塩化O−[2−ヒドロキシ−3−(トリメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム−10)、塩化O−[2−ヒドロキシ−3−(ラウリルジメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム−24)等が挙げられる。
【0127】
これらの中でも、カチオン性、アニオン性また両性の特性を取りうることから、セルロース系半合成系高分子化合物、そのナトリウム塩及びそのアンモニウム塩が好ましい。さらにその中でも、負極活物質の分散性の観点から、アニオン性のセルロース系半合成系高分子化合物が特に好ましい。
【0128】
また、セルロース系半合成系高分子化合物のエーテル化度は、好ましくは0.5以上、より好ましくは0.6以上であり、好ましくは1.0以下、より好ましくは0.8以下である。ここで、エーテル化度とは、セルロース中の無水グルコース単位1個当たりの水酸基(3個)の、カルボキシメチル基等への置換体への置換度のことをいう。エーテル化度は、理論的には0〜3の値を取りうる。エーテル化度が上記範囲にある場合は、セルロース系半合成系高分子化合物が負極活物質の表面に吸着しつつ水への相溶性も見られることから分散性に優れ、負極活物質を一次粒子レベルまで微分散できる。
【0129】
さらに、粘度調整剤として高分子化合物(重合体を含む)を使用する場合、ウベローデ粘度計より求められる極限粘度から算出される粘度調整剤の平均重合度は、好ましくは500以上、より好ましくは1000以上であり、好ましくは2500以下、より好ましくは2000以下、特に好ましくは1500以下である。粘度調整剤の平均重合度は本発明の二次電池負極用スラリー組成物の流動性及び負極活物質層の膜均一性、並びに工程上のプロセスへ影響することがある。平均重合度を前記の範囲にすることにより、本発明の二次電池負極用スラリー組成物の経時の安定性を向上させて、凝集物がなく厚みムラのない塗布が可能になる。
【0130】
粘度調整剤の量は、負極活物質の量100重量部に対して、好ましくは0重量部以上であり、好ましくは0.5重量部以下である。粘度調整剤の量を前記の範囲にすることにより、本発明の二次電池負極用スラリー組成物の粘度を取り扱い易い好適な範囲にすることができる。
【0131】
導電剤は、負極活物質同士の電気的接触を向上させる成分である。導電剤を含むことにより、本発明の二次電池の放電レート特性を改善することができる。
【0132】
導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンなどを使用することができる。導電剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0133】
導電剤の量は、負極活物質の量100重量部に対して、好ましくは1〜20重量部、より好ましくは1〜10重量部である。
【0134】
補強材としては、例えば、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより、強靭で柔軟な負極を得ることができ、優れた長期サイクル特性を示す二次電池を実現できる。
【0135】
補強材の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは20重量部以下、より好ましくは10重量部以下である。補強剤の量を上記範囲とすることにより、二次電池は高い容量と高い負荷特性を示すことができる。
【0136】
レベリング剤としては、例えば、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を用いることにより、二次電池負極用スラリー組成物の塗布時に発生するはじきを防止したり、負極の平滑性を向上させたりすることができる。
【0137】
レベリング剤の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部〜10重量部である。レベリング剤が上記範囲であることにより負極作製時の生産性、平滑性及び電池特性に優れる。また、界面活性剤を含有させることにより二次電池負極用スラリー組成物において負極活物質等の分散性を向上することができ、さらにそれにより得られる負極の平滑性を向上させることができる。
【0138】
電解液添加剤としては、例えば、ビニレンカーボネートなどが挙げられる。電解液添加剤を用いることにより、例えば電解液の分解を抑制することができる。
電解液添加剤の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部〜10重量部である。電解液添加剤の量を上記範囲にすることにより、サイクル特性及び高温特性に優れた二次電池を実現できる。
【0139】
また、負極活物質層は、例えば、フュームドシリカやフュームドアルミナなどのナノ微粒子を含んでいてもよい。ナノ微粒子を含む場合には二次電池負極用スラリー組成物のチキソ性を調整することができるので、それにより得られる本発明の負極のレベリング性を向上させることができる。
ナノ微粒子の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部〜10重量部である。ナノ微粒子が上記範囲であることにより、二次電池負極用スラリー組成物の安定性及び生産性を改善し、高い電池特性を実現できる。
【0140】
[2−4.集電体及び負極活物質層]
本発明の負極は、上述した負極活物質、二次電池負極用バインダー組成物、並びに必要に応じて用いられる他の成分を含む負極活物質層を備える。この負極活物質層は、通常、集電体の表面に設けられる。この際、負極活物質層は、集電体の少なくとも片面に設けうるが、両面に設けられていることが好ましい。
【0141】
負極用の集電体は、電気導電性を有し、且つ、電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましい。負極用の集電体の材料としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、二次電池負極に用いる集電体としては銅が特に好ましい。前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0142】
集電体の形状は特に制限されないが、厚さ0.001mm〜0.5mm程度のシート状のものが好ましい。
集電体は、負極活物質層との接着強度を高めるため、表面に予め粗面化処理して使用することが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、通常、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、負極活物質層の接着強度や導電性を高めるために、集電体の表面に中間層を形成してもよい。
【0143】
通常は前記の集電体の表面に、負極活物質層が設けられる。
負極活物質層の厚みは、好ましくは5μm以上、より好ましくは30μm以上であり、好ましくは300μm以下、より好ましくは250μm以下である。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性を良好にすることができる。
【0144】
負極活物質層における負極活物質の含有割合は、好ましくは85重量%以上、より好ましくは88重量%以上であり、好ましくは99重量%以下、より好ましくは97重量%以下である。負極活物質の含有割合を上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示す負極を実現できる。
【0145】
負極活物質層における水分量は、1000ppm以下であることが好ましく、500ppm以下であることがより好ましい。負極活物質層の水分量を上記範囲内とすることにより、耐久性に優れる負極とすることができる。水分量は、カールフィッシャー法等の既知の方法により測定しうる。
このような低い水分量は、水溶性重合体中の単位の組成を適宜調整することにより達成しうる。特に、フッ素含有(メタ)アクリル酸エステル単量体単位を0.5〜20重量%、好ましくは1〜10重量%の範囲にすることにより水分量を低減することができる。
【0146】
[3.二次電池用負極の製造方法、及び二次電池負極用スラリー組成物]
本発明の二次電池用負極の製造方法(以下、適宜「本発明の負極の製造方法」という。)は特に制限されないが、例えば、(I)本発明の二次電池負極用スラリー組成物を用意し、その二次電池負極用スラリー組成物を集電体の表面に塗布し、乾燥させることにより集電体の表面に負極活物質を形成する方法(塗布法)や、(II)本発明の二次電池負極用スラリー組成物から複合粒子を調製し、これを集電体上に供給してシート成形し、所望により、さらにロールプレスして負極活物質層を形成する方法(乾式成形法)等が挙げられる。
【0147】
本発明の二次電池負極用スラリー組成物は、負極活物質、粒子状バインダー、水溶性重合体及び水を含むスラリー状の組成物である。また、本発明の二次電池負極用スラリー組成物は、必要に応じて負極活物質、粒子状バインダー、水溶性重合体及び水以外の成分を含んでいてもよい。負極活物質、粒子状バインダー及び水溶性重合体、並びに必要に応じて含まれる成分の量は、通常は負極活物質層に含まれる各成分の量と同様にする。このような本発明の二次電池負極用スラリー組成物では、通常、一部の水溶性重合体は水に溶解しているが、別の一部の水溶性重合体が負極活物質の表面に吸着することによって、負極活物質が水溶性重合体の安定な層で覆われて、負極活物質の溶媒中での分散性が向上している。このため、本発明の二次電池負極用スラリー組成物は、集電体に塗布する際の塗工性が良好である。
【0148】
水は、二次電池負極用スラリー組成物において溶媒又は分散媒として機能し、負極活物質を分散させたり、粒子状バインダーを分散させたり、水溶性重合体を溶解させたりする。この際、溶媒として水以外の液体を水と組み合わせて用いてもよい。粒子状バインダーを分散し且つ、水溶性重合体を溶解させた液体と負極活物質を組み合わせると、粒子状バインダー及び水溶性重合体が負極活物質の表面に吸着することにより負極活物質の分散が安定化するので、好ましい。
【0149】
水と組み合わせる液体の種類は、乾燥速度や環境上の観点から選択することが好ましい。好ましい例を挙げると、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ−ブチロラクトン、ε−カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;N−メチルピロリドン、N,N−ジメチルホルムアミド等のアミド類;などが挙げられるが、中でもN−メチルピロリドン(NMP)が好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0150】
水及び前記の液体の量は、本発明の二次電池負極用スラリー組成物の粘度が塗布に好適な粘度になるように調整することが好ましい。具体的には、本発明の二次電池負極用スラリー組成物の固形分の濃度が、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは90重量%以下、より好ましくは80重量%以下となる量に調整して用いられる。
【0151】
本発明の二次電池負極用スラリー組成物は、上記の負極活物質、二次電池負極用バインダー組成物及び水、並びに必要に応じて用いられる成分を混合して製造してもよい。混合方法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。
【0152】
(I)塗布法において、本発明の二次電池負極用スラリー組成物を集電体の表面に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。
【0153】
乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法などが挙げられる。乾燥時間は好ましくは5分〜30分であり、乾燥温度は好ましくは40℃〜180℃である。
【0154】
(II)乾式成形法における複合粒子は、前記本発明の二次電池負極用スラリー組成物から調製されるものであるため、上記スラリー組成物に含まれる二次電池負極用バインダー組成物や負極活物質等が一体化した粒子となる。具体的には、スラリー組成物を構成する負極活物質や粒子状バインダーが、それぞれ別個に独立した粒子として存在するのではなく、構成成分である負極活物質、粒子状バインダー及び水溶性重合体を含む2成分以上によって一粒子を形成するものである。具体的には、前記2成分以上の個々の粒子の複数個が結合して二次粒子を形成しており、複数個(好ましくは数個〜数十個)の負極活物質が、粒子状バインダーによって結着されて粒子を形成しているものが好ましい。負極活物質層を複合粒子を用いて形成することにより、得られる二次電池負極のピール強度をより高くできると共に、内部抵抗を低減することができる。
【0155】
乾式成形法に好適に用いる複合粒子は、本発明の二次電池負極用バインダー組成物、負極活物質及び必要に応じて用いられる導電剤等を含む二次電池負極用スラリー組成物を造粒することにより製造される。
【0156】
複合粒子の造粒方法は特に制限されず、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、パルス燃焼式乾燥法、および溶融造粒法などの公知の造粒法により製造することができる。中でも、表面付近に二次電池負極用バインダー組成物および導電剤が偏在した複合粒子を容易に得られるので、噴霧乾燥造粒法が好ましい。噴霧乾燥造粒法で得られる複合粒子を用いると、本発明の二次電池負極を高い生産性で得ることができる。また、二次電池負極の内部抵抗をより低減することができる。
【0157】
噴霧乾燥造粒法では、本発明の二次電池負極用スラリー組成物を噴霧乾燥して造粒し、複合粒子を得る。噴霧乾燥は、熱風中にスラリー組成物を噴霧して乾燥することにより行う。スラリー組成物の噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーは、回転円盤方式と加圧方式との二種類の装置がある。回転円盤方式は、高速回転する円盤のほぼ中央にスラリー組成物を導入し、円盤の遠心力によってスラリー組成物が円盤の外に放たれ、その際にスラリー組成物を霧状にする方式である。円盤の回転速度は円盤の大きさに依存するが、好ましくは5,000〜40,000rpm、より好ましくは15,000〜40,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の重量平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。スラリー組成物は噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、スラリー組成物を加圧してノズルから霧状にして乾燥する方式である。
【0158】
噴霧されるスラリー組成物の温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。また、噴霧乾燥時の熱風温度は、好ましくは80〜250℃、より好ましくは100〜200℃である。
【0159】
噴霧乾燥において、熱風の吹き込み方法は特に制限されず、例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。
【0160】
乾式成形法に好適に用いる複合粒子の形状は、実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をLs、長軸径をLl、La=(Ls+Ll)/2とし、(1−(Ll−Ls)/La)×100の値を球形度(%)としたとき、球形度が80%以上であることが好ましく、より好ましくは90%以上である。ここで、短軸径Lsおよび長軸径Llは、透過型電子顕微鏡写真像より測定される値である。
【0161】
乾式成形法に好適に用いる複合粒子の体積平均粒子径は、好ましくは10〜100μm、より好ましくは20〜80μm、さらにより好ましくは30〜60μmの範囲である。体積平均粒子径は、レーザー回折式粒度分布測定装置を用いて測定することができる。
【0162】
乾式成形法において、複合粒子を集電体上に供給する工程で用いられるフィーダーは、特に限定されないが、複合粒子を定量的に供給できる定量フィーダーであることが好ましい。ここで、定量的に供給できるとは、かかるフィーダーを用いて複合粒子を連続的に供給し、一定間隔で供給量を複数回測定し、その測定値の平均値mと標準偏差σmから求められるCV値(=σm/m×100)が4以下であることをいう。乾式成形法に好適に用いられる定量フィーダーは、CV値が好ましくは2以下である。定量フィーダーの具体例としては、テーブルフィーダー、ロータリーフィーダーなどの重力供給機、スクリューフィーダー、ベルトフィーダーなどの機械力供給機などが挙げられる。これらのうちロータリーフィーダーが好適である。
【0163】
次いで、集電体と供給された複合粒子とを一対のロールで加圧して、集電体上に負極活物質層を形成する。この工程では、必要に応じ加温された前記複合粒子が、一対のロールでシート状の負極活物質層に成形される。供給される複合粒子の温度は、好ましくは40〜160℃、より好ましくは70〜140℃である。この温度範囲にある複合粒子を用いると、プレス用ロールの表面で複合粒子の滑りがなく、複合粒子が連続的かつ均一にプレス用ロールに供給されるので、膜厚が均一で、電極密度のばらつきが小さい、負極活物質層を得ることができる。
【0164】
成形時の温度は、好ましくは0〜200℃であり、本発明に用いる粒子状バインダーの融点またはガラス転移温度より高いことが好ましく、融点またはガラス転移温度より20℃以上高いことがより好ましい。ロールを用いる場合の成形速度は、好ましくは0.1m/分より大きく、より好ましくは35〜70m/分である。またプレス用ロール間のプレス線圧は、好ましくは0.2〜30kN/cm、より好ましくは0.5〜10kN/cmである。
【0165】
上記製法では、前記一対のロールの配置は特に限定されないが、略水平または略垂直に配置されることが好ましい。略水平に配置する場合は、集電体を一対のロール間に連続的に供給し、該ロールの少なくとも一方に複合粒子を供給することで、集電体とロールとの間隙に複合粒子が供給され、加圧により負極活物質層を形成できる。略垂直に配置する場合は、集電体を水平方向に搬送させ、集電体上に複合粒子を供給し、供給された複合粒子を必要に応じブレード等で均した後、前記集電体を一対のロール間に供給し、加圧により負極活物質層を形成できる。
【0166】
また、(I)塗布法においては、集電体の表面に二次電池負極用スラリー組成物を塗布及び乾燥した後で、必要に応じて、例えば金型プレス又はロールプレスなどを用い、負極活物質層に加圧処理を施すことが好ましい。加圧処理により、負極活物質層の空隙率を低くすることができる。空隙率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは30%以下、より好ましくは20%以下である。空隙率を前記範囲の下限値以上とすることにより、高い体積容量が得易くなり、負極活物質層を集電体から剥がれ難くすることができ、また、上限値以下とすることにより高い充電効率及び放電効率が得られる。
【0167】
さらに、負極活物質層が硬化性の重合体を含む場合は、負極活物質層の形成後に前記重合体を硬化させることが好ましい。
【0168】
[4.二次電池]
本発明の二次電池は、本発明の負極を備える。通常、本発明の二次電池は、正極、負極、電解液及びセパレーターを備え、前記負極が、本発明の負極となっている。
本発明の負極を備えるので、本発明の二次電池では、充放電に伴う負極の膨らみを抑制できたり、高温環境で保存した場合でも容量を低下し難くしたりできる。また、通常は、本発明の二次電池の高温サイクル特性及び低温出力特性を改善したり、負極活物質層の集電体への密着性を高めたりすることもできる。
【0169】
[4−1.正極]
正極は、通常、集電体と、集電体の表面に形成された、正極活物質及び正極用バインダーを含む正極活物質層とを備える。
【0170】
正極の集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されない。正極の集電体としては、例えば、本発明の負極に使用される集電体を用いてもよい。中でも、アルミニウムが特に好ましい。
【0171】
正極活物質は、例えば本発明の二次電池がリチウムイオン二次電池である場合には、リチウムイオンの挿入及び脱離が可能な物質が用いられる。このような正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
【0172】
無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。
上記の遷移金属としては、例えばTi、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
【0173】
遷移金属酸化物としては、例えば、MnO、MnO、V、V13、TiO、Cu、非晶質VO−P、MoO、V、V13等が挙げられ、中でもサイクル安定性と容量からMnO、V、V13、TiOが好ましい。
遷移金属硫化物としては、例えば、TiS、TiS、非晶質MoS、FeS等が挙げられる。
【0174】
リチウム含有複合金属酸化物としては、例えば、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co−Ni−Mnのリチウム複合酸化物、Ni−Mn−Alのリチウム複合酸化物、Ni−Co−Alのリチウム複合酸化物等が挙げられる。
スピネル構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn)又はMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。
オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、LiMPO(式中、Mは、Mn、Fe、Co、Ni、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、B及びMoからなる群より選ばれる少なくとも1種を表し、Xは0≦X≦2を満たす数を表す。)で表されるオリビン型燐酸リチウム化合物が挙げられる。
【0175】
有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子化合物が挙げられる。
【0176】
また、無機化合物及び有機化合物を組み合わせた複合材料からなる正極活物質を用いてもよい。例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。
さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。また、上記の無機化合物と有機化合物の混合物を正極活物質として用いてもよい。
正極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0177】
正極活物質の粒子の平均粒子径は、好ましくは1μm以上、より好ましくは2μm以上であり、好ましくは50μm以下、より好ましくは30μm以下である。正極活物質の粒子の平均粒子径を上記範囲にすることにより、正極活物質層を調製する際の正極用バインダーの量を少なくすることができ、二次電池の容量の低下を抑制できる。また、正極活物質層を形成するためには、通常、正極活物質及び正極用バインダーを含む正極用スラリー組成物を用意するが、この正極用スラリー組成物の粘度を塗布し易い適正な粘度に調整することが容易になり、均一な正極を得ることができる。
【0178】
正極活物質層における正極活物質の含有割合は、好ましくは90重量%以上、より好ましくは95重量%以上であり、好ましくは99.9重量%以下、より好ましくは99重量%以下である。正極活物質の含有量を上記範囲とすることにより、二次電池の容量を高くでき、また、正極の柔軟性並びに集電体と正極活物質層との結着性を向上させることができる。
【0179】
正極用バインダーとしては、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂;アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。正極用バインダーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0180】
また、正極活物質層には、必要に応じて、正極活物質及び正極用バインダー以外の成分が含まれていてもよい。その例を挙げると、例えば、粘度調整剤、導電剤、補強材、レベリング剤、電解液添加剤等が挙げられる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0181】
正極活物質層の厚みは、好ましくは5μm以上、より好ましくは10μm以上であり、好ましくは300μm以下、より好ましくは250μm以下である。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度の両方で高い特性を実現できる。
【0182】
正極は、例えば、前述の負極と同様の要領で製造しうる。
【0183】
[4−2.電解液]
電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用してもよい。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0184】
支持電解質の量は、電解液に対して、好ましくは1重量%以上、より好ましくは5重量%以上であり、また、好ましくは30重量%以下、より好ましくは20重量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し、二次電池の充電特性及び放電特性が低下する可能性がある。
【0185】
電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されない。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ−ブチロラクトン、ギ酸メチル等のエステル類;1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0186】
また、電解液には必要に応じて添加剤を含有させてもよい。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0187】
また、上記以外の電解液としては、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質;硫化リチウム、LiI、LiNなどの無機固体電解質;などを挙げることができる。
【0188】
[4−3.セパレーター]
セパレーターとしては、通常、気孔部を有する多孔性基材を用いる。セパレーターの例を挙げると、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーター、などが挙げられる。これらの例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム;ゲル化高分子コート層がコートされたセパレーター;無機フィラーと無機フィラー用分散剤とからなる多孔膜層がコートされたセパレーター;などが挙げられる。
【0189】
[4−4.二次電池の製造方法]
本発明の二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口してもよい。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
【実施例】
【0190】
以下、実施例を示して本発明について具体的に説明するが、本発明は以下に示す実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。以下の実施例の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
【0191】
〔評価方法〕
1.密着強度
実施例および比較例で製造した負極を、長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、負極活物質層の表面を下にして、負極活物質層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求めて、当該平均値をピール強度とした。ピール強度が大きいほど、負極活物質層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
【0192】
2.高温保存特性
実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を、25℃の環境下で、24時間静置させた後に、0.1Cの定電流法によって、4.2Vに充電し、3.0Vまで放電する充放電の操作を行い、その時の電気容量(初期容量C)を測定した。さらに、25℃の環境下で、4.2Vに充電し、60℃で7日間保存した後、0.1Cの定電流法によって4.2Vまで充電し、3.0Vまで放電する充放電の操作を行い、高温保存後の電気容量Cを測定した。高温保存特性は、ΔC=C/C×100(%)で示す容量変化率ΔCにて評価した。この容量変化率ΔCの値が高いほど、高温保存特性に優れることを示す。
【0193】
3.高温サイクル特性
実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を25℃の環境下で、24時間静置させた後に、0.1Cの定電流法によって、4.2Vに充電し、3.0Vまで放電する充放電の操作を行い、その時の電気容量(初期容量C)を測定した。さらに、60℃の環境下で、0.1Cの定電流法によって、4.2Vに充電し、3.0Vまで放電する充放電の操作を100回(100サイクル)繰り返し、100サイクル後の電気容量Cを測定した。高温サイクル特性は、ΔC=C/C×100(%)で示す容量変化率ΔCにて評価した。この容量変化率ΔCの値が高いほど、高温サイクル特性に優れることを示す。
【0194】
4.高温サイクル特性測定後の密着強度
前記の「4.高温サイクル特性」の評価の後でリチウムイオン二次電池のセルを解体し、負極を取り出し、これを、60℃、24時間、0.1MPa以下の減圧下で乾燥させた。乾燥させた負極について「1.密着強度」と同様にして密着強度を測定した。但し、試験片の寸法は長さ40mm、幅10mmとした。
【0195】
5.低温出力特性
実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を、25℃の環境下で、24時間静置させた後に、25℃の環境下で、4.2V、0.1Cの定電流法によって4.2Vに充電し、このときの電圧Vを測定した。その後、−25℃の環境下で、0.1Cの定電流法によって放電の操作を行い、放電開始10秒後の電圧V10を測定した。低温出力特性は、ΔV=V−V10で示す電圧変化ΔVにて評価した。この電圧変化ΔVの値が小さいほど、低温出力特性に優れることを示す。
【0196】
6.数平均分子量及び分子量分布
実施例および比較例で製造した水溶性重合体の水溶液を、それぞれ、乾燥厚みが1mmとなるようにシリコン容器に流入し、室温、72時間乾燥し、1cm×1cmの正方形のフィルムを作製した。このフィルムを、ジメチルホルムアミドに溶解して1%溶液を調製した。これを試料として、GPC(ゲルパーミエーションクロマトグラフィー)を行い、数平均分子量及び分子量分布(分子量100,000以上の分子の個数の割合、及び分子量100以上1000以下の分子の個数の割合)を求めた。GPCの標準物質としてはポリスチレンを用い、展開溶媒としては、ジメチルホルムアミドの10体積%水溶液に0.85g/mlの硝酸ナトリウムを溶解させた溶液を用いた。
<測定条件>
GPC測定装置:HLC−8220GPC(東ソー社製)
カラム:TSKgel SuperHZM−M
展開溶媒:ジメチルホルムアミドの10体積%水溶液に0.85g/mlの硝酸ナトリウムを溶解させた溶液
流速:0.6mL/min
注入量:20μl
温度:40℃
検出器:示差屈折率検出器RI(東ソー社製HLC−8320 GPC RI検出器)
【0197】
〔実施例1〕
(1−1.水溶性重合体の製造)
攪拌機付き5MPa耐圧容器に、メタクリル酸(酸性官能基含有単量体)32.5部、エチレンジメタクリレート(架橋性単量体)0.8部、2,2,2−トリフルオロエチルメタクリレート(フッ素含有(メタ)アクリル酸エステル単量体)7.5部、ブチルアクリレート(その他の単量体)58.0部、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム(反応性界面活性剤単量体、花王製、商品名「ラテムルPD−104」)1.2部、t−ドデシルメルカプタン0.6部、イオン交換水150部、及び過硫酸カリウム(重合開始剤)0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む混合物を得た。上記水溶性重合体を含む混合物に、10%アンモニア水を添加して、pH8に調整し、所望の水溶性重合体を含む水溶液を得た。
得られた水溶性重合体について、ガラス転移温度、分子量及び分子量分布を測定した。結果を表1に示す。
【0198】
(1−2.粒子状バインダーの製造)
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン33部、イタコン酸3.5部、スチレン63.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状バインダー(SBR)を含む混合物を得た。上記粒子状バインダーを含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、所望の粒子状バインダーを含む水分散液を得た。
【0199】
(1−3.二次電池負極用バインダー組成物の製造)
上記(1−1)で得られた水溶性重合体を含む水溶液をイオン交換水で希釈して濃度を5%に調整した。そして、上記(1−2)で得られた粒子状バインダーを含む水分散液に、固形分相当で粒子状バインダー:水溶性重合体=97.0:3.0となるように混合して、二次電池負極用バインダー組成物を得た。
【0200】
(1−4.二次電池負極用スラリー組成物の製造)
ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積4m/gの人造黒鉛(平均粒子径:24.5μm)70部、SiOC(平均粒子径:12μm)30部、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH−12」)を固形分相当で1部を加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分混合し混合液を得た。
【0201】
上記混合液に、上記(1−3)で得られた二次電池負極用バインダー組成物を含む水分散液を固形分相当量で1.0重量部、及びイオン交換水を入れ、最終固形分濃度50%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い二次電池負極用スラリー組成物を得た。
【0202】
(1−5.負極の製造)
上記(1−4)で得られた二次電池負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmの負極を得た。
得られた負極について、密着強度を測定した。結果を表2に示す。
【0203】
(1−6.正極の製造)
正極用バインダーとして、ガラス転移温度Tgが−40℃で、数平均粒子径が0.20μmのアクリレート重合体の40%水分散体を用意した。前記のアクリレート重合体は、アクリル酸2−エチルヘキシル78重量%、アクリロニトリル20重量%、及びメタクリル酸2重量%を含む単量体混合物を乳化重合して得られた共重合体である。
正極活物質として体積平均粒子径0.5μmでオリビン結晶構造を有するLiFePOを100部と、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH−12」)を固形分相当で1部と、正極用バインダーとして上記のアクリレート重合体の40%水分散体を固形分相当で5部と、イオン交換水とを混合した。イオン交換水の量は、全固形分濃度が40%となる量とした。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。
上記の正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が200μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極原反を得た。この正極原反をロールプレスで圧延して、正極極板を製造した。
【0204】
(1−7.セパレーターの用意)
単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5×5cmの正方形に切り抜いた。
【0205】
(1−8.リチウムイオン二次電池)
電池の外装として、アルミ包材外装を用意した。上記(1−6)で得られた正極を、4×4cmの正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。正極の正極活物質層の面上に、上記(1−7)で得られた正方形のセパレーターを配置した。さらに、上記(1−5)で得られた負極を、4.2×4.2cmの正方形に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。電解液(溶媒:EC/DEC=1/2、電解質:濃度1MのLiPF)を空気が残らないように注入し、さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、リチウムイオン二次電池を製造した。
得られたリチウムイオン二次電池について、高温保存特性、高温サイクル特性、高温サイクル特性測定後の密着強度、及び低温出力特性を評価した。結果を表2に示す。
【0206】
〔実施例2〜11〕
(1−1)の水溶性重合体の製造において、2,2,2−トリフルオロエチルメタクリレート、ブチルアクリレート、エチレンジメタクリレート、tert-ドデシルメルカプタン及びポリオキシアルキレンアルケニルエーテル硫酸アンモニウムの量を表1〜表2に示す通り変更した他は、実施例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表1〜表2に示す。
【0207】
〔実施例12及び13〕
(12−1.水溶性重合体の製造)
実施例1の(1−1)の水溶性重合体の製造において、2,2,2−トリフルオロエチルメタクリレートに代えて、トリフルオロメチルメタクリレート(実施例12)又はパーフルオロオクチルメタクリレート(実施例13)を添加した他は、実施例1と同様にして、水溶性重合体を含む水溶液を得た。
得られた水溶性重合体について、ガラス転移温度、分子量及び分子量分布を測定した。結果を表2〜表3に示す。
【0208】
(12−2.二次電池等の製造及び評価)
水溶性重合体を含む水溶液として、実施例1の(1−1)で得られたものに代えて上記(12−1)で得られたものを用いた他は、実施例1の(1−2)〜(1−8)と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表2〜表3に示す。
【0209】
〔実施例14及び15〕
(1−4)の二次電池負極用スラリー組成物の製造において、粒子状バインダーと水溶性重合体の5%水溶液を含む水分散液の添加量を変更し、粒子状バインダーと水溶性重合体の割合を表3に示す通りとした他は、実施例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表3に示す。
【0210】
〔実施例16〕
(1−4)の二次電池負極用スラリー組成物の製造において、SiOCを添加せず、且つ人造黒鉛の添加量を100部に変更した他は、実施例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表3に示す。
【0211】
〔実施例17〕
(1−4)の二次電池負極用スラリー組成物の製造において、人造黒鉛及びSiOCの添加量をそれぞれ90部及び10部に変更した他は、実施例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表3に示す。
【0212】
〔実施例18〕
(1−1)の水溶性重合体の製造において、界面活性剤として、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウムに代えて、ドデシルジフェニルエーテルスルホン酸ナトリウムを用い、さらにブチルアクリレートの量を59.2部に変更した他は、実施例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表3に示す。
【0213】
〔実施例19〕
(19−1.水溶性重合体の製造)
攪拌機付き5MPa耐圧容器に、メタクリル酸(酸性官能基含有単量体)32.5部、エチレンジメタクリレート(架橋性単量体)0.8部、2,2,2−トリフルオロエチルメタクリレート(フッ素含有(メタ)アクリル酸エステル単量体)7.5部、ブチルアクリレート(その他の単量体)57.0部、スチレンスルホン酸(スルホン酸基含有単量体)1部、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム(反応性界面活性剤単量体、花王製、商品名「ラテムルPD−104」)1.2部、t−ドデシルメルカプタン0.6部、イオン交換水150部、及び過硫酸カリウム(重合開始剤)0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む混合物を得た。上記水溶性重合体を含む混合物に、10%アンモニア水を添加して、pH8に調整し、所望の水溶性重合体を含む水溶液を得た。
得られた水溶性重合体について、ガラス転移温度、分子量及び分子量分布を測定した。結果を表4に示す。
【0214】
(19−2.二次電池等の製造及び評価)
水溶性重合体を含む水溶液として、実施例1の(1−1)で得られたものに代えて上記(19−1)で得られたものを用いた他は、実施例1の(1−2)〜(1−8)と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表4に示す。
【0215】
〔比較例1〕
(C1−1.水溶性重合体の製造)
攪拌機付き5MPa耐圧容器に、メタクリル酸(酸性官能基含有単量体)32.5部、ブチルアクリレート(その他の単量体)67.5部、ドデシルジフェニルエーテルスルホン酸ナトリウム1.2部、t−ドデシルメルカプタン0.05部、イオン交換水150部、及び過硫酸カリウム(重合開始剤)0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む混合物を得た。上記水溶性重合体を含む混合物に、10%アンモニア水を添加して、pH8に調整し、所望の水溶性重合体を含む水溶液を得た。
得られた水溶性重合体について、ガラス転移温度、分子量及び分子量分布を測定した。結果を表4示す。
【0216】
(C1−2.二次電池等の製造及び評価)
水溶性重合体を含む水溶液として、実施例1の(1−1)で得られたものに代えて上記(C1−1)で得られたものを用いた他は、実施例1の(1−2)〜(1−8)と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表4に示す。
【0217】
〔比較例2〕
(C1−1)の水溶性重合体の製造において、t−ドデシルメルカプタンの量を2.5部に変更した他は、比較例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表4に示す。
【0218】
〔比較例3〕
(C3−1.水溶性重合体の製造)
攪拌機付き5MPa耐圧容器に、メタクリル酸(酸性官能基含有単量体)32.5部、2,2,2−トリフルオロエチルメタクリレート(フッ素含有(メタ)アクリル酸エステル単量体)30部、ブチルアクリレート(その他の単量体)37.5部、ドデシルジフェニルエーテルスルホン酸ナトリウム1.2部、t−ドデシルメルカプタン0.05部、イオン交換水150部、及び過硫酸カリウム(重合開始剤)0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む混合物を得た。上記水溶性重合体を含む混合物に、10%アンモニア水を添加して、pH8に調整し、所望の水溶性重合体を含む水溶液を得た。
得られた水溶性重合体について、ガラス転移温度、分子量及び分子量分布を測定した。結果を表4に示す。
【0219】
(C3−2.二次電池等の製造及び評価)
水溶性重合体を含む水溶液として、実施例1の(1−1)で得られたものに代えて上記(C3−1)で得られたものを用いた他は、実施例1の(1−2)〜(1−8)と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表4に示す。
【0220】
〔比較例4〕
(C1−1)の水溶性重合体の製造において、ドデシルジフェニルエーテルスルホン酸ナトリウムの量を3.5部に変更し、t−ドデシルメルカプタンの量を1部に変更した他は、比較例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表4に示す。
【0221】
【表1】
【0222】
【表2】
【0223】
【表3】
【0224】
【表4】
【0225】
表中の略語は、それぞれ以下のものを示す。
TDM:tert−ドデシルメルカプタン
EDMA:エチレンジメタクリレート
TFEMA:2,2,2−トリフルオロエチルメタクリレート
TFMMA:トリフルオロメチルメタクリレート
PFOMA:パーフルオロオクチルメタクリレート
POAAE:ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム
※1:反応性界面活性剤単量体を添加せず、代わりに、反応性単量体でない界面活性剤であるドデシルジフェニルエーテルスルホン酸ナトリウム1.2部を添加した。
※2:反応性界面活性剤単量体を添加せず、代わりに、反応性単量体でない界面活性剤であるドデシルジフェニルエーテルスルホン酸ナトリウム3.5部を添加した。
Tg:水溶性重合体のガラス転移温度(℃)
100000≦:水溶性重合体中の、分子量100,000以上の分子の個数の割合(%)
100−1000:水溶性重合体中の、分子量100以上1000以下の分子の個数の割合(%)
Mn:水溶性重合体の数平均分子量
メタクリル酸量:メタクリル酸の配合割合(部)
BA量:ブチルアクリレートの配合割合(部)
フッ素種類:フッ素含有(メタ)アクリル酸エステル単量体の種類
フッ素量:フッ素含有(メタ)アクリル酸エステル単量体の配合割合(部)
架橋性種類:架橋性単量体の種類
架橋性量:架橋性単量体の配合割合(部)
調整剤種類:分子量調整剤種類
調整剤量:分子量調整剤の配合割合(部)
反応性界面種類:反応性界面活性剤単量体の種類
反応性界面量:反応性界面活性剤単量体の配合割合(部)
スルホン酸量:スチレンスルホン酸の配合割合(部)
粒子状バインダー/水溶性重合体:負極用バインダーにおける、粒子状バインダー/水溶性重合体の重量比
ピール強度:密着性試験で測定された負極活物質のピール強度(N/m)
高温保存特性:高温保存特性試験で測定された容量変化率ΔC(%)
高温サイクル特性:高温サイクル特性試験で測定された容量変化率ΔC(%)
高温サイクル特性後のピール強度:高温サイクル特性後の密着強度試験で測定されたピール強度(N/m)
低温出力特性:低温出力特性で測定された電圧変化ΔV(mV)
【0226】
表1〜表4の結果から分かる通り、本発明の要件を充足する実施例においては、全ての評価項目においてバランス良く良好な結果が得られた。これに対し、ガラス転移温度及び分子量分布の一方又は両方が本願の要件を充足しない比較例1〜4においては、ピール強度が劣り、電池の特性においてもより劣る結果が得られた。