【実施例1】
【0036】
本発明の実施例の説明に先立って、免疫反応、抗原抗体反応について説明する。
【0037】
抗原抗体結合反応は、反応が比較的ゆっくりと抗原と進行する。反応時間が数分のオーダーであるため、数秒間隔で吸光度、散乱光を計測することにより、反応過程をモニタリングすることができる。
【0038】
吸光光度計は、照射光に対して、次式(1)のように、溶液を透過した光量の相対的な関係、Lambert−Beerの法則に基づいて吸光度を測定する。
【0039】
【数1】
【0040】
散乱光度計では、反応溶液が水の場合、散乱光はなく、ほぼ「0」であり、抗原抗体反応物が増加することにより、散乱光が増加することに基づいている。
【0041】
一般に、粒子の散乱光量は概ね、Rayleigh散乱と考えると次式(2)で記述できる。
【0042】
【数2】
【0043】
ただし、nは1cm
3あたりの粒子数、Vは全散乱体積、αは粒子の分極率、λは波長である。
【0044】
図5は、透過光、散乱光、吸光度の反応の関係を示す図であり、縦軸は光強度、横軸は時間を示す。
図5に示すように、透過光(四角形)は反応の進行に伴い小さくなり、散乱光(三角形)は反応の進行に伴い大きくなる。また、吸光度(丸印)は反応の進行に伴い大きくなる。
【0045】
臨床検査の領域では、腫瘍マーカーなどの濃度測定で、測定法の検出限界および定量限界が臨床上重要な意味を持つ。検出限界は試料中に存在する測定対象物質の検出可能な最低量のことで、必ずしも定量出来る必要はない。検出限界は、盲検試料と濃度既知の低値濃度の実試料(5種類以上の希釈系列)を反復測定し、盲検試料の平均値例えば+3SDと低値試料の平均値−3SDの値がオーバーラップしない試料の測定値を読み取る方法である。つまり、検出限界は、濃度既知の試料を測定して、光度計からのシグナル量(感度)を計測する。
【0046】
これに対して、一般的な患者検体の濃度の算出方法は、まず濃度既知の標準液を複数点測定し、検量線を作成した後で、検体の測定を行い光度計から検出されたシグナル量を基に、検量線からそれに相当する濃度を求める方法である。
【0047】
免疫血清検査では、血清または血漿中に含まれる抗原とそれに対応する抗体を含んだ試薬を反応させ抗原抗体生成物を作る。抗原抗体生成物の吸光度変化、散乱光変化から濃度を算出する。
【0048】
測定法は、透過光を利用した測定法と散乱光を利用した測定方法がある。散乱光測定では、抗原抗体反応のわずかな変化を検出することが可能である。このため、より低濃度の検出限界が向上する。
【0049】
一方、抗原の濃度が大きいサンプルでは抗原抗体生成物が多く、高濃度領域では、散乱光があまり増加せず、直線範囲が狭い。
【0050】
免疫血清検査では、患者のサンプル中に含まれる免疫、ビリルビン、脂質による濁り、赤血球の破砕した溶血などの影響が含まれている。
【0051】
以上の事項を前提として、本発明は創作されたものである。
【0052】
次に、本発明の実施例1を説明する。
【0053】
本発明の実施例1においては、複数の光度計(散乱光度計、吸光光度計)を反応ディスクの円周に沿って配置する。つまり、分析原理の異なる複数の装置で運用される免疫比濁(散乱光度計)と吸光光度計とを一つの生化学用自動分析装置に搭載する。
【0054】
図1は、本発明の実施例1が適用される自動分析装置の概略全体構成図である。
図1において、間欠回転可能に設けられた反応ディスク1には、透光性材料からなる多数の反応容器2が反応ディスク1の円周に沿って装着されている。反応容器2は、恒温槽3によって所定の温度(例えば37度C)に維持される。恒温槽3内の流体は、恒温維持装置4により温度調整される。
【0055】
サンプルディスク5上には、血液又は尿のような生体サンプルを収容した多数の検体容器6が配置される。可動アーム7に取り付けられたピペットノズル8は、サンプルディスク5の吸入位置に位置付けられた検体容器6から所定量のサンプルを吸入し、そのサンプルを反応ディスク1上の吐出位置にある反応容器2内に吐出する。
【0056】
試薬保冷庫9A、9B内にそれぞれ配置されている試薬ディスク26A、26B上には、バーコードの如き試薬識別情報を表示したラベルが貼られた複数の試薬ボトル10A、10Bが配置される。これらの試薬ボトル10A、10Bには、自動分析装置によって分析され得る分析項目に対応する試薬液が収容されている。
【0057】
各試薬保冷庫9A、9Bに付属されたバーコード読み取り装置34A、34Bは、試薬登録時に、各試薬ボトル10A、10Bの外壁に表示されているバーコードを読み取る。読み取られた試薬情報は、試薬ディスク26A、26B上のポジション情報と共に後述するメモリ11に登録される。
【0058】
各試薬分注機構12A、12Bにおける試薬用ピペットノズルは、反応ディスク1上の試薬受け入れ位置に位置付けられる検査項目に応じた試薬ボトル10A、10Bから試薬液を吸入し、該当する反応容器2内へ吐出する。反応容器2内に収容されたサンプルと試薬の混合物は、撹拌機構13A、13Bにより撹拌される。反応容器2の列は、光源14(光源14A、14B)と光度計15(散乱光度計15A、多波長吸光光度計15B)とによって挟まれた測光位置を通るように回転移動される。光度計15は、散乱光と透過光の両方を使って濃度演算を行うことが可能である。なお、光度計15内の検出器の配置については
図2、
図3を参照して後述する。
【0059】
各反応容器2内におけるサンプルと試薬との反応液は、反応ディスク1の回転動作中に、光度計15の前を横切る度に測光される。サンプル毎に光度計15により測定され、出力されたアナログ信号は、A/D変換器16に入力される。反応ディスク1の近傍に配置されている反応容器洗浄機構17は、使用済みの反応容器2の内部を洗浄することにより、反応容器2の繰り返しの使用を可能にする。
【0060】
次に、
図1に示した自動分析装置における制御系及び信号処理系について簡単に説明する。
【0061】
コンピュータ18は、インターフェース19を介して、サンプル分注制御部20、試薬分注制御部21、A/D 変換器16に接続されている。コンピュータ18は、サンプル分注制御部20に対して指令を送り、サンプルの分注動作を制御する。また、コンピュータ18は、試薬分注制御部21に対して指令を送り、試薬の分注動作を制御する。
【0062】
光度計15により出力されたアナログ信号は、A/D変換器16によってディジタル信号に変換され、コンピュータ18に取り込まれる。
【0063】
インターフェース19には、印字するためのプリンタ22、記憶装置であるメモリ11や外部出力メディア23、操作指令等を入力するためのキーボード24、画面表示するためのCRTディスプレイ25が接続されている。画面表示装置としては、CRTディスプレイの他に液晶ディスプレイなどを採用できる。メモリ11は、例えばハードディスクメモリ又は外部メモリにより構成される。メモリ11には、各操作者のパスワード、各画面の表示レベル、分析パラメータ、分析項目依頼内容、キャリブレーション結果、分析結果等の情報が記憶される。
【0064】
次に、
図1に示した自動分析装置におけるサンプルの分析動作について説明する。自動分析装置によって分析可能な項目に関する分析パラメータは、予めキーボード24の如き情報入力装置を介して入力されておリ、メモリ11に記憶されている。操作者は、後述する操作機能画面を用いて各サンプルに依頼されている検査項目を選択する。
【0065】
この際に、患者IDなどの情報もキーボード24から入力される。各サンプルに対して指示された検査項目を分析するために、ピペットノズル8は、分析パラメータに従って、検体容器6から反応容器2へ所定量のサンプルを分注する。
【0066】
サンプルを受け入れた反応容器2は、反応ディスク1の回転によって移送され、試薬受け入れ位置に停止する。試薬分注機構12A、12Bのピペットノズルは、該当する検査項目の分析パラメータに従って、反応容器2に所定量の試薬液を分注する。サンプルと試薬の分注順序は、この例とは逆に、サンプルより試薬が先であってもよい。
【0067】
その後、撹拌機構13A、13Bにより、サンプルと試薬との撹拌が行われ、混合される。サンプルと試薬との撹拌が行われて反応容器2が、測光位置を横切る時、光度計15により反応液の散乱光又は吸光度が測光される。測光された散乱光等は、A/D変換器16により光量等に比例した数値に変換され、インターフェース19を経由して、コンピュータ18に取り込まれる。この変換された数値を用い、検査項目毎に指定された分析法により予め測定しておいた検量線に基づき、濃度データに変換される。各検査項目の分析結果としての成分濃度データは、プリンタ22やCRT25の画面に出力される。
【0068】
以上の測定動作が実行される前に、操作者は、分析測定に必要な種々のパラメータの設定や試料の登録を、CRT25の操作画面を介して行う。また、操作者は、測定後の分析結果をCRT25上の操作画面により確認する。
【0069】
次に、
図2、
図3を用いて
図1中の光源14および光度計15の配置について説明する。
【0070】
図2は、光源14と、反応容器2と、散乱光度計15A(検出器203、204、205)との配置を説明する図である。
【0071】
光源14から発生光は、測定対象物が分注された反応容器2に入射される。反応容器2内で入射した光は測定対象物に衝突し散乱される。散乱した光は、
図2の例では、光源14からの光が反応容器2を透過した光に対して装置の鉛直方向(Z軸方向)にθ1の角度の位置に検出器203が配置されている。また、光源14からの光が反応容器2を透過した光の方向(角度0度)に検出器204が配置されている。また、光源14からの光が反応容器2を透過した光に対して装置の鉛直方向(Z軸方向)にθ2の角度の位置に検出器205が配置されている。
【0072】
検出器203、204、205は入射光に対してZ軸方向に配置しているが、装置の水平方向(X軸、Y軸方向)に角度を変えて配置しても良い。また、検出器203、204、205は、離散的に配置する必要は無く連続的に配置しても良い。
【0073】
図3は、反応ディスク1の上面概略図であり、散乱光度計15Aと吸光光度計15Bとの配置位置を示す図である。上述した
図1のように構成される自動分析装置において、散乱光度計15Aと吸光光度計15Bとは、光源14A、14Bからの光が、反応容器2を通過する線上に配列する。
【0074】
試料の各分析項目は、散乱光度計15Aと吸光光度計15Bで同時に測定し、反応過程を測定可能とする。散乱光度計15Aと吸光光度計15Bとがほぼ同時に測定できることが重要である。散乱光度計15Aと吸光光度計15Bとの分析パラメータの設定内容、濃度算出、検体中の干渉物質によるデータ異常検出について、以下、説明する。
【0075】
分析パラメータの試薬量、サンプル量については、散乱光度計15Aと吸光光度計15Bとで共通に持ち、それ以外の波長選択、測定ポイント、アラーム設定、キャリブレーション条件は、各光度計15A、15Bで、それぞれ独立のパラメータを持たせる。
【0076】
吸光光度計15Bと散乱光度計15Aのキャリブレーション、濃度、データチェック、アラーム発生の手順について記載する。データフローは以下の手順となる。(1)パラメータ設定、(2)キャリブレーションパラメータ算出、(3)濃度算出、(4)濃度判定ロジック、(5)干渉物質チェックであり、順に説明する。
【0077】
(1)パラメータ設定
複数の光学系の測定パラメータを項目ごとに設定可能とする。表2はパラメータの一覧表である。
【0078】
【表2】
【0079】
表2に示した複数の光学系に跨る共通パラメータ(サンプル量、試薬量)と各光度計15A、15Bに特徴的な固有のパラメータと複数の光度計15A、15Bに関連するデータから濃度の相互パラメータ、アラームチェックのパラメータをデータベースに記憶する。
【0080】
図4は、項目ごとの共通パラメータ、吸光光度計の専用パラメータ、散乱光度計の専用パラメータ、濃度算出パラメータ、共存物質チェックパラメータのデータベース構成を示す図である。
【0081】
(a)共通パラメータ
サンプル量、試薬分注量、正常値範囲などの量に関するパラメータを設定する。
【0082】
(b)吸光光度計の専用パラメータ
波長(主波長/副波長)、分析法(1point 2point Rate )、測光ポイント、キャリブレーション(本数、濃度)など、吸光光度法の演算に使用するパラメータを設定する。
【0083】
(c)散乱光度計の専用パラメータ
角度を、例えば、0度、±10度、±20度、±30度から選択する。分析法(1point 2point Rate )、測光ポイント、キャリブレーション(本数、濃度)など、散乱光度法の演算に使用するパラメータで、散乱角度ごとにパラメータを設定する。
【0084】
(d)濃度算出パラメータ
吸光度測定を散乱光度計測定の相互関係に関するパラメータで、直線性と共存物質チェックのパラメータを設定する。
【0085】
複数の光学系の感度を比較する場合、例えば、散乱光度計15Aと吸光光度計15Bとでは、信号が異なるため、単純に濃度単位あたりの感度を比較することはできない。ラテックス等の粒子の光学測定では、反応していない状態でもラテックス粒子溶液のブランク状態で光の散乱は計測される。また、吸光光度計15Bでは、散乱されるために吸光度は大きな数値が計測される。散乱光度計15Aでラテックスのブランク溶液を測定すると、比較的に散乱光は小さくなる。
ラテックス粒子の関係は、次の(1−1)〜(1−4)のとおりである。
【0086】
(1−1)
ラテックス粒子直径、単位体積あたりの粒子数、照射する波長の条件で変化する。
【0087】
(1−2)
ラテックス単体と、ラテックス表面の抗体と抗原が反応した後では、散乱光の大きさは大きく異なる。
【0088】
(1−3)
一般的に、抗体の抗原との親和力も大きく関係する。
【0089】
(1−4)
抗原の濃度が高い場合も、散乱光と吸光度の感度の関係は、低濃度とは大きく異なる。
【0090】
次に、直線性と、共存物質チェックパラメータについて説明する。
【0091】
(I)直線性(各キャリブレーションの許容範囲設定)
濃度範囲は、例えば、吸光光度計15Bでのキャリブレーションのカーブから低濃度、中濃度、高濃度の3段階に分けてもよいし、各標準液の濃度ごとに分けてもよい。
【0092】
それぞれの濃度範囲で使用する濃度算出方法を設定するために、キャリブレーション結果から領域ごとの使用するシグナル(光度計)を決定する必要がある。直線性のパラメータの決定は、次の(ア)、(イ)、(ウ)の3通りを保持する。
【0093】
(ア)事前に実験等で、該当の試薬のロットから決定した濃度範囲を入力する。
【0094】
(イ)複数の光学系の測定結果、試薬の感度等から、各光学系の使用できる濃度範囲を決定し、自動的に範囲を設定する。
【0095】
(ウ)許容範囲をオペレータが自由に入力することができる。マニュアルで設定可能である。
【0096】
上記(ア)は、例えば試薬メーカーが試薬のロットごとに濃度範囲を決定し、ユーザーに情報を提供する形態をとる。上記(イ)は、散乱光度計15Aと吸光光度計15Bの感度を比較するために、散乱光度計15Aの感度は光量変化率で求める。光量変化率とは、反応前後の光量変化量から第2試薬添加直後のベース光量を差し引いたもので、ブランク状態での光の散乱を無視することができる。
【0097】
これらの低濃度から高濃度における散乱光度計15A、吸光光度計15Bの感度は、試薬ロット、分析項目でも大きく異なる。複数の光度計を搭載したシステムでは、低濃度から高濃度の各濃度領域において、最適な光学系で計測することが重要となる。
【0098】
以下に、ある基準値を基にして光度計Aと光度計Bから最適な光度計を判定するワークフロー(イ)を説明する。
【0099】
ここで、光度計Aの基準感度Aを0.001、光度計Bの基準感度Bを0.002とする。ある試薬ロットを使用して、キャリブレーションを実施したら、キャリブレーション結果Aは0.002、キャリブレーション結果Bは0.005となった。基準感度とキャリブレーション結果を比較すると、光度計Aの感度は2倍、光度計Bは2.5倍となり、この場合、より感度が大きい光度計Bを選択する。
【0100】
(II)共存物質チェックパラメータ
吸光光度計15Bと散乱光度計15Aのデータ乖離した場合は、吸光光度計15Bと散乱光度計15Aとでデータが乖離したと判定する値を設定する。
【0101】
前述したパラメータ設定における操作部の画面構成図を
図12〜
図14、操作部の画面例を
図15〜
図17に示す。
【0102】
つまり、
図12〜
図14に示すように、アプリケーション設定には、分析、キャリブレーション、標準液があり、
図12は分析についての設定項目、
図13は、キャリブレーションについての設定項目、
図14は、標準液の設定項目を示している。
【0103】
図12に示すように、分析には、共通項目と、散乱光度計についての項目と、吸光光度計についての項目とがあり、共通項目には、項目名、希釈液、分析法、検体量、試薬分注量、試薬ダミー量、セル洗剤がある。また、散乱光度計の項目には、測光ポイント、散乱受光角度、反応限界散乱光度、プロゾーン限界値、散乱光強度差チェックがある。また、吸光光度計の項目には、測光ポイント、波長、反応限界散乱光度、プロゾーン限界値、散乱光強度差チェックがある。
【0104】
図15は、分析についての設定画面25Aの一例を示す図である。分析、キャリブレーション、標準液のうち、分析が選択されている。
図15の例では、項目名としてIRIが選択され、検体量、試薬分注量、試薬ダミー量、セル洗剤についての選択、吸光光度計の分析法、測光ポイント、波長についての選択、散乱光度計の分析法、測光ポイント、受光角度についての選択が行われる。
【0105】
また、
図13に示すように、キャリブレーションについては、共通項目と、散乱光度計についての項目と、吸光光度計についての項目とがあり、共通項目には、項目名、濃度算出法がある。また、散乱光度計の項目には、キャリブレーション法、ポイント、収束許容散乱光強度、ばらつき許容散乱光強度、感度許容散乱光強度、第一標準液散乱光強度範囲がある。また、吸光光度計の項目には、キャリブレーション法、ポイント、収束許容吸光度、ばらつき許容吸光度、感度許容吸光度、第一標準液吸光度範囲がある。
【0106】
図16は、キャリブレーションについての設定画面25Bの一例を示す図である。分析、キャリブレーション、標準液のうち、キャリブレーションが選択されている。
図16の例では、項目名としてIRIが選択され、濃度算出方法は自動が選択されている。そして、吸光光度計のキャリブレーション法、ポイント、収束許容吸光度、ばらつき許容吸光度、感度許容吸光度、第一標準液吸光度範囲についての選択が行われ、散乱光度計のキャリブレーション法、ポイント、収束許容散乱光強度度、ばらつき許容散乱光強度、感度許容散乱光強度、第一標準液散乱光強度範囲についての選択が行われる。
【0107】
また、
図14に示すように、標準液については、共通項目と、散乱光度計についての項目と、吸光光度計についての項目とがあり、共通項目には項目名があり、散乱光度計及び吸光光度計の項目には、キャリブレーターコード、濃度、ポジション、検体量がある。
【0108】
図17は、標準液についての設定画面25Cの一例を示す図である。分析、キャリブレーション、標準液のうち、標準液が選択されている。
図17の例では、項目名としてIRIが選択され、そして、吸光光度計及び散乱光度計のキャリブレーターコード、標準液濃度、ポジション、検体量ついての選択が行われる。
【0109】
(2)キャリブレーションパラメータ算出
ブランク液、標準液の測定を実施して、キャリブレーションパラメータを算出する。吸光光度法、および散乱光度計の両方について算出する。散乱角度が20度と30度と、吸光光度法で算出した場合、式(3)−(5)で3種類のKファクターが得られる。
【0110】
吸光光度法において、ブランクをS1Abs、ブランク濃度をConc.B、標準液の吸光度をAbs
S、標準液濃度をConc.Sとすると、次式(3)でファクターKが算出される。
【0111】
【数3】
【0112】
散乱光度計の散乱角度20度において、ブランクをI
B20、ブランク濃度をConc.B、標準液をI
S20、標準液濃度をConc.Sとすると、次式(4)でファクターK
20が算出される。
【0113】
【数4】
【0114】
散乱光度計の散乱角度30度において、ブランクをI
B30、ブランク濃度をConc.B、標準液をI
S30、標準液濃度をConc.Sとすると、次式(5)でファクターK
30が算出される。
【0115】
【数5】
【0116】
これらキャリブレーションパラメータはメモリ11等のデータベースに記憶する。
【0117】
多点検量線、複数の標準液を使用して近似曲線からキャリブレーションを実施する場合、吸光光度法ではS1ABS、Kの他にA、B、Cパラメータを記憶する。散乱光度計では、I
B、Kの他にA、B、Cパラメータを記憶する。
【0118】
(3)一般検体の測定および濃度算出
吸光光度法、散乱光度計いずれの光学系でも個別に検量線を作成する。
【0119】
患者検体を複数の検量線で濃度換算する。以下に、濃度換算式を示す。吸光度、散乱光度計のいずれの場合も濃度を算出する。散乱角度が20度と30度と吸光光度計で算出した場合、式(6)〜(8)で3種類の濃度が得られる。
【0120】
吸光光度計においては、次式(6)で濃度Conc
Absが得られる。
【0121】
【数6】
【0122】
散乱光度計においては、次式(7)、(8)で濃度Conc
20N、Conc
30Nが得られる。
【0123】
【数7】
【0124】
【数8】
【0125】
表3は、散乱角度が20度と30度と吸光光度計で濃度算出した場合のRFの測定結果である。
【0126】
【表3】
【0127】
(4)濃度判定ロジック
図6、
図7は、RFの吸光度、散乱強度と濃度の関係を示すグラフである。
図7に示すように、散乱光度計では、高濃度で信号が小さくなる。このため、本来、高濃度の検体でも中濃度の吸光度と同等なり、濃度を低く表示する可能性がある。
【0128】
一方、
図6に示すように、吸光光度計では高濃度になっても吸光度の低下はなく、中濃度より大きくなっている。
【0129】
低濃度領域では吸光光度計より散乱光度計の感度の方が良い。散乱光度計では高濃度領域でプロゾーン現象が発生する。高濃度にもかかわらず、散乱光強度はより低い濃度の散乱強度と同じとなる場合がある。
【0130】
図8は、感度又は濃度範囲から濃度判定を行い、光度計を選択するフローを示す図である。また、
図18はコンピュータ(コントローラ)18の機能ブロック図であり、
図8に示したフローを実行する機能に関する図である。
【0131】
図18において、コンピュータ(コントローラ)18は、反応ディスク1、光度計15等の動作を制御する動作制御部18aと、検量線作成部18bと、適用濃度範囲設定部18cと、感度算出部18dと、光度計選択部18eとを備える。
【0132】
図8に示した感度を比較して光度計を選択する濃度判定フローについて、
図8、
図18を参照して説明する。
図8に示した濃度判定及び光度計選択フローの実行は、メモリ11に格納されたパラメータ等に基づいて、コンピュータ18が自動分析装置の各部、各機構を動作制御して行うものである。
【0133】
図8において、異なる原理の光学系感度を比較するために、キャリブレーション結果から濃度の幅を算出する。手順は以下のとおりである。
【0134】
(4−1)動作制御部18a及び検量線作成部18bは、通常のキャリブレーションで複数回標準液を測定し、検量線を作成する(ステップS1)。
【0135】
(4−2)検量線作成部18bは、各標準液の濃度のMin、Maxの測定値から、吸光光度計、散乱光度計の各検量線を作成する(ステップS2)。
【0136】
(4−3)適用濃度範囲設定部18cは、Min、Maxの検量線から標準液濃度の上下限を算出する(ステップS3)。
【0137】
(4−4)感度算出部18dは、吸光光度計15B、散乱光度計15Aのデータからキャリブレーションパラメータを使用して感度(シグナル量)を算出する(ステップS3、S4)。
【0138】
(4−5)光度計算出部18eは、感度算出部18dが算出した感度に基づいて、吸光濃度、散乱光濃度のどちらの濃度を使用するか決定する(ステップS5)。つまり、吸光濃度、散乱光濃度のうち、算出した感度を比較して感度が高い方の濃度を使用することを決定する。決定した濃度は、CRT25(濃度表示部)に表示される。
【0139】
上記、
図8に示したワークフローによれば、標準液を複数回測定した時の最大、最小から感度の推定が可能であり、その結果をもとに濃度に換算することができる。つまり、キャリブレーション結果から各光学系(吸光光度計、散乱光度計)の感度を濃度として算出するので、吸光光度計の感度と散乱光度計の感度とを比較することが容易となる。
【0140】
図8に示した濃度判定フローにおいて適用する濃度範囲について述べる。
【0141】
免疫反応では検量線は濃度領域により異なる。このため、キャリブレーション実施時に各標準液で検証、確認する必要がある。例えば、酵素反応のようにシグナルと濃度の関係が単調増加になる反応系では、各濃度領域でMin−Maxの幅はほぼ一定になるが、抗原抗体反応は、
図9に示すように、低濃度では感度が低いため、散乱光強度又は吸光度に対する濃度は非常に幅が広い。一方、高濃度ではMin、Maxの幅は小さいため、感度が良いことが分かる。
【0142】
ここで、各標準液の許容濃度範囲は、例えば以下(a)、(b)の2通りの方法のいずれかで設定することができる。
【0143】
(a)
図10の(A)、(B)に示すように、各標準液の2回測定結果のMax/Minの2倍幅からキャリブレーション結果の許容範囲(Max/Minのキャリブレーション)を設定する。
【0144】
(b)
図11に示すように、その標準液に予め定められた不確かさから、光学系(光学計)のばらつきとして、キャリブレーションの許容範囲(Max/Minのキャリブレーション)を設定する。不確かさは、能書に記載されている濃度範囲からシグナルを換算する。
【0145】
そして、上記のようにして求めた許容濃度範囲において、検量線の比較を行い、許容範囲のキャリブレーションから以下のように濃度を算出する。
【0146】
吸光度のキャリブレーションAbsをConc.
Absとし、キャリブレーションAMaxをConc.
A Max、キャリブレーションAMinをConc.
A Minとする。
【0147】
また、散乱光度計のキャリブレーションIをConc.
Iとし、キャリブレーションIMaxをConc.
I Maxとし、キャリブレーションIMinをConc.
I Minとして、Conc.
A Max−Conc.
A Min=(delta)Conc.
A、Conc.
I Max−Conc.
I Min=(delta)Conc.
Iを算出する。つまり、それぞれの光度計の計測した濃度の濃度幅を算出する。
【0148】
そして、算出した(delta)Conc.
Aと、(delta)Conc.
Iを比較し、2種類の検量線が採りうる濃度が信頼できる区間内に存在するときに許容範囲の狭いものを採用する。例えば、(delta)Conc.
A>(delta)Conc.
Iの場合、Conc.
Iを報告値とする。つまり、散乱光度計による計測値を選択する。
【0149】
そして、ステップS5で選択した光学系(散乱光度計又は吸光光度計)の計測結果(上記例においては、散乱光度計の計測結果)のうちの、濃度の分散が小さい計測結果を最終濃度として報告する。つまり、計測した最終濃度は、どの光学計による濃度であるかとともに、CRT25に表示したり、プリンタ22により印字する。また、FD23やメモリ11に格納する。
【0150】
ただし、Conc.IとConc.Aが両光学系(散乱光度計又は吸光光度計)の許容範囲に入らないときは、感度算出部18dは、CRT25(濃度表示部)に異常であることを示す信号を供給し、異常としてアラームを表示させる。
(5)干渉物質チェック
散乱光度計と吸光光度計のデータ差からチェックする方法がある。
【0151】
つまり、濃度の報告値の算出は既に記載のように感度を比較して光度計を選択する濃度算出ロジックにより散乱光度計、または吸光光度計のいずれかにより決定する。しかし、散乱光度計、吸光光度計で濃度が乖離した場合はいずれかの光度計で異常が発生した可能性がある。データが乖離した場合、CRT25等によりアラームを発生する。データ乖離の判定は、濃度の%または濃度差のいずれかを選択でき、濃度範囲(低、中、高濃度)で設定する。
【0152】
%判定は次式(9)で、濃度判定は次式(10)を用いて乖離しているか判定する。
【0153】
【数9】
【0154】
【数10】
【0155】
以上のように、本発明の実施例1によれば、散乱光度計と吸光光度計とを備え、各分析項目について、散乱光度計と吸光光度計との2つの光度計で同時に測定し、検量線に許容範囲を設定し、その許容範囲の最大濃度と最小濃度の差が小さい光光度計の濃度を用いるように構成した。
【0156】
これによって、吸光度光度法と散乱光度法の測定原理の異なる分析方法で、同一の反応溶液の濃度演算をすることが可能となり、ラテックス比濁法の試薬をより高感度に測定が可能となる。また、信頼性の高い測定結果を臨床サイドに提供することが可能となる。
【0157】
つまり、散乱光度計と吸光光度計との2つの光度計のうち、濃度範囲に応じて最適な光度計を決定することができ、検出感度の向上が可能な自動分析装置及び試料測定方法を実現することができる。