特許第6012838号(P6012838)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友化学株式会社の特許一覧

特許6012838非水電解液二次電池用セパレータの製造方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6012838
(24)【登録日】2016年9月30日
(45)【発行日】2016年10月25日
(54)【発明の名称】非水電解液二次電池用セパレータの製造方法
(51)【国際特許分類】
   H01M 2/16 20060101AFI20161011BHJP
   H01M 10/0566 20100101ALI20161011BHJP
【FI】
   H01M2/16 P
   H01M10/0566
【請求項の数】3
【全頁数】18
(21)【出願番号】特願2015-233936(P2015-233936)
(22)【出願日】2015年11月30日
【審査請求日】2016年2月1日
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002093
【氏名又は名称】住友化学株式会社
(74)【代理人】
【識別番号】100127498
【弁理士】
【氏名又は名称】長谷川 和哉
(74)【代理人】
【識別番号】100146329
【弁理士】
【氏名又は名称】鶴田 健太郎
(72)【発明者】
【氏名】吉丸 央江
(72)【発明者】
【氏名】村上 力
【審査官】 ▲高▼橋 真由
(56)【参考文献】
【文献】 特開2015−120835(JP,A)
【文献】 国際公開第2012/090632(WO,A1)
【文献】 国際公開第2008/059806(WO,A1)
【文献】 特開2013−194153(JP,A)
【文献】 特開2003−082139(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 2/16
(57)【特許請求の範囲】
【請求項1】
重量平均分子量100万以上の超高分子量ポリエチレンを50体積%以上含むシートを延伸する工程を有する、多孔質フィルムである非水電解液二次電池用セパレータの製造方法であって、
上記延伸する工程において、延伸時の歪速度、および、延伸後フィルム単位厚み当たりの延伸後の熱固定処理の温度を、歪速度をX軸、延伸後フィルム単位厚み当たりの熱固定温度をY軸としたグラフ上の(500%毎分,1.5℃/μm)、(900%,14.0℃/μm)、(2500%,11.0℃/μm)3点を頂点とする三角形の内側の範囲とすることを特徴とする非水電解液二次電池用セパレータの製造方法。
【請求項2】
前記多孔質フィルムが、3重量%の水を含むN−メチルピロリドンに含浸させた後、周波数2455Hzのマイクロ波を出力1800Wで照射したときの、単位面積当たりの樹脂量に対する温度上昇収束時間が2.9〜5.7秒・m/gであることを特徴とする請求項1に記載の非水電解液二次電池用セパレータの製造方法。
【請求項3】
前記シートがさらに重量平均分子量1万以下の低分子量ポリオレフィンを含む請求項1又は2に記載の非水電解液二次電池用セパレータの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池に関する。
【背景技術】
【0002】
リチウムイオン二次電池等の非水電解液二次電池は、エネルギー密度が高いので、パーソナルコンピュータ、携帯電話、携帯情報端末等の機器に用いる電池として広く使用され、また最近では車載用の電池として開発が進められている。
【0003】
リチウムイオン二次電池などの非水電解液二次電池におけるセパレータとして、ポリオレフィンを主成分とする微多孔フィルムが用いられている。
【0004】
非水電解液二次電池では、充放電に伴って電極が膨張収縮を繰り返すために、電極とセパレータの間で応力が発生し、電極活物質が脱落するなどして内部抵抗が増大し、サイクル特性が低下する問題があった。そこで、セパレータの表面にポリフッ化ビニリデンなどの接着性物質をコーティングすることでセパレータと電極の密着性を高める手法が提案されている(特許文献1、2)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第5355823号(2013年11月27日発行)
【特許文献2】特開2001−118558号(2001年4月27日公開)
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1,2の技術でも、初期レート特性が十分に高くない、又は、充放電を繰り返すことによってレート特性が低下するという問題があった。
【0007】
本発明は、このような問題点に鑑みなされたものであって、その目的は、初期レート特性に優れ、且つ、充放電を繰り返したときのレート特性の低下を抑制できる非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池を提供することにある。
【課題を解決するための手段】
【0008】
本発明に係る非水電解液二次電池用セパレータは、ポリオレフィンを主成分とする多孔質フィルムであって、3重量%の水を含むN−メチルピロリドンに含浸させた後、周波数2455Hzのマイクロ波を出力1800Wで照射したときの、単位面積当たりの樹脂量に対する温度上昇収束時間が2.9〜5.7秒・m/gであることを特徴とする。
【0009】
さらに、本発明に係る非水電解液二次電池用セパレータは、前記単位面積当たりの樹脂量に対する温度上昇収束時間が2.9〜5.3秒・m/gであることが好ましい。
【0010】
また、本発明に係る非水電解液二次電池用積層セパレータは、上記の非水電解液二次電池用セパレータと多孔質層とを備える。
【0011】
また、本発明に係る非水電解液二次電池用部材は、正極と、上記非水電解液二次電池用セパレータ又は上記非水電化液二次電池用積層セパレータと、負極とがこの順で配置されてなることを特徴とする。
【0012】
また、本発明に係る非水電解液二次電池は、上記の非水電解液二次電池用セパレータ又は上記非水電化液二次電池用積層セパレータを含むことを特徴とする。
【発明の効果】
【0013】
本発明によれば、初期レート特性に優れ、且つ、充放電を繰り返したときのレート特性の低下を抑制できる非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池を提供することができるという効果を奏する。
【発明を実施するための形態】
【0014】
本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。なお、本明細書において特記しない限り、数値範囲を表す「A〜B」は、「A以上B以下」を意味する。
【0015】
〔1.セパレータ〕
(1−1)非水電解液二次電池用セパレータ
本発明の一実施形態に係る非水電解液二次電池用セパレータは、非水電解液二次電池において正極と負極との間に配置される膜状の多孔質フィルムである。
【0016】
多孔質フィルムは、ポリオレフィン系樹脂を主成分とする多孔質かつ膜状の基材(ポリオレフィン系多孔質基材)であればよく、その内部に連結した細孔を有し、一方の面から他方の面に気体や液体が透過可能であるフィルムである。
【0017】
多孔質フィルムは、電池が発熱したときに溶融して、非水電解液二次電池用セパレータを無孔化することにより、該非水電解液二次電池用セパレータにシャットダウン機能を付与するものである。多孔質フィルムは、1つの層からなるものであってもよいし、複数の層から形成されるものであってもよい。
【0018】
本発明者らは、多孔質フィルムに3重量%の水を含むN−メチルピロリドンに多孔質フィルムを含浸させた後、周波数2455Hzのマイクロ波を出力1800Wで照射したときの昇温が収束するまでの時間(温度上昇収束時間)が、初期レート特性および充放電を繰り返したときのレート特性の低下と関係していることを初めて見出し、本発明を完成させた。
【0019】
非水電解液二次電池の充放電を行うと、電極が膨張する。具体的には、充電時には負極が膨張し、放電時には正極が膨張する。そのため、非水電解液二次電池用セパレータ内部の電解液は、膨張する電極側から対向する電極側に押し出される。このような機構により、充放電サイクル中、電解液は、非水電解液二次電池用セパレータの内外を移動する。ここで、非水電解液二次電池用セパレータは上述したように細孔を有しているため、電解液は、当該細孔の内外を移動することとなる。
【0020】
非水電解液二次電池用セパレータの細孔内を電解液が移動するとき、細孔の壁面は当該移動に伴う応力を受ける。当該応力の強さは、細孔の構造、すなわち、連結した細孔における毛細管力および細孔の壁の面積に関係している。具体的には、細孔の壁面が受ける応力は、毛細管力が強いほど増大するとともに、細孔の壁面の面積が大きいほど増大すると考えられる。加えて、当該応力の強さは、細孔内を移動する電解液の量とも関係し、移動する電解液量が多い、すなわち、電池を大電流条件で作動させた場合に、大きくなると考えられる。そして、当該応力が増大すると、壁面が応力によって細孔を閉塞するように変形し、結果として電池出力特性を低下させることになる。そのため、電池の充放電を繰り返したり、大電流条件で作動させることにより、徐々にレート特性が低下することになる。
【0021】
また、非水電解液二次電池用セパレータから押し出される電解液が少ないと、電極表面当たりの電解液の減少、もしくは、電極表面における局所的な電解液の枯渇箇所の発生が起こり、電解液分解生成物の発生増加を招くことが考えられる。このような電解液分解生成物は、非水電解液二次電池のレート特性の低下の原因となる。
【0022】
このように、非水電解液二次電池用セパレータの細孔の構造(細孔内の毛細管力および細孔の壁の面積)、および、非水電解液二次電池用セパレータから電極への電解液の供給能は、電池の充放電を繰り返したり、大電流条件で作動させたときのレート特性の低下と関係している。そこで、本発明者らは、多孔質フィルムに3重量%の水を含むN−メチルピロリドンに多孔質フィルムを含浸させ、周波数2455Hzのマイクロ波を出力1800Wで照射したときの温度変化に着目した。
【0023】
水を含むN−メチルピロリドンを含む多孔質フィルムにマイクロ波を照射すると、水の振動エネルギーにより発熱する。発生した熱は、水を含むN−メチルピロリドンが接触している多孔質フィルムの樹脂に伝わる。そして、発熱速度と樹脂への伝熱による放冷速度とが平衡化した時点で温度上昇が収束する。そのため、昇温が収束するまでの時間(温度上昇収束時間)は、多孔質フィルムに含まれる液体(ここでは水を含むN−メチルピロリドン)と、多孔質フィルムを構成する樹脂との接触の程度と関係する。多孔質フィルムに含まれる液体と多孔質フィルムを構成する樹脂との接触の程度は、多孔質フィルムの細孔内の毛細管力および細孔の壁の面積と密接に関係しているため、上記の温度上昇収束時間により多孔質フィルムの細孔の構造(細孔内の毛細管力および細孔の壁の面積)を評価することができる。具体的には、温度上昇収束時間が短いほど、細孔内の毛細管力が大きく、細孔の壁の面積が大きいことを示している。
【0024】
また、多孔質フィルムに含まれる液体と多孔質フィルムを構成する樹脂との接触の程度は、液体が多孔質フィルムの細孔内を移動しやすいときほど大きくなるものと考えられる。そのため、温度上昇収束時間により、非水電解液二次電池用セパレータから電極への電解液の供給能を評価することができる。具体的には、温度上昇収束時間が短いほど、非水電解液二次電池用セパレータから電極への電解液の供給能が高いことを示している。
【0025】
本発明の多孔質フィルムは、単位面積当たりの樹脂量(目付)に対する上記の温度上昇収束時間が2.9〜5.7秒・m/gであり、好ましくは2.9〜5.3秒・m/gである。
【0026】
単位面積当たりの樹脂量に対する温度上昇収束時間が2.9秒・m/g未満である場合、多孔質フィルムの細孔内の毛細管力および細孔の壁の面積が大きくなりすぎ、充放電サイクル中や、大電流条件での作動時に電解液が細孔内を移動するときの細孔の壁が受ける応力が増大することにより細孔が閉塞し、電池出力特性が低下する。
【0027】
また、単位面積当たりの樹脂量に対する温度上昇収束時間が5.7秒・m/gを超えると、多孔質フィルムの細孔内を液体が移動しにくくなるとともに、多孔質フィルムを非水電解液二次電池用セパレータとして使用した場合の、多孔質フィルムと電極との界面付近における電解液の移動速度が遅くなるため、電池のレート特性が低下する。加えて、電池の充放電を繰り返した際、セパレータ電極界面や多孔質フィルム内部に局所的な電解液枯渇部発生し易くなる。その結果、電池内部の抵抗増大を招き、非水電解液二次電池の充放電サイクル後のレート特性が低下する。
【0028】
これに対し、単位面積当たりの樹脂量に対する温度上昇収束時間を2.9〜5.7秒・m/gとすることにより、後述する実施例で示されるように、初期レート特性に優れ、さらに、充放電サイクル後のレート特性の低下を抑制することができる。
【0029】
多孔質フィルムの膜厚は、非水電解液二次電池を構成する非水電解液二次電池用部材の膜厚を考慮して適宜決定すればよく、4〜40μmであることが好ましく、5〜30μmであることがより好ましく、6〜15μmであることがさらに好ましい。
【0030】
多孔質フィルムの体積基準の空隙率は、電解液の保持量を高めると共に、過大電流が流れることをより低温で確実に阻止(シャットダウン)する機能を得ることができるように、20〜80体積%であり、30〜75体積%であることが好ましい。また、多孔質フィルムが有する細孔の平均径(平均細孔径)は、セパレータとして用いたときに、充分なイオン透過性を得ることができ、かつ、正極や負極への粒子の入り込みを防止することができるように、0.3μm以下であることが好ましく、0.14μm以下であることがより好ましい。
【0031】
多孔質フィルムにおけるポリオレフィン成分の割合は、多孔質フィルム全体の50体積%以上であることを必須とし、90体積%以上であることが好ましく、95体積%以上であることがより好ましい。多孔質フィルムのポリオレフィン成分には、重量平均分子量が5×10〜15×10の高分子量成分が含まれていることが好ましい。特に多孔質フィルムのポリオレフィン成分として重量平均分子量100万以上のポリオレフィン成分が含まれることにより、多孔質フィルム及び非水電解液二次電池用セパレータ全体の強度が高くなるため好ましい。
【0032】
多孔質フィルムを構成するポリオレフィン系樹脂としては、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどを重合した高分子量の単独重合体又は共重合体を挙げることができる。多孔質フィルムは、これらのポリオレフィン系樹脂を単独にて含む層、及び/又は、これらのポリオレフィン系樹脂の2種以上を含む層、であり得る。特に、エチレンを主体とする高分子量のポリエチレンが好ましい。なお、多孔質フィルムは、当該層の機能を損なわない範囲で、ポリオレフィン以外の成分を含むことを妨げない。
【0033】
当該ポリエチレン系樹脂としては、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン(エチレン−α−オレフィン共重合体)、重量平均分子量が100万以上の超高分子量ポリエチレン等が挙げられ、このうち、重量平均分子量が100万以上の超高分子量ポリエチレンがさらに好ましい。
【0034】
多孔質フィルムの透気度は、通常、ガーレ値で30〜500秒/100ccの範囲であり、好ましくは、50〜300秒/100ccの範囲である。多孔質フィルムが、前記範囲の透気度を有すると、セパレータとして用いた際に、十分なイオン透過性を得ることができる。
【0035】
多孔質フィルムの目付は、強度、膜厚、ハンドリング性及び重量、さらには、非水電解液二次電池のセパレータとして用いた場合の当該電池の重量エネルギー密度や体積エネルギー密度を高くできる点で、4〜20g/mであることが好ましく、4〜12g/mであることがより好ましく、5〜12g/mであることがさらに好ましい。
【0036】
次に、多孔質フィルムの製造方法について説明する。ポリオレフィン系樹脂を主成分とする多孔質フィルムの製法は、例えば、多孔質フィルムが超高分子量ポリエチレンおよび重量平均分子量1万以下の低分子量ポリオレフィンを含むポリオレフィン樹脂から形成されてなる場合には、以下に示すような方法により製造することが好ましい。
【0037】
すなわち、(1)超高分子量ポリエチレンと、重量平均分子量1万以下の低分子量ポリオレフィンと、炭酸カルシウム又は可塑剤等の孔形成剤とを混練してポリオレフィン樹脂組成物を得る工程、(2)前記ポリオレフィン樹脂組成物を圧延ロールにて圧延してシートを成形する工程(圧延工程)、(3)工程(2)で得られたシート中から孔形成剤を除去する工程、(4)工程(3)で得られたシートを延伸して多孔質フィルムを得る工程、を含む方法により得ることができる。
【0038】
ここで、多孔質フィルムの細孔の構造(細孔の毛細管力、細孔の壁の面積、多孔質フィルム内部の残応力)は、工程(4)における延伸時の歪速度、および、延伸後フィルム単位厚み当たりの延伸後の熱固定処理(アニール処理)の温度(延伸後フィルム単位厚み当たりの熱固定温度)に影響される。そのため、当該歪速度および延伸後フィルム単位厚み当たりの熱固定温度を調整することで、多孔質フィルムの細孔の構造を上記の単位面積当たりの樹脂量に対する温度上昇収束時間を制御することができる。
【0039】
具体的には、歪速度をX軸、延伸後フィルム単位厚み当たりの熱固定温度をY軸としたグラフ上の(500%毎分,1.5℃/μm)、(900%,14.0℃/μm)、(2500%,11.0℃/μm)3点を頂点とする三角形の内側の範囲で、当該歪速度と延伸後フィルム単位厚み当たりの熱固定温度を調整することで、本願発明の多孔質フィルムを得られる傾向がある。好ましくは、頂点が(600%毎分,5.0℃/μm)、(900%,12.5℃/μm)、(2500%,11.0℃/μm)の3点である三角形の内側の条件に、当該歪速度と延伸後フィルム単位厚み当たりの熱固定温度を調整する。
【0040】
(1−2)非水電解液二次電池用積層セパレータ
本発明の別の実施形態では、セパレータとして、上記の多孔質フィルムである非水電解液二次電池用セパレータと、接着層や耐熱層、保護層等の公知の多孔質層とを備えた非水電解液二次電池用積層セパレータを用いてもよい。
【0041】
多孔質フィルムに多孔質層を形成する場合、後述する塗工液を塗工する前に、親水化処理を施しておくことがより好ましい。多孔質フィルムに親水化処理を施しておくことにより、塗工液の塗工性がより向上し、それゆえ、より均一な多孔質層を形成することができる。この親水化処理は、塗工液に含まれる溶媒(分散媒)に占める水の割合が高い場合に有効である。
【0042】
上記親水化処理としては、具体的には、例えば、酸やアルカリ等による薬剤処理、コロナ処理、プラズマ処理等の公知の処理が挙げられる。上記親水化処理のうち、比較的短時間で多孔質フィルムを親水化することができる上に、親水化が表面近傍のみに限られ、内部を変質させないことから、コロナ処理がより好ましい。
【0043】
多孔質層は、必要に応じて、多孔質フィルムである非水電解液二次電池用セパレータの片面または両面に積層される。多孔質層を構成する樹脂は、電池の電解液に不溶であり、また、その電池の使用範囲において電気化学的に安定であることが好ましい。多孔質フィルムの片面に多孔質層が積層される場合には、当該多孔質層は、好ましくは、セパレータを非水電解液二次電池の部材として用いた場合の、多孔質フィルムにおける正極と対向する面に積層され、より好ましくは正極と接する面に積層される。
【0044】
多孔質層を構成する樹脂としては、具体的には、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン−プロピレン共重合体等のポリオレフィン;ポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレン等の含フッ素樹脂;フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体やエチレン−テトラフルオロエチレン共重合体等の含フッ素ゴム;芳香族ポリアミド;全芳香族ポリアミド(アラミド樹脂);スチレン−ブタジエン共重合体およびその水素化物、メタクリル酸エステル共重合体、アクリロニトリル−アクリル酸エステル共重合体、スチレン−アクリル酸エステル共重合体、エチレンプロピレンラバー、およびポリ酢酸ビニル等のゴム類;ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド、ポリエステル等の融点やガラス転移温度が180℃以上の樹脂;ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリルアミド、ポリメタクリル酸等の水溶性ポリマー等が挙げられる。
【0045】
また、上記芳香族ポリアミドとしては、具体的には、例えば、ポリ(パラフェニレンテレフタルアミド)、ポリ(メタフェニレンイソフタルアミド)、ポリ(パラベンズアミド)、ポリ(メタベンズアミド)、ポリ(4,4’−ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(メタフェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(メタフェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(2−クロロパラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6−ジクロロパラフェニレンテレフタルアミド共重合体、メタフェニレンテレフタルアミド/2,6−ジクロロパラフェニレンテレフタルアミド共重合体等が挙げられる。このうち、ポリ(パラフェニレンテレフタルアミド)がより好ましい。
【0046】
上記樹脂のうち、ポリオレフィン、含フッ素樹脂、芳香族ポリアミド、および水溶性ポリマーがより好ましい。中でも、多孔質層が非水電解液二次電池の正極に対向して配置される場合には、含フッ素樹脂が特に好ましい。
【0047】
含フッ素樹脂を含む多孔質層は、電極との接着性に優れており、接着層として機能する。水溶性ポリマーは、多孔質層を形成するときの溶媒として水を用いることができるため、プロセスや環境負荷の観点から好ましい。また、芳香族ポリアミドを含む多孔質層は、耐熱性に優れており、耐熱層として機能する。
【0048】
上記多孔質層は、絶縁性微粒子であるフィラーを含んでもよい。多孔質層に含まれていてもよいフィラーとしては、有機物からなるフィラーおよび無機物からなるフィラーが挙げられる。有機物からなるフィラーとしては、具体的には、例えば、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチル等の単量体の単独重合体或いは2種類以上の共重合体;ポリテトラフルオロエチレン、4フッ化エチレン−6フッ化プロピレン共重合体、4フッ化エチレン−エチレン共重合体、ポリフッ化ビニリデン等の含フッ素樹脂;メラミン樹脂;尿素樹脂;ポリエチレン;ポリプロピレン;ポリアクリル酸、ポリメタクリル酸;等からなるフィラーが挙げられる。無機物からなるフィラーとしては、具体的には、例えば、炭酸カルシウム、タルク、クレー、カオリン、シリカ、ハイドロタルサイト、珪藻土、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、酸化カルシウム、酸化マグネシウム、酸化チタン、窒化チタン、アルミナ(酸化アルミニウム)、窒化アルミニウム、マイカ、ゼオライト、ガラス等の無機物からなるフィラーが挙げられる。フィラーは、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
【0049】
上記フィラーのうち、無機物からなるフィラーが好適であり、シリカ、酸化カルシウム、酸化マグネシウム、酸化チタン、アルミナ、マイカ、ゼオライト、水酸化アルミニウム、ベーマイト等の無機酸化物からなるフィラーがより好ましく、シリカ、酸化マグネシウム、酸化チタン、およびアルミナからなる群から選択される少なくとも1種のフィラーがさらに好ましく、アルミナが特に好ましい。アルミナには、α−アルミナ、β−アルミナ、γ−アルミナ、θ−アルミナ等の多くの結晶形が存在するが、何れも好適に使用することができる。この中でも、熱的安定性および化学的安定性が特に高いため、α−アルミナが最も好ましい。
【0050】
フィラーの形状は、原料である有機物または無機物の製造方法や、多孔質層を形成するための塗工液を作製するときのフィラーの分散条件等によって変化し、球形、長円形、短形、瓢箪形等の形状、或いは特定の形状を有さない不定形等、何れの形状であってもよい。
【0051】
多孔質層がフィラーを含んでいる場合において、フィラーの含有量は、多孔質層の1〜99体積%であることが好ましく、5〜95体積%であることがより好ましい。フィラーの含有量を上記範囲とすることにより、フィラー同士の接触によって形成される空隙が、樹脂等によって閉塞されることが少なくなり、充分なイオン透過性を得ることができると共に、単位面積当たりの目付を適切な値にすることができる。
【0052】
上記樹脂を溶媒に溶解させると共に、上記フィラーを分散させることにより、多孔質層を形成するための塗工液を作製する方法として、上記溶媒(分散媒)は多孔質フィルムに悪影響を及ぼさず、上記樹脂を均一かつ安定に溶解し、上記フィラーを均一かつ安定に分散させることができればよく、特に限定されるものではない。上記溶媒(分散媒)としては、具体的には、例えば、水;メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、t−ブチルアルコール等の低級アルコール;アセトン、トルエン、キシレン、ヘキサン、N−メチルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド;等が挙げられる。上記溶媒(分散媒)は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
【0053】
塗工液は、所望の多孔質層を得るのに必要な樹脂固形分(樹脂濃度)やフィラー量等の条件を満足することができれば、どのような方法で形成されてもよい。塗工液の形成方法としては、具体的には、例えば、機械攪拌法、超音波分散法、高圧分散法、メディア分散法等が挙げられる。
【0054】
また、例えば、スリーワンモーター、ホモジナイザー、メディア型分散機、圧力式分散機等の従来公知の分散機を使用してフィラーを溶媒(分散媒)に分散させてもよい。さらに、樹脂を溶解若しくは膨潤させた液、或いは樹脂の乳化液を、所望の平均粒子径を有するフィラーを得るための湿式粉砕時に、湿式粉砕装置内に供給し、フィラーの湿式粉砕と同時に塗工液を調製することもできる。つまり、フィラーの湿式粉砕と塗工液の調製とを一つの工程で同時に行ってもよい。
【0055】
また、上記塗工液は、本発明の目的を損なわない範囲で、上記樹脂およびフィラー以外の成分として、分散剤や可塑剤、界面活性剤、pH調整剤等の添加剤を含んでいてもよい。尚、添加剤の添加量は、本発明の目的を損なわない範囲であればよい。
【0056】
塗工液の多孔質フィルムへの塗布方法、つまり、必要に応じて親水化処理が施された多孔質フィルムの表面への多孔質層の形成方法は、特に制限されるものではない。多孔質フィルムの両面に多孔質層を積層する場合においては、多孔質フィルムの一方の面に多孔質層を形成した後、他方の面に多孔質層を形成する逐次積層方法や、多孔質フィルムの両面に多孔質層を同時に形成する同時積層方法を適用することができる。
【0057】
多孔質層の形成方法としては、例えば、塗工液を多孔質フィルムの表面に直接塗布した後、溶媒(分散媒)を除去する方法;塗工液を適当な支持体に塗布し、溶媒(分散媒)を除去して多孔質層を形成した後、この多孔質層と多孔質フィルムとを圧着させ、次いで支持体を剥がす方法;塗工液を適当な支持体に塗布した後、塗布面に多孔質フィルムを圧着させ、次いで支持体を剥がした後に溶媒(分散媒)を除去する方法;および、塗工液中に多孔質フィルムを浸漬し、ディップコーティングを行った後に溶媒(分散媒)を除去する方法;等が挙げられる。
【0058】
多孔質層の厚さは、塗工後の湿潤状態(ウェット)の塗工膜の厚さ、樹脂と微粒子との重量比、塗工液の固形分濃度(樹脂濃度と微粒子濃度との和)等を調節することによって制御することができる。尚、支持体として、例えば、樹脂製のフィルム、金属製のベルト、またはドラム等を用いることができる。
【0059】
上記塗工液を多孔質フィルムまたは支持体に塗布する方法は、必要な目付や塗工面積を実現し得る方法であればよく、特に制限されるものではない。塗工液の塗布方法としては、従来公知の方法を採用することができる。このような方法として、具体的には、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクターブレードコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、バーコーター法、ダイコーター法、スクリーン印刷法、およびスプレー塗布法等が挙げられる。
【0060】
溶媒(分散媒)の除去方法は、乾燥による方法が一般的である。乾燥方法としては、自然乾燥、送風乾燥、加熱乾燥、および減圧乾燥等が挙げられるが、溶媒(分散媒)を充分に除去することができるのであれば如何なる方法でもよい。上記乾燥には、通常の乾燥装置を用いることができる。
【0061】
また、塗工液に含まれる溶媒(分散媒)を他の溶媒に置換してから乾燥を行ってもよい。溶媒(分散媒)を他の溶媒に置換してから除去する方法としては、例えば、塗工液に含まれる溶媒(分散媒)に溶解し、かつ、塗工液に含まれる樹脂を溶解しない他の溶媒(以下、溶媒X)を使用し、塗工液が塗布されて塗膜が形成された多孔質フィルムまたは支持体を上記溶媒Xに浸漬し、多孔質フィルム上または支持体上の塗膜中の溶媒(分散媒)を溶媒Xで置換した後に、溶媒Xを蒸発させる方法が挙げられる。この方法によれば、塗工液から溶媒(分散媒)を効率よく除去することができる。
【0062】
尚、多孔質フィルムまたは支持体に形成された塗工液の塗膜から溶媒(分散媒)或いは溶媒Xを除去するために加熱を行う場合には、多孔質フィルムの細孔が収縮して透気度が低下することを回避するために、透気度が低下しない温度、具体的には、10〜120℃、より好ましくは20〜80℃で行うことが望ましい。
【0063】
上述した方法により形成される上記多孔質層の膜厚は、多孔質フィルムを基材として用い、多孔質フィルムの片面または両面に多孔質層を積層して非水電解液二次電池用積層セパレータを形成する場合においては、0.5〜15μm(片面当たり)であることが好ましく、2〜10μm(片面当たり)であることがより好ましい。
【0064】
多孔質層の膜厚が両面の合計で1μm未満であると、非水電解液二次電池に用いた場合に、非水電解液二次電池の破損等による内部短絡を充分に防止することができない。また、多孔質層における電解液の保持量が低下する。
【0065】
一方、多孔質層の膜厚が両面の合計で30μmを超えると、非水電解液二次電池に用いた場合に、当該非水電解液二次電池用積層セパレータ全域におけるリチウムイオンの透過抵抗が増加するので、サイクルを繰り返すと非水電解液二次電池の正極が劣化し、レート特性やサイクル特性が低下する。また、正極および負極間の距離が増加するので非水電解液二次電池が大型化する。
【0066】
多孔質層の物性に関する下記説明においては、多孔質フィルムの両面に多孔質層が積層される場合には、非水電解液二次電池としたときの、正極と対向する面に積層された多孔質層の物性を少なくとも指す。
【0067】
多孔質層の単位面積当たりの目付(片面当たり)は、非水電解液二次電池用積層セパレータの強度、膜厚、重量、およびハンドリング性を考慮して適宜決定すればよく、多孔質層の単位面積当たりの目付は、通常、1〜20g/mであることが好ましく、2〜10g/mであることがより好ましい。
【0068】
多孔質層の単位面積当たりの目付をこれらの数値範囲とすることにより、当該多孔質層を備えた非水電解液二次電池の重量エネルギー密度や体積エネルギー密度を高くすることができる。多孔質層の目付が上記範囲を超える場合には、当該積層セパレータを備える非水電解液二次電池が重くなる。
【0069】
多孔質層の空隙率は、充分なイオン透過性を得ることができるように、20〜90体積%であることが好ましく、30〜80体積%であることがより好ましい。また、多孔質層が有する細孔の孔径は、1μm以下であることが好ましく、0.5μm以下であることがより好ましい。細孔の孔径をこれらのサイズとすることにより、当該多孔質層を含む非水電解液二次電池用積層セパレータを備える非水電解液二次電池は、充分なイオン透過性を得ることができる。
【0070】
上記非水電解液二次電池用積層セパレータの透気度は、ガーレ値で30〜1000 sec/100mLであることが好ましく、50〜800 sec/100mLであることがより好ましい。上記透気度を有することにより、非水電解液二次電池用の部材として使用した場合に、充分なイオン透過性を得ることができる。
【0071】
透気度が上記範囲未満の場合には、空隙率が高いために非水電解液二次電池用積層セパレータの積層構造が粗になっていることを意味し、結果としてセパレータの強度が低下して、特に高温での形状安定性が不充分になるおそれがある。一方、透気度が上記範囲を超える場合には、上記非水電解液二次電池積層セパレータを非水電解液二次電池用の部材として使用した場合に、充分なイオン透過性を得ることができず、非水電解液二次電池の電池特性を低下させることがある。
【0072】
〔2.非水電解液二次電池用部材、非水電解液二次電池〕
本発明に係る非水電解液二次電池用部材は、正極、非水電解液二次電池用セパレータまたは非水電解液二次電池用積層セパレータ、および負極がこの順で配置されてなる非水電解液二次電池用部材である。また、本発明に係る非水電解液二次電池は、非水電解液二次電池用セパレータまたは非水電解液二次電池用積層セパレータを備える。以下、非水電解液二次電池用部材として、リチウムイオン二次電池用部材を例に挙げ、非水電解液二次電池として、リチウムイオン二次電池を例に挙げて説明する。尚、上記非水電解液二次電池用セパレータ、上記非水電解液二次電池用積層セパレータ以外の非水電解液二次電池用部材、非水電解液二次電池の構成要素は、下記説明の構成要素に限定されるものではない。
【0073】
本発明に係る非水電解液二次電池においては、例えばリチウム塩を有機溶媒に溶解してなる非水電解液を用いることができる。リチウム塩としては、例えば、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、低級脂肪族カルボン酸リチウム塩、LiAlCl等が挙げられる。上記リチウム塩は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。上記リチウム塩のうち、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、およびLiC(CFSOからなる群から選択される少なくとも1種のフッ素含有リチウム塩がより好ましい。
【0074】
非水電解液を構成する有機溶媒としては、具体的には、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタン等のカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトン等のエステル類;アセトニトリル、ブチロニトリル等のニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;3−メチル−2−オキサゾリドン等のカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトン等の含硫黄化合物;並びに、上記有機溶媒にフッ素基が導入されてなる含フッ素有機溶媒;等が挙げられる。上記有機溶媒は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。上記有機溶媒のうち、カーボネート類がより好ましく、環状カーボネートと非環状カーボネートとの混合溶媒、または、環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、作動温度範囲が広く、かつ、負極活物質として天然黒鉛や人造黒鉛等の黒鉛材料を用いた場合においても難分解性を示すことから、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒がさらに好ましい。
【0075】
正極としては、通常、正極活物質、導電材および結着剤を含む正極合剤を正極集電体上に担持したシート状の正極を用いる。
【0076】
上記正極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料が挙げられる。当該材料としては、具体的には、例えば、V、Mn、Fe、Co、Ni等の遷移金属を少なくとも1種類含んでいるリチウム複合酸化物が挙げられる。上記リチウム複合酸化物のうち、平均放電電位が高いことから、ニッケル酸リチウム、コバルト酸リチウム等のα−NaFeO型構造を有するリチウム複合酸化物、リチウムマンガンスピネル等のスピネル型構造を有するリチウム複合酸化物がより好ましい。当該リチウム複合酸化物は、種々の金属元素を含んでいてもよく、複合ニッケル酸リチウムがさらに好ましい。さらに、Ti、Zr、Ce、Y、V、Cr、Mn、Fe、Co、Cu、Ag、Mg、Al、Ga、InおよびSnからなる群から選択される少なくとも1種の金属元素のモル数とニッケル酸リチウム中のNiのモル数との和に対して、上記少なくとも1種の金属元素の割合が0.1〜20モル%となるように当該金属元素を含む複合ニッケル酸リチウムを用いると、高容量での使用におけるサイクル特性に優れるので特に好ましい。中でもAlまたはMnを含み、かつ、Ni比率が85%以上、さらに好ましくは90%以上である活物質が、当該活物質を含む正極を備える非水電解液二次電池の高容量での使用におけるサイクル特性に優れることから、特に好ましい。
【0077】
上記導電材としては、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素質材料等が挙げられる。上記導電材は、1種類のみを用いてもよく、例えば人造黒鉛とカーボンブラックとを混合して用いる等、2種類以上を組み合わせて用いてもよい。
【0078】
上記結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンの共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレンの共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルの共重合体、エチレン−テトラフルオロエチレンの共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレンの共重合体、熱可塑性ポリイミド、ポリエチレン、及びポリプロピレン等の熱可塑性樹脂、アクリル樹脂、並びに、スチレンブタジエンゴムが挙げられる。尚、結着剤は、増粘剤としての機能も有している。
【0079】
正極合剤を得る方法としては、例えば、正極活物質、導電材および結着剤を正極集電体上で加圧して正極合剤を得る方法;適当な有機溶剤を用いて正極活物質、導電材および結着剤をペースト状にして正極合剤を得る方法;等が挙げられる。
【0080】
上記正極集電体としては、例えば、Al、Ni、ステンレス等の導電体が挙げられ、薄膜に加工し易く、安価であることから、Alがより好ましい。
【0081】
シート状の正極の製造方法、即ち、正極集電体に正極合剤を担持させる方法としては、例えば、正極合剤となる正極活物質、導電材および結着剤を正極集電体上で加圧成型する方法;適当な有機溶剤を用いて正極活物質、導電材および結着剤をペースト状にして正極合剤を得た後、当該正極合剤を正極集電体に塗工し、乾燥して得られたシート状の正極合剤を加圧して正極集電体に固着する方法;等が挙げられる。
【0082】
負極としては、通常、負極活物質を含む負極合剤を負極集電体上に担持したシート状の負極を用いる。シート状の負極には、好ましくは上記導電材、及び、上記結着剤が含まれる。
【0083】
上記負極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料、リチウム金属またはリチウム合金等が挙げられる。当該材料としては、具体的には、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素質材料;正極よりも低い電位でリチウムイオンのドープ・脱ドープを行う酸化物、硫化物等のカルコゲン化合物;アルカリ金属と合金化するアルミニウム(Al)、鉛(Pb)、錫(Sn)、ビスマス(Bi)、シリコン(Si)などの金属、アルカリ金属を格子間に挿入可能な立方晶系の金属間化合物(AlSb、MgSi、NiSi)、リチウム窒素化合物(Li-xMN(M:遷移金属))等を用いることができる。上記負極活物質のうち、電位平坦性が高く、また平均放電電位が低いために正極と組み合わせた場合に大きなエネルギー密度が得られることから、天然黒鉛、人造黒鉛等の黒鉛材料を主成分とする炭素質材料がより好ましく、黒鉛とシリコンの混合物であって、そのCに対するSiの比率が5%以上のものがより好ましく、10%以上である負極活物質がさらに好ましい。
【0084】
負極合剤を得る方法としては、例えば、負極活物質を負極集電体上で加圧して負極合剤を得る方法;適当な有機溶剤を用いて負極活物質をペースト状にして負極合剤を得る方法;等が挙げられる。
【0085】
上記負極集電体としては、例えば、Cu、Ni、ステンレス等が挙げられ、特にリチウムイオン二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工し易いことから、Cuがより好ましい。
【0086】
シート状の負極の製造方法、即ち、負極集電体に負極合剤を担持させる方法としては、例えば、負極合剤となる負極活物質を負極集電体上で加圧成型する方法;適当な有機溶剤を用いて負極活物質をペースト状にして負極合剤を得た後、当該負極合剤を負極集電体に塗工し、乾燥して得られたシート状の負極合剤を加圧して負極集電体に固着する方法;等が挙げられる。上記ペーストには、好ましくは上記導電助剤、及び、上記結着剤が含まれる。
【0087】
上記正極と、非水電解液二次電池用セパレータ又は非水電解液二次電池用積層セパレータと、負極とをこの順で配置して本発明に係る非水電解液二次電池用部材を形成した後、非水電解液二次電池の筐体となる容器に当該非水電解液二次電池用部材を入れ、次いで、当該容器内を非水電解液で満たした後、減圧しつつ密閉することにより、本発明に係る非水電解液二次電池を製造することができる。非水電解液二次電池の形状は、特に限定されるものではなく、薄板(ペーパー)型、円盤型、円筒型、直方体等の角柱型等のどのような形状であってもよい。尚、非水電解液二次電池の製造方法は、特に限定されるものではなく、従来公知の製造方法を採用することができる。
【実施例】
【0088】
<各種物性の測定方法>
以下の実施例および比較例に係る非水電解液二次電池用セパレータの各種物性を、以下の方法で測定した。
【0089】
(1)マイクロ波照射時の温度上昇収束時間
非水電解液二次電池用セパレータから8cm×8cmの試験片を切り出し、重量W(g)を測定した。そして、目付(g/m)=W/(0.08×0.08)の式に従って目付を算出した。
【0090】
次に、上記の試験片を3wt%の水を添加したN−メチルピロリドン(NMP)に含浸させた後、テフロン(登録商標)シート(サイズ:12cm×10cm)の上に広げ、ポリテトラフルオロエチレン(PTFE)で被覆された光ファイバー式温度計(アステック株式会社製、Neoptix Reflex 温度計)を挟むように半分に折り曲げた。
【0091】
次に、ターンテーブルを備えたマイクロ波照射装置(ミクロ電子社製、9kWマイクロ波オーブン、周波数2455MHz)内に温度計を挟んだ状態の水添加NMP含浸試験片を固定した後、1800Wで2分間マイクロ波を照射した。
【0092】
そして、マイクロ波の照射を開始してからの試験片の温度変化を、上記の光ファイバー式温度計で、0.2秒ごとに測定した。当該温度測定において、1秒以上温度上昇がなかったときの温度を昇温収束温度とし、マイクロ波の照射を開始してから昇温収束温度に到達するまでの時間を温度上昇収束時間とした。このようにして得られた温度上昇収束時間を上記の目付で除算することにより、単位面積当たりの樹脂量に対する温度上昇収束時間を算出した。
【0093】
(2)初期レート特性
後述のようにして組み立てた非水電解液二次電池を、25℃で電圧範囲;4.1〜2.7V、電流値;0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下も同様)を1サイクルとして、4サイクルの初期充放電を行った。
【0094】
初期充放電を行った非水電解液二次電池に対して、55℃で充電電流値;1C、放電電流値が0.2Cと20Cの定電流で充放電を各3サイクル行った。そして、放電電流値が0.2Cと20Cにおける、それぞれ3サイクル目の放電容量の比(20C放電容量/0.2C放電容量)を初期レート特性として算出した。
【0095】
(3)充放電サイクル後のレート特性の維持率
初期レート特性測定後の非水電解液二次電池を、55℃で電圧範囲;4.2〜2.7V、充電電流値;1C、放電電流値;10Cの定電流を1サイクルとして、100サイクルの充放電を行った。
【0096】
100サイクルの充放電を行った非水電解液二次電池に対して、55℃で充電電流値;1C、放電電流値が0.2Cと20Cの定電流で充放電を各3サイクル行った。そして、放電電流値が0.2Cと20Cにおける、それぞれ3サイクル目の放電容量の比(20C放電容量/0.2C放電容量)を100サイクルの充放電後のレート特性(100サイクル後レート特性)として算出した。
【0097】
上記のレート試験結果から、次式
レート特性維持率=(100サイクル後レート特性)/(初期レート特性)×100
に従い、充放電サイクル前後のレート特性の維持率(%)を算出した。
【0098】
<非水電解液二次電池用セパレータの作製>
以下のようにして、非水電解液二次電池用セパレータとして用いられる、実施例1〜4および比較例2〜3に係る多孔質フィルムを作製した。
【0099】
(実施例1)
超高分子量ポリエチレン粉末(GUR2024、ティコナ社製)を68重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)32重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、ステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して38体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。該ポリオレフィン樹脂組成物を表面温度が150℃一対のロールにて圧延し、シートを作成した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて100〜105℃、歪速度1250%毎分の速度で、6.2倍に延伸し、膜厚10.9μmのフィルムを得た。さらに126℃で熱固定処理を行い実施例1の非水電解液二次電池用セパレータを得た。
【0100】
(実施例2)
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製)を70重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)30重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、ステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して36体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。該ポリオレフィン樹脂組成物を表面温度が150℃一対のロールにて圧延し、シートを作成した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて100〜105℃、歪速度1250%毎分の速度で、6.2倍に延伸し、膜厚15.5μmのフィルムを得た。さらに120℃で熱固定処理を行い実施例2の非水電解液二次電池用セパレータを得た。
【0101】
(実施例3)
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製)を71重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)29重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、ステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して37体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。該ポリオレフィン樹脂組成物を表面温度が150℃一対のロールにて圧延し、シートを作成した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて100〜105℃、歪速度2100%毎分の速度で、7.0倍に延伸し、膜厚11.7μmのフィルムを得た。さらに123℃で熱固定処理を行い実施例3の非水電解液二次電池用セパレータを得た。
【0102】
(実施例4)
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製)を70重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)30重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、ステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して36体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。該ポリオレフィン樹脂組成物を表面温度が150℃一対のロールにて圧延し、シートを作成した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて100〜105℃、歪速度750%毎分の速度で、6.2倍に延伸し、膜厚16.3μmのフィルムを得た。さらに115℃で熱固定を行い実施例4の非水電解液二次電池用セパレータを得た。
【0103】
(比較例1)
市販品のポリオレフィン多孔質フィルム(オレフィンセパレータ)を比較例1の非水電解液二次電池用セパレータとして用いた。
【0104】
(比較例2)
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製)を70重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)30重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、ステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して36体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。該ポリオレフィン樹脂組成物を表面温度が150℃一対のロールにて圧延し、シートを作成した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて100〜105℃、歪速度2000%毎分の速度で、6.2倍に延伸し、膜厚16.3μmのフィルムを得た。さらに123℃で熱固定を行い比較例2の非水電解液二次電池用セパレータを得た。
【0105】
(比較例3)
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製)を71重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)29重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、ステアリン酸ナトリウム1.3重量%を加え、更に全体積に対して37体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。該ポリオレフィン樹脂組成物を表面温度が150℃一対のロールにて圧延し、シートを作成した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いて100〜105℃、歪速度750%毎分の速度で、7.1倍に延伸し、膜厚11.5μmのフィルムを得た。さらに128℃で熱固定を行い比較例3の非水電解液二次電池用セパレータを得た。
【0106】
実施例1〜4、および比較例2〜3における延伸歪速度、延伸後フィルム厚み、熱固定温度、および熱固定温度/延伸後フィルム厚み(延伸後フィルム単位厚み当たりの熱固定温度)を以下の表1に示す。
【0107】
【表1】
【0108】
<非水電解液二次電池の作製>
次に、上記のようにして作製した実施例1〜4および比較例1〜3の非水電解液二次電池用セパレータの各々を用いて非水電解液二次電池を以下に従って作製した。
【0109】
(正極)
LiNi0.5Mn0.3Co0.2/導電材/PVDF(重量比92/5/3)をアルミニウム箔に塗布することにより製造された市販の正極を用いた。上記正極を、正極活物質層が形成された部分の大きさが45mm×30mmであり、かつその外周に幅13mmで正極活物質層が形成されていない部分が残るように、アルミニウム箔を切り取って正極とした。正極活物質層の厚さは58μm、密度は2.50g/cm、正極容量は174mAh/gであった。
【0110】
(負極)
黒鉛/スチレン−1,3−ブタジエン共重合体/カルボキシメチルセルロースナトリウム(重量比98/1/1)を銅箔に塗布することにより製造された市販の負極を用いた。上記負極を、負極活物質層が形成された部分の大きさが50mm×35mmであり、かつその外周に幅13mmで負極活物質層が形成されていない部分が残るように、銅箔を切り取って負極とした。負極活物質層の厚さは49μm、の密度は1.40g/cm、負極容量は372mAh/gであった。
【0111】
(組み立て)
ラミネートパウチ内で、上記正極、非水電解液二次電池用セパレータ、および負極をこの順で積層(配置)することにより、非水電解液二次電池用部材を得た。このとき、正極の正極活物質層における主面の全部が、負極の負極活物質層における主面の範囲に含まれる(主面に重なる)ように、正極および負極を配置した。
【0112】
続いて、上記非水電解液二次電池用部材を、アルミニウム層とヒートシール層とが積層されてなる袋に入れ、さらにこの袋に非水電解液を0.25mL入れた。上記非水電解液は、濃度1.0モル/リットルのLiPFをエチルメチルカーボネート、ジエチルカーボネートおよびエチレンカーボネートの体積比が50:20:30の混合溶媒に溶解させた25℃の電解液を用いた。そして、袋内を減圧しつつ、当該袋をヒートシールすることにより、非水電解液二次電池を作製した。非水電解液二次電池の設計容量は20.5mAhとした。
【0113】
<各種物性の測定結果>
実施例1〜4および比較例1〜3の非水電解液二次電池用セパレータについての、各種物性の測定結果を表2に示す。
【0114】
【表2】
【0115】
表2に示されるように、単位面積当たりの樹脂量(目付)に対する温度上昇収束時間が2.9〜5.7秒・m/gの実施例1〜4の非水電解液二次電池用セパレータは、初期レート特性に優れ、且つ、レート特性の維持率低下を抑制でき、目付に対する温度上昇収束時間が2.9〜5.7秒・m/gの範囲外である比較例1〜3に比べて優れていることがわかった。
【要約】      (修正有)
【課題】初期レート特性および充放電を繰り返したときのレート特性の低下を抑制できる非水電解液二次電池用セパレータを提供する。
【解決手段】非水電解液二次電池用セパレータは、ポリオレフィンを主成分とする多孔質フィルムであって、3重量%の水を含むN−メチルピロリドンに含浸させた後、周波数2455Hzのマイクロ波を出力1800Wで照射したときの、単位面積当たりの樹脂量に対する温度上昇収束時間が2.9〜5.7秒・m/gである。
【選択図】なし