(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0031】
以下、本発明を詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、その要旨を変更しない範囲において、適宜実施することが可能なものである。
【0032】
以下、添付図面に基づいて、本発明の実施形態について説明する。なお、以下の実施の形態においてA〜Bとして範囲を示す場合には、特に明示した場合を除き、A以上B以下を示すものとする。
【0033】
(実施の形態1)
初めに、実施の形態1の二次電池について説明する。本実施の形態1は、本発明を、二次電池として、角型リチウムイオン電池に適用した場合における、実施の形態である。
【0034】
前述した特許文献1〜3では、例えば充放電の時間率が1C程度であり、充放電電流が100Ah程度である条件での充放電を想定している。一方、充放電の時間率および充放電電流がこの5倍である条件、すなわち充放電の時間率が5C程度であり、充放電電流が500Ah程度である条件での充放電を、ハイレート充放電または大電流放電という。このようなハイレート充放電または大電流充放電を行う場合には、上記特許文献1〜3に記載された接続方法により電極板と電極端子とが接続されたリチウムイオン電池では、ジュール熱による発熱量が大きく、リチウムイオン電池の安全性および寿命を向上させることができない。
【0035】
また、電極板と電極端子とを溶接により接続する場合には、金属原子同士が結びつくため、カシメやネジ止めなどにより機械的に接続する場合と異なり、電極板と電極端子との間の接触抵抗を大きく低減することができる。しかし、溶接により加工を行う際に火花が発生し、金属からなる異物が発生するリスクがある。そして、発生した火花がセパレータを損傷させるか、または、発生した金属からなる異物が電極板の間に混入することにより、短絡が発生するおそれがある。
【0036】
このような短絡の発生を防止するため、例えば上記特許文献3に記載されたように、集電タブを長くすることなどにより、電極板と、集電タブのうち溶接される部分との距離を長くすることが考えられる。あるいは、発生した火花が電極板に到達することを防止するための治具を、集電タブを跨いで取り付けた状態で、溶接を行うことが考えられる。しかし、電極板と、集電タブが溶接される部分との距離を長くする場合には、電極板と電極端子との間の接触抵抗が増大するおそれがあり、ハイレート充放電を行う上で不利である。また、電極タブを跨いで治具を取り付けた状態で、溶接を行う場合には、多くの枚数の集電タブがまとめて損傷するおそれがある。
【0037】
本実施の形態1では、溶接を用いない簡便な接続方法により電極板が電極端子に接続され、大電流での充放電に耐えられ、高い安全性と、高い信頼性を兼ね備えた二次電池を提供することを課題とする。
【0038】
<電槽>
初めに、電槽を説明する。
図1は、実施の形態1の二次電池を示す一部破断斜視図である。
図1では、一例として、水平面内で互いに直交する2つの方向の各々を、X軸方向およびZ軸方向のそれぞれとし、水平面に直交する方向、すなわちX軸方向およびZ軸方向のいずれにも直交する方向である鉛直方向を、Y軸方向としている。
【0039】
図1に示すように、本実施の形態1の二次電池は、電池容器である電槽1を有する。電槽1は、一面が開口した角柱型であり、電槽1の開口部を塞ぐ蓋1aを備えている。電槽1は、電極群を電槽1に挿入した後、電槽1の開口周縁部と蓋1aを溶接することにより、密閉される。すなわち、蓋1aは、電槽1の内部を密閉状態に保つ。機械的強度の観点から、好適には、電槽1は、ステンレス、または、アルミニウムを主成分として含有するアルミニウム系の材料、などの各種の金属材料からなる。電槽1には、注液口2およびガス放出弁3が備えられている。注液口2は、電槽1の内部に電解液(図示は省略)を注液するためのものである。ガス放出弁3は、内部短絡など、何らかの要因で二次電池の温度が上昇し、電槽1内の内圧が所定圧力以上に上昇したときに、内部のガスを放出するためのものである。
【0040】
なお、電槽1のことを、電池缶ともいう(後述する実施の形態2参照)。
【0041】
注液口2からは、エチレンカーボネート等の環状カーボネート系有機溶媒や、ジメチルカーボネート等の鎖状カーボネート系有機溶媒を1種または2種以上混合した溶液に、六フッ化リン酸リチウム(LiPF
6)、四フッ化ホウ酸リチウム(LiBF
4)等のリチウム塩を溶解した非水電解液が注入される。非水電解液を注入した後、液口栓により注液口2は密閉される。
【0042】
本実施の形態1の二次電池は、2つの電極端子4を有する。2つの電極端子4のうち、一方が、第1極性を有する電極端子であり、他方が第1極性と反対の第2極性を有する電極端子である。したがって、2つの電極端子4のうち、一方が正極端子4aであり、他方が負極端子4bである。電極端子4は、電槽1に、電槽1の蓋1aを貫通するように設けられており、二次電池の内部と外部とを連通、すなわち電気的に接続する。正極端子4aは、例えばアルミニウムを主成分として含有する材料、すなわちアルミニウム系の材料からなる。負極端子4bは、例えば銅を主成分として含有する材料、すなわち銅系の材料からなるか、または、ニッケルを主成分として含有する材料、すなわちニッケル系の材料からなる。
【0043】
<電極群>
次に、電極群を説明する。
図2および
図3は、実施の形態1の二次電池の断面図である。なお、
図2では、
図1のX軸方向から二次電池を視た場合を示し、
図3では、
図1のZ軸方向から二次電池を視た場合を示す。
【0044】
図1〜
図3に示すように、本実施の形態1の二次電池は、複数の電極板6を有する。複数の電極板6のうち、一部の複数の電極板が、第1極性を有する電極板であり、他の複数の電極板が、第1極性と反対の第2極性を有する電極板である。したがって、複数の電極板6のうち、一部の複数の電極板6が正極板6aであり、他の複数の電極板6が負極板6bである。複数の正極板6aの各々と、複数の負極板6bの各々とは、セパレータ8を介してZ軸方向に交互に積層されて電極群9を構成している。すなわち、電極群9は、複数の正極板6aと複数の負極板6bとを含み、複数の正極板6aの各々と、複数の負極板6bの各々とが、セパレータ8を介してZ軸方向に交互に積層されたものである。
【0045】
なお、電極群9のことを、発電要素ともいう(後述する実施の形態2参照)。
【0046】
正極板6aは、板状に形成されたアルミニウム箔からなる正極集電体と、正極集電体の両面に設けられ、正極活物質、結着剤および導電剤を含む合剤層と、を有している。
【0047】
正極活物質として、1)化学式LiMO
2(Mは少なくとも1種の遷移金属)で表されるもの、または、2)スピネルマンガンなどを用いることができる。あるいは、正極活物質として、3)マンガン酸リチウム、ニッケル酸リチウムまたはコバルト酸リチウムなどの材料のうちMn、NiまたはCoなどの一部を、1種または2種以上の遷移金属元素で置換したものを用いることができる。さらに、正極活物質として、3)に記載した材料のうち遷移金属の一部をMg、Alなどの金属元素で置換したものを用いることもできる。この他にも、正極活物質として、リン酸塩化合物、LiFePO
4、LiMnPO
4、LiMn
XM
1−XPO
4(0.3≦x≦1、MはLi、Fe、Ni、Co、Ti、Cu、Zn、MgおよびZrから選ばれる一種以上の元素)を用いることができる。
【0048】
導電剤として、公知の導電剤を用いることができ、例えば黒鉛、アセチレンブラック、カーボンブラックまたは炭素繊維などの炭素系導電剤を用いることができる。ただし、導電剤として用いられる材料は、これらの材料に限定されない。
【0049】
結着剤、すなわちバインダーとして、公知の結着剤を用いることができ、例えばポリフッ化ビニリデン、スチレン・ブタジエンゴム、イソプレンゴムなどを用いることができる。ただし、結着剤として用いられる材料は、これらの材料に限定されない。
【0050】
本実施の形態1では、後述する実施例1〜4において、正極活物質として、金属酸化物のマンガン酸リチウムを用い、結着剤として、ポリフッ化ビニリデン(以下、PVDFと称する)を用い、導電剤として、アセチレンブラックを用いている。
【0051】
負極板6bは、板状に形成され、高い導電性と柔軟性を有する材料、例えば銅またはニッケルからなる負極集電体と、負極集電体の両面に設けられ、負極活物質、結着剤および導電剤を含む合剤層と、を有している。
【0052】
負極活物質として、1)黒鉛あるいは非晶質炭素などの炭素系の材料、2)Li
4Ti
5O
12などの酸化物系の材料、3)スズまたはシリコンなどの金属系材料または合金系材料を用いることができる。
【0053】
導電剤として、公知の導電剤を用いることができ、例えば黒鉛、アセチレンブラック、カーボンブラックまたは炭素繊維などの炭素系導電剤を用いることができる。ただし、導電剤として用いられる材料は、これらの材料に限定されない。
【0054】
結着剤、すなわちバインダーとして、公知の結着剤を用いることができ、例えばポリフッ化ビニリデン、スチレン・ブタジエンゴム、イソプレンゴムなどを用いることができる。ただし、結着剤として用いられる材料は、これらの材料に限定されない。
【0055】
本実施の形態1では、後述する実施例1〜4において、負極活物質として、グラファイトを用い、結着剤として、PVDFを用い、導電剤として、アセチレンブラックを用いている。
【0056】
セパレータ8は、リチウムイオンが通過可能なポリオレフィン系または不織布などの多孔質材により、シート状に形成されている。ポリオレフィン系の材料として、ポリプロピレンまたはポリエチレンが挙げられ、不織布の材料として、ガラスまたは紙等が挙げられる。なお、セパレータ8は、正極板6aと負極板6bとが積層状態で接触することを防止できる大きさを有する。
【0057】
本実施の形態1の二次電池は、複数の集電タブ10を有する。複数の集電タブ10の各々は、複数の電極板6の各々の端部にそれぞれ設けられている。複数の集電タブ10のうち、一部の複数の集電タブ10が、第1極性を有する集電タブ10であり、他の複数の集電タブ10が、第1極性と反対の第2極性を有する集電タブ10である。したがって、複数の集電タブ10のうち、一部の複数の集電タブ10が正極用の集電タブ10aであり、他の複数の集電タブ10が負極用の集電タブ10bである。すなわち、本実施の形態1の二次電池は、複数の正極板6aの各々の端部にそれぞれ設けられた複数の集電タブ10aを有する。また、本実施の形態1の二次電池は、複数の負極板6bの各々の端部にそれぞれ設けられた複数の集電タブ10bを有する。
【0058】
なお、集電タブのことを、電極タブとも称する(後述する実施の形態2参照)。
【0059】
図4は、電極小束の構成を示す図であり、
図5は、電極束の構成を示す図であり、
図6は、小電極群の構成を示す図である。
【0060】
図4に示すように、負極板6b、セパレータ8、正極板6aおよびセパレータ8が、この順にZ軸方向に積層された積層体を、最小単位の積層体とすることができ、この最小単位の積層体を、電極小束11と称する。電極小束11は、正極板6aの端部に設けられた集電タブ10aと、負極板6bの端部に設けられた集電タブ10bとを含む。
【0061】
図5に示すように、複数の電極小束11がZ軸方向に配列された配列体、すなわち、複数の電極小束11がZ軸方向に束ねられた集合体を、電極束12と称する。
【0062】
本実施の形態1の二次電池は、電極束12ごとに2つの集電板13を有する。集電板13には、複数の電極板6の各々の端部にそれぞれ設けられた複数の集電タブ10が、まとめて接続されている。
【0063】
2つの集電板13のうち、一方が、第1極性を有する集電板であり、他方が、第1極性と反対の第2極性を有する集電板である。したがって、2つの集電板13のうち、一方が正極用の集電板13aであり、他方が負極用の集電板13bである。すなわち、集電板13aには、電極束12に含まれた複数の正極板6aの各々の端部にそれぞれ設けられた複数の集電タブ10aが、まとめて接続されている。また、集電板13bには、電極束12に含まれた複数の負極板6bの各々の端部にそれぞれ設けられた複数の集電タブ10bが、まとめて接続されている。
【0064】
集電タブ10と集電板13との接続方法は、特に限定されない。したがって、集電タブ10と集電板13とは、例えば集電タブ10と集電板13との間の接続抵抗が小さくなり、かつ、接続の際に火花または金属粉が発生しないような接続方法により接続される。あるいは、集電タブ10と集電板13とは、例えば集電タブ10と集電板13との間の接続抵抗が小さくなり、かつ、接続の際に火花や金属粉が発生したとしても接続される部分の周囲に火花または金属粉が飛散しないように工夫された接合方法により接続される。具体的には、複数の集電タブ10と集電板13とは、超音波溶接またはレーザー溶接等により接続される。なお、
図6に示すように、複数の集電タブ10と集電板13とが接合されている部分を、接合部BDと称する。
【0065】
図6に示すように、1つの電極束12と、2つの集電板13、すなわち集電板13aおよび13bとからなる集合体を、小電極群14と称する。そして、複数の小電極群14がZ軸方向に配列された配列体、すなわち、複数の小電極群14がZ軸方向に束ねられた集合体が、前述した電極群9である。
【0066】
なお、
図5では、一例として、3つの電極小束11からなる電極束12を示しているが、
図2では、他の例として、4つの電極小束11からなる電極束12を示している。また、
図2では、一例として、2つの小電極群14からなる電極群9を示している。
【0067】
図2に示すように、電極群9のZ方向における両端面に、それぞれ負極板6bが配置されることが好ましい。すなわち、電極群9の電槽1の内壁と向き合う端面に、負極板6bが配置され、電槽1の内壁と負極板6bとが対向することが好ましい。これにより、負極板6bに比べ、他の部材と接触して短絡しやすい正極板6aが、電槽1の内壁と対向しないため、正極板6aと電槽1の内壁とが接触して短絡することを防止することができる。
【0068】
<集電板の接続構造>
次に、集電板の接続構造について説明する。ここでは、集電板に3つの孔が形成されており、2本の貫通ボルトと1本のねじ込みボルトとにより、または、1本の貫通ボルトと2本のねじ込みボルトとにより、集電板が電極端子に接続される場合を例示して説明する。
【0069】
本願明細書では、貫通ボルトおよびねじ込みボルトの各々は、ボルト部材であるが、ボルトは、ネジの一種であるため、貫通ボルトおよびねじ込みボルトの各々は、ネジ部材でもある。そして、
図11を用いて後述するように、貫通ボルトは、その長さが相対的に大きく、すなわち長く、軸部の外周面にネジ山またはネジ溝が形成されているため、大ネジまたは長ネジとも称されるネジ部材である。一方、ねじ込みボルトは、その長さが相対的に小さく、すなわち短く、軸部の外周面にネジ山またはネジ溝が形成されているため、小ネジまたは短ネジとも称されるネジ部材である。
【0070】
また、本願明細書では、2本の貫通ボルトと1本のねじ込みボルトとにより集電板が電極端子に接続される、とは、Z軸方向における電極端子の一方の端面において、2本の貫通ボルトと1本のねじ込みボルトとにより、集電板が電極端子に接続されることを意味する。したがって、後述する
図9に示すように、2本の貫通ボルトと2本のねじ込みボルトとにより集電板が電極端子の両端面のそれぞれに接続される場合でも、本願明細書では、2本の貫通ボルトと1本のねじ込みボルトとにより、集電板が電極端子に接続される場合に相当する。
【0071】
図7および
図8は、電極端子、集電板および押さえ板を示す分解斜視図である。
図9〜
図11は、集電板の接続構造の各種の例を示す断面図である。なお、
図7では、集電板が電極端子の両端面に接続される場合を示し、
図8では、集電板が電極端子の一方の端面のみに接続される場合を示す。また、
図9〜
図11は、Y軸方向に垂直な断面図である。
【0072】
本実施の形態1の二次電池は、2つの押さえ板15を有する。押さえ板15は、集電板13を挟んで電極端子4に取り付けられた取付板である。2つの押さえ板15のうち、一方が、第1極性を有する押さえ板15であり、他方が、第1極性と反対の第2極性を有する押さえ板15である。したがって、2つの押さえ板15のうち、一方が正極用の押さえ板15aであり、他方が負極用の押さえ板15bである。すなわち、押さえ板15aは、集電板13aを挟んで正極端子4aに取り付けられた取付板であり、押さえ板15bは、集電板13bを挟んで負極端子4bに取り付けられた取付板である。
【0073】
好適には、押さえ板15の厚みは3mm以上であることが好ましい。これにより、押さえ板15の部材の剛性を十分に確保し、集電板13を均一に押さえることができる。
【0074】
Z軸方向における電極端子4の一方の端面41は、集電板13と接続される接続面である。端面41は、Z軸方向に垂直な平面である。また、端面41は、例えば矩形形状を有しており、端面41のX軸方向の長さは、端面41のY軸方向の長さよりも大きい。
【0075】
Z軸方向における電極端子4の一方の端面41には、1つ以上の貫通孔16と、1つ以上のネジ穴17とが形成されている。貫通孔16は、電極端子4の一方の端面41から電極端子4を貫通して端面41と反対側の端面42(例えば
図9参照)に達する貫通孔であり、ネジ部材である貫通ボルト18を貫通させるための貫通孔である。また、ネジ穴17は、ネジ部材であるねじ込みボルト19を締結するためのネジ穴である。貫通ボルト18およびねじ込みボルト19は、電極端子4に押さえ板15を取り付けるためのものである。
図7〜
図9では、端面41に、2つの貫通孔16と、1つのネジ穴17とが形成されている例を示す。
【0076】
押さえ板15のうち、貫通孔16に対応した位置、すなわちZ軸方向から視たときに貫通孔16と重なり合う位置には、貫通孔161が形成されており、ネジ穴17に対応した位置、すなわちネジ穴17と重なり合う位置には、貫通孔171が形成されている。貫通孔161は、貫通ボルト18を貫通させるためのネジ用孔であり、貫通孔171は、ねじ込みボルト19を貫通させるためのネジ用孔である。
【0077】
集電板13のうち、貫通孔16に対応した位置、すなわちZ軸方向から視たときに貫通孔16と重なり合う位置には、貫通孔162が形成されており、ネジ穴17に対応した位置、すなわちネジ穴17と重なり合う位置には、貫通孔172が形成されている。貫通孔162は、貫通ボルト18を貫通させるためのネジ用孔であり、貫通孔172は、ねじ込みボルト19を貫通させるためのネジ用孔である。
【0078】
図7および
図8に示すように、電極端子4が正極端子4aである場合、正極端子4aの一方の端面41に、貫通ボルト18aを貫通させるための貫通孔16aと、ねじ込みボルト19aを締結するためのネジ穴17aと、が形成されている。貫通ボルト18aおよびねじ込みボルト19aは、正極端子4aに押さえ板15aを取り付けるためのものである。また、押さえ板15aのうち、貫通孔16aに対応した位置には、貫通孔161aが形成され、ネジ穴17aに対応した位置には、貫通孔171aが形成されている。さらに、集電板13aのうち、貫通孔16aに対応した位置には、貫通孔162aが形成され、ネジ穴17aに対応した位置には、貫通孔172aが形成されている。
【0079】
図7および
図8に示すように、電極端子4が負極端子4bである場合、負極端子4bの一方の端面41に、貫通ボルト18bを貫通させるための貫通孔16bと、ねじ込みボルト19bを締結するためのネジ穴17bと、が形成されている。貫通ボルト18bおよびねじ込みボルト19bは、負極端子4bに押さえ板15bを取り付けるためのものである。また、押さえ板15bのうち、貫通孔16bに対応した位置には、貫通孔161bが形成され、ネジ穴17bに対応した位置には、貫通孔171bが形成されている。さらに、集電板13bのうち、貫通孔16bに対応した位置には、貫通孔162bが形成され、ネジ穴17bに対応した位置には、貫通孔172bが形成されている。
【0080】
なお、
図7および
図8では、電極端子4と押さえ板15との間に、1枚の集電板13が配置されている例を示すが、例えば
図9に示すように、電極端子4と押さえ板15との間には、複数の集電板13がZ軸方向に互いに重ねて配置されていてもよい。
【0081】
貫通孔161と、貫通孔162と、貫通孔16とが重なり、かつ、貫通孔171と、貫通孔172と、ネジ穴17とが重なるように、電極端子4と押さえ板15との間に、複数の集電板13を重ねて配置する。また、このように配置された状態で、貫通ボルト18に、貫通孔161と、貫通孔162と、貫通孔16とを貫通させ、ねじ込みボルト19に、貫通孔171と、貫通孔172とを貫通させる。そして、貫通孔161と、貫通孔162と、貫通孔16とを貫通した貫通ボルト18が、電極端子4を挟んで押さえ板15と反対側でナット20と締結され、かつ、貫通孔171と、貫通孔172とを貫通したねじ込みボルト19が、ネジ穴17に締結される。これにより、集電板13を挟んで電極端子4に押さえ板15が取り付けられ、集電板13が電極端子4に接続される。
【0082】
なお、
図7〜
図9に示す例では、電極端子4の端面41に、2番目の貫通ボルト18を貫通させるための2番目の貫通孔16が形成されている。また、押さえ板15のうち、2番目の貫通孔16に対応した位置には、2番目の貫通孔161が形成され、集電板13のうち、2番目の貫通孔16に対応した位置には、2番目の貫通孔162が形成されている。そして、2番目の貫通孔161と、2番目の貫通孔162と、2番目の貫通孔16とを貫通した2番目の貫通ボルト18が、電極端子4を挟んで押さえ板15と反対側で2番目のナット20と締結されることにより、集電板13を挟んで電極端子4に押さえ板15が取り付けられ、集電板13が電極端子4に接続される。
【0083】
図7〜
図9に示すように、1本の貫通ボルト18と1つのナット20とにより、電極端子4の端面41に、集電板13を挟んで押さえ板15を取り付け、電極端子4の端面42に、別の集電板13を挟んで別の押さえ板15を取り付けることができる。したがって、
図7、
図9および
図10に示すように、1本の貫通ボルト18と1つのナット20とにより、ある集電板13を電極端子4の端面41に接続し、別の集電板13を電極端子4の端面42に接続することができる。あるいは、
図8および
図11に示すように、1本の貫通ボルト18と1つのナット20とにより、集電板13を挟んで電極端子4の端面41のみに押さえ板15を取り付け、電極端子4の端面41のみに集電板13を接続することもできる。
【0084】
図11に示すように、Z軸方向における電極端子4の厚さを厚さT1とする。Z軸方向における電極端子4の厚さT1は、貫通孔16の長さに等しい。また、貫通ボルト18が、貫通孔16に挿入可能な軸部181と、貫通孔16に挿入可能でない頭部182とを含むものとし、軸部181の長さを長さL1とする。さらに、ねじ込みボルト19が、ネジ穴17に挿入可能な軸部191と、ネジ穴17に挿入可能でない頭部192とを含むものとし、軸部191の長さをL2とする。そして、電極端子4の一方の端面41側に配置される押さえ板15のZ軸方向における厚さと、電極端子4の一方の端面41と押さえ板15との間に挟まれる複数の集電板13のそれぞれの厚さとの総和を厚さT2とする。このとき、貫通ボルト18の軸部181の長さL1は、厚さT1と厚さT2との総和よりも大きい。一方、ねじ込みボルト19の軸部191の長さL2は、厚さT1と厚さT2との総和よりも小さい。なお、ネジ穴17の長さは、ネジ込みボルト19の軸部191の長さL2と等しいか、または、長さL2よりも大きい。
【0085】
このような長さの関係により、貫通ボルト18の軸部181の長さL1は、ねじ込みボルト19の軸部191の長さL2よりも大きくなる。すなわち、前述したように、貫通ボルト18は、その長さが相対的に大きく、すなわち長く、軸部181の外周面にネジ山またはネジ溝が形成されているため、大ネジまたは長ネジと称されるネジ部材である。一方、ねじ込みボルト19は、その長さが相対的に小さく、すなわち短く、軸部191の外周面にネジ山またはネジ溝が形成されているため、小ネジまたは短ネジと称されるネジ部材である。
【0086】
特に、厚さT2が厚さT1に比べて小さく、厚さT1に対して厚さT2を無視することができる場合には、貫通ボルト18の軸部181の長さL1は、厚さT1よりも大きく、ねじ込みボルト19の軸部191の長さL2は、厚さT1よりも小さい。
【0087】
なお、
図7〜
図11では、図示は省略するが、ナット20の内周面には、ネジ溝またはネジ山が形成されており、貫通ボルト18の軸部181のうち、頭部182と反対側の部分であって、ナット20と締結される部分の外周面には、ナット20の内周面に形成されたネジ溝またはネジ山と螺合するように、ネジ山またはネジ溝が形成されている。
【0088】
一方、
図7〜
図11では、図示は省略するが、ネジ穴17の内周面には、ネジ溝またはネジ山が形成されており、ねじ込みボルト19の軸部191のうち、頭部192と反対側の部分であって、ネジ穴17に締結される部分の外周面には、ネジ穴17の内周面に形成されたネジ溝またはネジ山と螺合するように、ネジ山またはネジ溝が形成されている。
【0089】
図7〜
図9に示すように、好適には、ナット部材であるナット20は、ダブルナットからなる。これにより、二次電池の内部に高温部分と低温部分とが周期的に発生することにより、すなわちヒートサイクルにより、ナット20が緩むことを、防止または抑制することができる。これは、貫通ボルト18とナット20との締結により電極端子4に集電板13を接続する場合、電極端子4に集電板13を電気的に接続する機能よりも、電極端子4に集電板13を機械的に接続、すなわち固定する機能を、より発揮させるためである。
【0090】
なお、ナット20は、シングルナットからなるものでもよい。あるいは、貫通ボルト18およびナット20として、回転緩み止め機能などを有するものを用いることもできる。
【0091】
一方、ネジ穴17は、前述したように、ネジ穴17の内周面に例えばネジ溝加工が施され、ネジ溝またはネジ山が形成されているものであればよく、例えば端面41から電極端子4を貫通して端面42に達する貫通孔であってもよい。また、ねじ込みボルト19とネジ穴17との間の接触面積が大きいことが好ましい。これは、ねじ込みボルト19の締結により電極端子4に集電板13を接続する場合、電極端子4に集電板13を機械的に接続、すなわち固定する機能よりも、電極端子4に集電板13を電気的に接続する機能を、より発揮させるためである。
【0092】
図7〜
図9に示すように、好適には、ネジ穴17は、電極端子4の端面41の中心部に形成されている。また、好適には、2つの貫通孔16のうち一方は、電極端子4の端面41のうち、端面41の中心部の第1の側に位置する部分に形成されており、2つの貫通孔16のうち他方は、電極端子4の端面41のうち、端面41の中心部の第1の側と反対側に位置する部分に形成されている。これにより、電極端子4のうち集電板13と接続される接続面である端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性を向上させることができる。
【0093】
さらに好適には、ネジ穴17は、電極端子4の端面41の重心位置に形成されている。また、好適には、2つの貫通孔16のうち一方は、電極端子4の端面41内で、端面41の重心から離れた第1位置に形成されており、2つの貫通孔16のうち他方は、電極端子4の端面41内で、端面41の重心を中心として、第1位置と対称な位置である第2位置に形成されている。これにより、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性をさらに向上させることができる。
【0094】
なお、ネジ穴17が、端面41の重心位置に形成されているとは、端面41に垂直な方向から視たときに、端面41の重心位置がネジ穴17に内包されるように、ネジ穴17が形成されていることを意味する。また、好適には、ネジ穴17が、端面41の重心位置に形成されているとは、端面41に垂直な方向から視たときに、端面41の重心位置が、ネジ穴17の中心位置と同一の位置になるように、ネジ穴17が形成されていることを意味する。ネジ穴17に代え、貫通孔16が形成される場合も、同様である。
【0095】
また、第2位置が、端面41の重心を中心として、第1位置と対称な位置でなくても、端面41の重心と第1位置とを結ぶ直線上であって、端面41の重心を挟んで第1位置と反対側に位置する位置であれば、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性をある程度向上させることができる。
【0096】
図7〜
図9では、電極端子4の端面41に、2つの貫通孔16と1つのネジ穴17とを形成し、2本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13を挟んで押さえ板15が電極端子4に取り付けられている例を示す。しかし、
図10に示すように、貫通ボルト18の本数とねじ込みボルト19の本数とを互いに入れ替え、電極端子4の端面41に、1つの貫通孔16と2つのネジ穴17とを形成し、1本の貫通ボルト18と2本のねじ込みボルト19とにより、集電板13を挟んで押さえ板15が電極端子4に取り付けられていてもよい。
【0097】
ただし、貫通ボルト18とナット20とを締結することにより押さえ板15を電極端子4に取り付ける場合、ねじ込みボルト19をネジ穴17に締結することにより押さえ板15を電極端子4に取り付ける場合に比べ、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性が高い。したがって、
図10に示すように、端面41に、1つの貫通孔16と2つのネジ穴17とを形成する場合に比べれば、
図7〜
図9に示すように、端面41に、2つの貫通孔16と1つのネジ穴17とを形成する場合が、より好ましい。
【0098】
ただし、
図7〜
図9に示すように、電極端子4の端面41に、2つの貫通孔16と1つのネジ穴17とを形成する場合でも、2つの貫通孔16が1つのネジ穴17に対して同じ側に偏って配置された場合には、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性が低下する。したがって、前述したように、端面41内で、2つの貫通孔16が1つのネジ穴17を挟んで反対側に形成されることが好ましい。
【0099】
なお、電極端子4と集電板13との接続面、すなわち電極端子4の端面41が矩形形状を有する場合、貫通孔16の直径は、端面41の短辺の長さよりも小さく、かつ、貫通ボルト18の頭部の直径は、端面41の短辺の長さよりも小さい。そして、貫通孔16の直径は、貫通ボルト18とナット20との締結により集電板13を十分な機械的強度で電極端子4に接続することができる下限値以上であり、貫通ボルト18の頭部の直径は、貫通ボルト18とナット20との締結により集電板13を十分な機械的強度で電極端子4に接続することができる下限値以上である。
【0100】
<集電板の接続構造の第1変形例>
次いで、集電板の接続構造の第1変形例について説明する。この第1変形例では、集電板に2つの孔が形成されており、1本の貫通ボルトと1本のねじ込みボルトとにより、集電板が電極端子に接続される場合を例示して説明する。なお、貫通ボルトとねじ込みボルトの配置以外については、前述した2本の貫通ボルトと1本のねじ込みボルトとにより、または、1本の貫通ボルトと2本のねじ込みボルトとにより、集電板が電極端子に接続される場合と同様である。
【0101】
図12〜
図14は、集電板の接続構造の各種の例を示す断面図である。なお、
図12〜
図14は、Y軸方向に垂直な断面図である。
【0102】
図12〜
図14に示すように、本第1変形例では、Z軸方向における電極端子4の一方の端面41には、1つの貫通孔16と、1つのネジ穴17とが形成されている。また、
図12および
図13に示すように、1本の貫通ボルト18と1つのナット20とにより、電極端子4の端面41に、集電板13を挟んで押さえ板15を取り付け、電極端子4の端面42に、別の集電板13を挟んで別の押さえ板15を取り付けることができる。したがって、
図12および
図13に示すように、1本の貫通ボルト18と1つのナット20とにより、ある集電板13を電極端子4の端面41に接続し、別の集電板13を電極端子4の端面42に接続することができる。あるいは、
図14に示すように、1本の貫通ボルト18と1つのナット20とにより、集電板13を挟んで電極端子4の端面41のみに押さえ板15を取り付け、電極端子4の端面41のみに集電板13を接続することもできる。
【0103】
また、
図13に示すように、X軸方向における端面41の重心の位置を、X軸方向における端面42の重心の位置と異ならせることができる。例えば、Y軸方向から視たときに、矩形形状を有する電極端子4の対角に位置する一対の角部の各々が面取りされることにより、X軸方向における端面41の重心の位置を、X軸方向における端面42の重心の位置と異ならせることができる。
【0104】
好適には、貫通孔16は、電極端子4の端面41のうち、端面41の中心部の第1の側に位置する部分に形成されており、ネジ穴17は、電極端子4の端面41のうち、端面41の中心部の第1の側と反対側に位置する部分に形成されている。これにより、電極端子4のうち集電板13と接続される接続面である端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性を向上させることができる。
【0105】
さらに好適には、貫通孔16は、電極端子4の端面41内で、端面41の重心から離れた第1位置に形成されており、ネジ穴17は、電極端子4の端面41内で、端面41の重心を中心として、第1位置と対称な位置である第2位置に形成されている。これにより、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性をさらに向上させることができる。
【0106】
なお、第2位置が、端面41の重心を中心として、第1位置と対称な位置でなくても、端面41の重心と第1位置とを結ぶ直線上であって、端面41の重心を挟んで第1位置と反対側に位置する位置であれば、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性をある程度向上させることができる。あるいは、第2位置は、端面41の重心を通りY軸方向に平行な直線を中心として、第1位置と対称な位置であってもよい。このとき、第1位置と第2位置とは、端面41の重心を中心とする扇形状の円弧の両端のそれぞれの位置である。
【0107】
<集電板の接続構造の第2変形例>
次いで、集電板の接続構造の第2変形例について説明する。この第2変形例では、集電板に4つの孔が形成され、2本の貫通ボルトと2本のねじ込みボルトとにより、集電板が電極端子に接続される。なお、貫通ボルトとねじ込みボルトとの配置以外については、前述した2本の貫通ボルトと1本のねじ込みボルトとにより、または、1本の貫通ボルトと2本のねじ込みボルトとにより、集電板が電極端子に接続される場合と同様である。
【0108】
図15は、電極端子、集電板および押さえ板を示す分解斜視図である。
【0109】
図15に示すように、本第2変形例では、Z軸方向における電極端子4の一方の端面41には、2つの貫通孔16と、2つのネジ穴17とが形成されている。また、
図15に示すように、1本の貫通ボルト18と1つのナット20とにより、電極端子4の端面41に、集電板13を挟んで押さえ板15を取り付け、電極端子4の端面41と反対側の端面に、別の集電板13を挟んで別の押さえ板15を取り付けることができる。したがって、1本の貫通ボルト18と1つのナット20とにより、ある集電板13を、電極端子4の端面41に接続し、別の集電板13を、電極端子4の端面41と反対側の端面に接続することができる。あるいは、図示は省略するが、1本の貫通ボルト18と1つのナット20とにより、集電板13を挟んで電極端子4の端面41のみに押さえ板15を取り付け、電極端子4の端面41のみに集電板13を接続することもできる。
【0110】
表1は、電極端子4の端面41内における、2つの貫通ボルトと2つのねじ込みボルトとの配置パターンの例を示す。表1では、パターンPT1〜パターンPT4までの4つのパターンについて、X軸方向における一方の側から他方の側、すなわち左側から右側にかけて配列した4つの位置を、順に、左端位置PS1、左中位置PS2、右中位置PS3および右端位置PS4としている。また、表1では、左端位置PS1、左中位置PS2、右中位置PS3および右端位置PS4のうち、ある位置に、貫通ボルトが配置されているとは、その位置に貫通孔16が形成されていることを意味する。そして、表1では、左端位置PS1、左中位置PS2、右中位置PS3および右端位置PS4のうち、ある位置に、ねじ込みボルトが配置されているとは、その位置にネジ穴17が形成されていることを意味する。
【0112】
表1のパターンPT1に示す場合、すなわち
図15に示す場合、好適には、ネジ穴17が形成された右中位置PS3は、別のネジ穴17が形成された左中位置PS2と、端面41の中心部を挟んで反対側の位置である。これにより、電極端子4のうち集電板13と接続される接続面である端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性を向上させることができる。また、表1のパターンPT4に示す場合も、貫通ボルトとねじ込みボルトとが互いに入れ替えられている点を除いて、表1のパターンPT1に示す場合と同様である。
【0113】
表1のパターンPT1に示す場合、すなわち
図15に示す場合、さらに好適には、貫通孔16が形成された右端位置PS4は、別の貫通孔16が形成された左端位置PS1と、端面41の重心を中心として、対称な位置である。また、ネジ穴17が形成された右中位置PS3は、別のネジ穴17が形成された左中位置PS2と、端面41の重心を中心として、対称な位置である。これにより、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性をさらに向上させることができる。また、表1のパターンPT4に示す場合も、貫通ボルトとねじ込みボルトとが互いに入れ替えられている点を除いて、表1のパターンPT1に示す場合と同様である。
【0114】
その他、表1のパターンPT2およびパターンPT3に示す場合でも、左端位置PS1および左中位置PS2に形成された貫通孔16またはネジ穴17の種類の組み合わせと、右中位置PS3および右端位置PS4に形成された貫通孔16またはネジ穴17の種類の組み合わせとが、同じになる。したがって、右中位置PS3が、端面41の中心部を挟んで左中位置PS2と反対側の位置である場合には、表1のパターンPT1およびパターンPT4に比べれば少し効果が小さくなるものの、集電板13が電極端子4に押さえ付けられる圧力の均一性を向上させる効果がある程度得られる。
【0115】
<貫通ボルトおよびねじ込みボルトの一方のみを用いる場合との比較>
例えば貫通ボルト18のみを用いて、電極端子4に集電板13を接続する場合を考える。この場合、電極端子4に集電板13を機械的に確実に接続、すなわち固定することができる。しかし、押さえ板15と電極端子4との間に複数の集電板13が重ねて配置される場合、集電板13の各々と電極端子4との間の接触抵抗が増大するおそれがあり、充放電を行う際の電流値を容易に増加させることができない。
【0116】
一方、ねじ込みボルト19のみを用いて電極端子4に集電板13を接続する場合を考える。この場合、電極端子4に集電板13を電気的に確実に接続することができる。しかし、外部から微小な振動が二次電池に継続して加えられるか、または、充放電に伴って二次電池が発熱することなどにより、ねじ込みボルト19の締結が緩むおそれがある。ここで、ねじ込みボルト19が緩むことを防止することは容易ではない。そのため、集電板13と電極端子4との間の接触抵抗のばらつきが大きくなり、二次電池の信頼性が低下するおそれがある。
【0117】
本実施の形態1では、集電板13が、貫通ボルト18およびナット20と、ねじ込みボルト19との両方を併用して、電極端子4に接続される。このとき、貫通ボルト18とナット20との締結により、集電板13と電極端子4との間の接触抵抗のばらつきを低減することができる。また、ねじ込みボルト19の締結により、充放電を行う際の電流値を容易に増加させることができる。したがって、二次電池において、充放電を行う際の電流値として十分大きな値を確保しつつ、安全性および信頼性を向上させることができる。
【0118】
なお、押さえ板15を用いずに集電板13を電極端子4に接続した場合、貫通ボルト18またはねじ込みボルト19から離れた部分の集電板13が、電極端子4に接触しないおそれがある。したがって、集電板13の各々と電極端子4との間の接触抵抗が増大するおそれがあり、充放電を行う際の電流値を容易に増加させることができない。
【0119】
本実施の形態1では、集電板13が、押さえ板15を用いて、電極端子4に接続される。押さえ板15の面積は、電極端子4の端面41と略等しい面積である。これにより、電極端子4のうち集電板13と接続される接続面である端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性を向上させることができ、充放電を行う際の電流値を容易に増加させることができる。したがって、二次電池において、充放電を行う際の電流値として十分大きな値を確保しつつ、安全性および信頼性を向上させることができる。
【0120】
なお、上記した集電板の接続構造は、正極端子4aおよび負極端子4bのうち一方のみに集電板13が接続される場合にも適用することができる。また、上記した集電板の接続構造が、正極端子4aおよび負極端子4bのうち一方のみに適用された場合でも、上記した集電板の接続構造が、正極端子4aおよび負極端子4bのいずれにも適用されない場合に比べ、適用された電極端子4については、集電板13が電極端子4に押さえ付けられる圧力の均一性を向上させることができる。したがって、二次電池において、充放電を行う際の電流値として十分大きな値を確保しつつ、安全性および信頼性を向上させることができる。
【0121】
<実施の形態1の実施例>
次に、本実施の形態1における、リチウムイオン電池としての二次電池の実施例を説明する。
【0122】
本実施の形態1の実施例のリチウムイオン電池は、本実施の形態1で説明したリチウムイオン電池と同様に作製した。具体的には、1枚の正極板6aと1枚の負極板6bとがセパレータ8を介して積層された電極小束11を、
図1のZ軸方向に15束積層することなどにより、電極束12を形成した。このとき、15枚の正極板6aの各々の集電タブ10aが正極用の集電板13aに超音波溶接でまとめて接続され、16枚の負極板6bの各々の集電タブ10bが負極用の集電板13bに超音波溶接でまとめて接続されることにより、小電極群14が形成された。そして、電極束12、すなわち小電極群14を
図1のZ軸方向に16束配列して電極群9を形成することにより、リチウムイオン電池を作製した。
【0123】
Z軸方向から視たときの電極端子4の端面41の形状は矩形形状、すなわち長方形状であり、X軸方向の長さがY軸方向の長さよりも大きい。そして、前述した16束の小電極群14のうち8束の小電極群14、すなわち8枚の集電板13を、端面41に接続し、残りの8束の小電極群14、すなわち8枚の集電板13を、端面42に接続した。また、特に言及する場合を除き、貫通ボルト18を、ダブルナットからなるナット20と締結した。
【0124】
なお、電解液として、エチレンカーボネートとジメチルカーボネートとを混合した溶液に、六フッ化リン酸リチウム(LiPF
6)を溶解したものを用いた。また、セパレータとして、ポリエチレン多孔質材料を用いた。
【0125】
<実施例1>
実施例1の二次電池を作製した。実施例1の二次電池では、2本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続された。例えば
図11に示したように、電極端子4の端面41の重心位置に、ネジ穴17が形成され、端面41のうち、X軸方向において端面41の重心を中心として互いに対称な2つの位置の各々に、貫通孔16が形成された。
【0126】
なお、前述したのと同様に、2本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続された、とは、電極端子4の端面41および端面42のうち一方の端面において、2本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続されたことを意味する。
【0127】
<比較例1>
一方、比較例1の二次電池を作製した。比較例1の二次電池は、2本の貫通ボルト18のみにより、集電板13が電極端子4に接続された点で、実施例1の二次電池と異なる。
【0128】
<電極端子と集電板との間の抵抗測定>
このようにして作製した実施例1および比較例1の二次電池について、集電板13と電極端子4との間の接触抵抗を測定した。その結果を、
図16のグラフに示す。
図16の横軸は、集電板13の位置を示し、
図16の縦軸は、集電板13と電極端子4との間の接触抵抗の抵抗値を示す。
図16の横軸では、Z軸方向に重ねて配置され、電極端子4と押さえ板15との間に配置されている8枚の集電板13のうち、電極端子4の端面41に最も近い位置に配置されているものを1枚目として表示し、電極端子4の端面41から最も遠い位置に配置されているものを8枚目として表示した。また、
図16の縦軸に示す抵抗値は、比較例1における5枚目の集電板13と電極端子4との間の抵抗値により規格化されている。
【0129】
図16の比較例1の場合、3〜6枚目の集電板13の抵抗値が、1、2、7および8枚目の集電板13の抵抗値よりも大きくなる。これは、集電板13が貫通ボルト18のみにより電極端子4に接続されている場合、端面41および押さえ板15のいずれからも離れるほど、集電板13のうち、2本の貫通ボルト18のいずれからも離れた部分同士が接触しにくく、接触抵抗が大きくなるためと考えられる。
【0130】
一方、
図16の実施例1の場合、1〜8枚目の集電板13のうち全てにおいて、比較例1に比べ、集電板13と電極端子4との間の抵抗値が概ね半分以下に減少した。したがって、ねじ込みボルト19により集電板13を電極端子4に接続することで、集電板13と電極端子4との間の抵抗値を低減することができた。
【0131】
<実施例2>
実施例2の二次電池を複数個作製した。実施例2の二次電池では、1本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続された。例えば
図14に示したように、電極端子4の端面41のうち、X軸方向において端面41の重心を中心として互いに対称な2つの位置の各々に、貫通孔16およびネジ穴17のそれぞれが形成された。
【0132】
なお、前述したのと同様に、1本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続された、とは、電極端子4の端面41および端面42のうち一方の端面において、1本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続されたことを意味する。
【0133】
<実施例3>
実施例3の二次電池を複数個作製した。実施例3の二次電池では、2本の貫通ボルト18と1本のねじ込みボルト19とにより、または、1本の貫通ボルト18と2本のねじ込みボルト19とにより、集電板13が電極端子4に接続された。
図9に示したように、電極端子4の端面41の重心位置に、ネジ穴17が形成され、端面41のうち、X軸方向において端面41の重心を中心として互いに対称な2つの位置の各々に、貫通孔16が形成された。あるいは、
図10に示したように、電極端子4の端面41の重心位置に、貫通孔16が形成され、端面41のうち、X軸方向において端面41の重心を中心として互いに対称な2つの位置の各々に、ネジ穴17が形成された。
【0134】
なお、前述したのと同様に、2本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続された、とは、電極端子4の端面41および端面42のうち一方の端面において、2本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続されたことを意味する。また、1本の貫通ボルト18と2本のねじ込みボルト19とにより、集電板13が電極端子4に接続された、とは、電極端子4の端面41および端面42のうち一方の端面において、1本の貫通ボルト18と2本のねじ込みボルト19とにより、集電板13が電極端子4に接続されたことを意味する。
【0135】
<放電の際の電極端子の温度測定>
このようにして作製した実施例2および3の二次電池について、放電を行った際の電極端子4の温度を測定した。具体的には、周囲の環境温度が25℃である対流恒温槽内に二次電池を設置し、放電電流を500Aとし、放電を終止するときの電圧、すなわち終止電圧を3.0Vとした条件で放電を行って、電極端子4の温度を測定した。また、電極端子4のうち、通電ケーブルに繋がっている銅板からなるバスバーが締結されている部分、すなわち締結部に、温度センサとして熱電対を取り付け、その熱電対により電極端子4の温度を測定した。その結果を、
図17に示す。
図17の横軸は、二次電池の電池抵抗、すなわち集電板と電極端子との間の接触抵抗を示し、
図17の縦軸は、放電を行った際の電極端子の温度上昇を示す。また、
図17の横軸に示す電池抵抗は、実施例2における電池抵抗の平均値により規格化されている。
【0136】
実施例2の二次電池では、電池抵抗が1.2〜1.4mΩであり、電極端子4の温度が55〜85℃であり、実施例3の二次電池では、電池抵抗が0.8〜0.9mΩであり、電極端子4の温度が40〜50℃であった。そして、
図17に示すように、実施例2における規格化された電池抵抗は、実施例3における規格化された電池抵抗の1.5倍程度であり、実施例2における温度上昇は、実施例3における温度上昇よりも大きかった。つまり、例えば500Aの大きな放電電流で放電を行う場合には、貫通ボルト18とねじ込みボルト19とを合計3本用いて接続する実施例3の二次電池における温度上昇は、貫通ボルト18とねじ込みボルト19とを1本ずつ用いて接続する実施例2の二次電池における温度上昇よりも、小さい。
【0137】
<実施例4>
実施例4の二次電池を複数個作製した。実施例4の二次電池では、貫通ボルト18とねじ込みボルト19とを合計2〜4本用いて、集電板13を電極端子4に接続した。貫通ボルト18とねじ込みボルト19とを合計2本用いた場合には、電極端子4の端面41のうち、X軸方向において端面41の重心を中心として互いに対称な2つの位置の各々に、貫通孔16およびネジ穴17のそれぞれが形成された。貫通ボルト18とねじ込みボルト19とを合計3本用いた場合には、貫通ボルト18とねじ込みボルト19とのうち1本のみが用いられる種類に対応して、貫通孔16またはネジ穴17が、電極端子4の端面41の重心位置に形成された。そして、電極端子4の端面41のうち、X軸方向において端面41の重心を中心として互いに対称な2つの位置の各々に、貫通ボルト18とねじ込みボルト19とのうち2本が用いられる種類に対応して、貫通孔16またはネジ穴17が形成された。さらに、貫通ボルト18とねじ込みボルト19とを合計4本用いた場合には、表1を用いて前述したパターンPT1〜PT4に対応して、貫通孔16またはネジ穴17が形成された。なお、実施例4では、いずれの場合でも、貫通ボルト18と、ダブルナットからなるナット20とが締結された。
【0138】
なお、前述したのと同様に、貫通ボルト18とねじ込みボルト19とを合計2〜4本用いて、集電板13を電極端子4に接続した、とは、電極端子4の端面41および端面42のうち一方の端面において、集電板13を電極端子4に接続するために用いた貫通ボルト18の本数とねじ込みボルト19の本数との合計が2〜4本であることを意味する。
【0139】
<比較例2>
一方、比較例2の二次電池を複数個作製した。比較例2の二次電池では、貫通ボルト18を合計2〜4本用いて、集電板13を電極端子4に接続した。比較例2の二次電池は、貫通ボルト18のみにより、集電板13が電極端子4に接続された点で、実施例4の二次電池と異なる。なお、比較例2の二次電池では、貫通ボルト18と、ダブルナットからなるナット20とが締結された。
【0140】
<比較例3>
また、比較例3の二次電池を複数個作製した。比較例3の二次電池では、ねじ込みボルト19を合計2〜4本用いて、集電板13を電極端子4に接続した。比較例3の二次電池は、ねじ込みボルト19のみにより、集電板13が電極端子4に接続された点で、実施例4の二次電池と異なる。
【0141】
<比較例4>
一方、比較例4の二次電池を複数個作製した。比較例4の二次電池では、貫通ボルト18を合計2〜4本用いて、集電板13を電極端子4に接続した。比較例4の二次電池は、貫通ボルト18のみにより、集電板13が電極端子4に接続された点で、実施例4の二次電池と異なる。また、比較例4の二次電池では、貫通ボルト18と、シングルナットからなるナット20とが締結された。
【0142】
<ヒートサイクル試験によるねじ込みボルト等の緩み>
このようにして作製した実施例4および比較例2〜4の二次電池について、ヒートサイクル試験によるねじ込みボルト等の緩みを評価した。具体的には、80℃での加熱と、−40℃での冷却とを、予め決められた複数回繰り返した後、集電板13と電極端子4との間の接触抵抗の抵抗値を測定し、測定された抵抗値に基づいて、ねじ込みボルト等の緩みが発生したか否かを評価した。その結果を、表2に示す。
【0144】
表2において、〇は、ねじ込みボルト等の緩みが発生しなかった場合を示し、×は、ねじ込みボルト等の緩みが発生した場合を示す。△は、集電板と電極端子との間の抵抗値が、〇の場合の抵抗値と×の場合の抵抗値との間である場合を示し、◎は、集電板と電極端子との間の抵抗値が、〇の場合の抵抗値よりもさらに小さい場合を示す。
【0145】
表2に示すように、比較例3の場合、すなわちねじ込みボルト19のみを用いた場合には、ねじ込みボルト19の緩みが発生したか、または、ねじ込みボルト19等の緩みが発生しなかった場合に比べ、集電板13と電極端子4との間の抵抗値が大きくなった。一方、比較例2、実施例4および比較例4の場合、すなわち貫通ボルト18を少なくとも1本用いた場合には、貫通ボルト18を全く用いなかった比較例3に比べ、ねじ込みボルト19または貫通ボルト18の緩みが発生しにくかった。比較例2、実施例4および比較例4では、貫通ボルト18とねじ込みボルト19との合計本数が3本以上では、ねじ込みボルト等の緩みは略同程度であった。
【0146】
以上の結果をまとめると、
図17に示したように、例えば500Aの大きな放電電流で放電を行う場合には、貫通ボルト18とねじ込みボルト19との合計本数が3本以上であることが好ましい。また、貫通ボルト18とねじ込みボルト19との合計本数が3本以上である場合には、表2に示したように、貫通ボルト18を少なくとも1本用いることにより、ねじ込みボルト19等の緩みを防止することができる。さらに、
図16に示したように、ねじ込みボルト19を少なくとも1本は用いることにより、集電板13と電極端子4との間の抵抗値を低減することができる。
【0147】
<本実施の形態の主要な特徴と効果>
本実施の形態1の二次電池は、電極板と接続された集電板が電極端子と押さえ板とに挟まれた状態で、1本以上のネジ込みボルトがネジ穴に締結され、かつ、1組以上の貫通ボルトとナットとが締結されることにより、押さえ板が電極端子に取り付けられ、集電板が押さえ板により電極端子に押さえ付けられて接続される。貫通ボルトにより押さえ板が取り付けられることにより、外部からの振動が加えられるか、または、充放電の際に加熱と冷却が繰り返された場合に、集電板が押さえ付けられている力が緩むことを、防止することができる。また、ネジ込みボルトにより押さえ板が取り付けられることにより、集電板と電極端子との間の接触抵抗を小さくすることができる。これにより、集電板を溶接により電極端子に接続しなくても、簡便な接続方法により集電板を電極端子に接続することができ、集電板と電極端子との間の接触抵抗を低減することができ、大電流を流して充放電することができる。
【0148】
さらに、本実施の形態1によれば、電極端子に集電板を固定した後に溶接を行う必要がないので、電極端子から発生した金属片が電極群に混入するおそれがない。このようにして、溶接を用いない簡便な接続方法により電極板が電極端子に接続され、高い安全性と高い信頼性とを兼ね備えた二次電池を提供することができる。
【0149】
(実施の形態2)
実施の形態1の二次電池では、複数の電極束の各々にそれぞれ接続された集電板が、電極端子と低抵抗で接続されるように、貫通ボルトとねじ込みボルトとを用いて電極端子に接続されていた。一方、実施の形態2の二次電池では、複数の電極束が、電極束の両端に位置する正極板同士が対向しないように、配列されている。なお、本実施の形態2は、本発明を、二次電池として、リチウムイオン電池に適用した場合における、実施の形態である。
【0150】
一般にリチウムイオン電池は、電池缶内に複数の正極板と負極板が短絡を防ぐためのセパレータを介して交互に積層して収容された構造(積層型)や、軸に正極板と負極板とセパレータを介して捲回した構造などが知られている。
【0151】
積層型のリチウムイオン電池は正極板と負極板の一端に、一枚ごとに極板と端子を接続するためのタブが形成されている。そして電池缶蓋板の下面と上面に正極端子、負極端子が設けられ、電池缶蓋板下面に配置された正極端子と負極端子は、それぞれ正極板のタブと負極板のタブに接合されている。
【0152】
しかしながら、電力貯蔵用などに使用される積層型のリチウムイオン電池は高容量化や高出力化を図るに伴い、電池缶内に収容される極板の枚数が増加する。そのため、極板タブを端子に接合する際、接合部の接触抵抗増大に伴う電池特性の低下が課題となっている。また製造工程において正極タブと負極タブを各々すべて正極端子と負極端子に接合させる必要があり、接合に多大な手間がかかる。さらに、極板タブの枚数が多くなることによって、端子との接合が不十分となり、内部抵抗が高くなり不良となることがある。
【0153】
このような課題に対し、前述したように、例えば上記特許文献4では正極板および負極板を所定枚数毎に複数組(以下、電極群と呼ぶ)に分け、所定枚数ごとのタブと集電リードを接合し、その後電極群を電池缶に収め、前記集電リードの他端を正極端子と負極端子にボルトで固定し、さらに集電リードと端子を溶接接合することでリチウムイオン電池を作製している。また、上記特許文献5には、リチウムイオン電池の非水電解液として、有機溶媒中にリチウム塩の六フッ化リン酸リチウムが溶解された非水電解液が、電池缶内に注液される技術が記載されている。
【0154】
しかしながら、所定枚数毎に複数の組に分けられた電極群を電池缶に収め、集電リードで端子に固定した場合、例えば電極群の積層方向の両端面が正極板で形成され電池缶に収められた場合、電極群の他端が対向する面は正極板同士が対向することとなる。このような場合、正極同士の接触により、内部短絡など安全性に問題が発生するなどの製品不良を発生させる恐れがある。また、集電リードを端子にボルトで固定した後に前記ボルトと端子に溶接を施すと、ボルト締めと溶接を施す位置が重なることからボルトと端子の接合部の接触抵抗が増大する可能性がある。また、溶接の際に発生する金属片が、電池缶の内部に入り込み、内部短絡を発生させる危険性がある。
【0155】
本実施の形態2では、第1の課題は、充放電における短絡を防ぐことである。第2の課題は、前記目的に加えて製造時の操作に起因して生じやすい短絡を防ぎ、かつ極板タブと端子基体部との接触抵抗を小さくすることでより安全性が高い二次電池を提供することを目的とする。
【0156】
<電池缶>
図18は、実施の形態2のリチウムイオン電池の電池缶の斜視図である。リチウムイオン電池は、端子51(後述する
図19参照)としての正極端子51aおよび負極端子51bと、注液口52と、開裂弁53と、電池缶54と、電池蓋55とを有する。
【0157】
図18に示すように、電池缶54は、一面が開口した角柱型であり、電池缶54の開口部を塞ぐ電池蓋55を備えている。電池缶54と電池蓋55は、発電要素56(後述する
図20参照)を電池缶54に挿入後、電池缶54の開口周縁部と電池蓋55を溶接することで密閉される。電池缶の材質はステンレス系の他にアルミニウム系などの金属材料であれば、機械的強度の面から好ましい。電池蓋55には、開裂弁53及び注液口52が配設されている。開裂弁53は、内部短絡など、何らかの要因でリチウムイオン電池の温度が上昇し、電池缶内の内圧が所定圧力以上に上昇した時に、内部のガスを放出する機能を有している。
【0158】
注液口52からは、エチレンカーボネート等の環状カーボネート系有機溶媒や、ジメチルカーボネート等の鎖状カーボネート系有機溶媒を1種または2種以上混合した溶液に、六フッ化リン酸リチウム(LiPF
6)、四フッ化ホウ酸リチウム(LiBF
4)等のリチウム塩を溶解した非水電解液が注入される。非水電解液注入後、液口栓により注液口52は密閉される。
【0159】
<発電要素>
図19および
図20は、実施の形態2のリチウムイオン電池の断面図である。
図19は、正極板および負極板の積層方向に直交する方向に垂直な断面図であり、
図20は、正極板および負極板の積層方向に垂直な断面図である。すなわち、
図20は、電池缶54を、正極板および負極板の積層面と平行に切断したリチウムイオン電池の断面図を示す。また、
図21は、電池缶を取り除いた状態の発電要素の斜視図である。
図22は、電池缶を取り除いた状態のリチウムイオン電池の斜視図である。
【0160】
図19および
図20に示すように、電池缶54の中には発電要素56が収容されている。発電要素56とは、
図21に示すように、正極板57a、負極板57b、前記正極板と前記負極板が直接接触して短絡しないよう、図示しないセパレータを介して交互に積層されているものを指す。
【0161】
正極板57aは、板状に形成されたアルミニウム箔からなる正極集電体と、正極集電体の両面に設けられた正極活物質とバインダーと導電剤を含む合剤層を有している。
【0162】
正極活物質には、1)化学式LiMO
2(Mは少なくとも1種の遷移金属)で表されるもの、あるいは2)スピネルマンガンなどを用いることができる。また、3)マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウムなどの正極活物質中のMn、Ni、Coなどの一部を1種あるいは2種以上の遷移金属で置換したものとすることができる。さらに、3)の遷移金属の一部をMg、Alなどの金属元素で置換したものを用いることもできる。この他にもリン酸塩化合物、LiFePO
4、LiMnPO
4、LiMn
XM
1−XPO
4(0.3≦x≦1、MはLi,Fe,Ni,Co,Ti,Cu,Zn,Mg,及びZrから選ばれる一種以上の元素)が使用可能である。
【0163】
導電剤には、公知の導電剤を用いることができ、例えば黒鉛、アセチレンブラック、カーボンブラック、炭素繊維などの炭素系導電剤を用いることができる。ただし、これらの材料に限定されない。
【0164】
結着剤には、公知の結着剤を用いることができ、例えばポリフッ化ビニリデン、スチレン・ブタジエンゴム、イソプレンゴムなどを用いることができる。ただし、これらの材料に限定されない。本実施の形態2においては、正極活物質として金属酸化物のマンガン酸リチウム、バインダーにポリフッ化ビニリデン(以下、PVDF)、導電材、すなわち導電剤にアセチレンブラックを用いた。
【0165】
正極集電体の一端には、電極タブ、すなわち極板タブ58(後述する
図23参照)である正極タブ58aが形成されている。正極タブ58aは、正極集電板61aを介して正極端子51aに電気的に接続する方法を用いる場合には、正極タブ58aの一端を前記正極集電板61aの一端に超音波溶接やレーザー溶接等を用いて接合する。摩擦撹拌溶接を用いて、正極タブ58aと正極端子51aを電気的に接続する場合には、正極集電板は用いず、正極端子基体部51’aに直接接合される。
【0166】
電池蓋55には、リチウムイオン電池の電池蓋55内外を連通する正極端子51aが設けられ、例えばアルミニウム系の材料により形成される。
【0167】
負極板57bは、板状に形成された高い導電性と柔軟性を有した材料、例えば銅やニッケルからなる負極集電体と、負極集電体の両面に設けられた負極活物質とバインダーと導電剤を含む合剤層とを有している。負極活物質には、1)黒鉛あるいは非晶質炭素などの炭素系の材料、2)Li
4Ti
5O
12のような酸化物系の材料、3)スズ、シリコンのような金属・合金系材料を用いることができる。導電剤には、公知の導電剤を用いることができ、例えば黒鉛、アセチレンブラック、カーボンブラック、炭素繊維などの炭素系導電剤を用いることができる。ただし、これらの材料に限定されない。
【0168】
結着剤には、公知の結着剤を用いることができ、例えばポリフッ化ビニリデン、スチレン・ブタジエンゴム、イソプレンゴムなどを用いることができる。ただし、これらの材料に限定されない。
【0169】
本実施の形態2においては、負極活物質としてグラファイト、バインダーにPVDF、導電材、すなわち導電剤にアセチレンブラックを用いた。負極集電体の一端には、電極タブ、すなわち極板タブ58(後述する
図23参照)である負極タブ58bが形成されている。負極タブ58bは、前記正極タブ58aと同様に、負極集電板61bを介して負極端子51bに電気的に接続する方法を用いる場合には、負極タブ58bの一端を前記負極集電板61bの一端に超音波溶接やレーザー溶接等を用いて接合する。摩擦撹拌溶接を用いて、負極タブ58bと負極端子51bを電気的に接続する場合には、負極集電板は用いず、負極端子基体部51’bに直接接合される。
【0170】
電池蓋55には、リチウムイオン電池の内外を連通する負極端子51bが設けられている。負極端子51bは、例えば銅系やニッケル系の材料により形成されている。
図20に示されるように、正極タブ58aと負極タブ58bとは、互いに重なり合わないように離れて配置されている。
【0171】
図示しないセパレータは、リチウムイオンが通過可能なポリオレフィン系や不織布などの多孔質材によりシート状に形成されている。ポリオレフィン系のセパレータとして、ポリプロピレンやポリエチレン、不織布のセパレータとしてガラスや紙等が挙げられる。なおセパレータは、正極板57aと負極板57bとが積層状態で接触することを阻止できる大きさを有している。(なお、
図21においては、図示を容易にするために、2枚の正極板と2枚の負極板が示されているが、正極板、負極板及びセパレータの枚数は、製造するリチウムイオン電池の電池容量によって決まり、例えば電池容量が数百Ahの場合には、数百枚の正極板及び負極板が積層される。)
【0172】
電解液は、本実施の形態2に関する限り、特別な電解液を準備する必要はなく、例えば、特許文献2に開示された手段により、作製された電解液であればよい。
【0173】
<ボルトナットによる接続方法>
図23は、ボルトナットによる接続方法を示す分解斜視図である。すなわち、
図23は、電極端子、集電板および押さえ板を示す分解斜視図である。
図24は、ボルトナットによる接続方法を示す図である。すなわち、
図24は、集電板の接続構造の例を示す断面図である。
【0174】
図23に示すように、前記極板タブ58は所定枚数ずつ前記集電板61の一端へたとえば超音波溶接やレーザー溶接によって接合され、前記集電板61の他端2枚以上が押さえ板63と電池蓋内に配置される端子基体部51’によって挟持される。集電板61は、導電性の金属、例えばアルミニウム、チタン、ニッケル、銅等が利用できる。また、金属と同等の高い導電性を有していれば、樹脂など他の材料でできた板であってもよい。前記集電板61と前記押さえ板63はともに、1つ以上の貫通穴59と1つ以上のネジ穴である非貫通穴60を有する端子基体部51’に固定される。前記集電板61と前記押さえ板63は、端子基体部51’と接続可能なように、端子基体部51’に形成された貫通穴ないしネジ穴と同間隔で穴が形成されている。このとき、端子基体部51’の貫通穴間隔は均等にすることが好ましい。貫通穴間隔を均等とすることで、集電板61が歪んで接続されず、集電板61同士や集電板61と端子基体部51’との接触面が減少することを防止し、よって接触抵抗が高くなることを防ぐ。前記貫通穴には押さえ板側から貫通ボルト64を挿入し、前記端子基体部他端から突出する前記貫通ボルトの雄ネジ部をナットで固定し、前記ネジ穴には、押さえ板側から嵌合するねじ込みボルト62を挿入し固定する。
【0175】
正極集電板61a、負極集電板61bの使用枚数は、正極板57aと負極板57b各々の使用枚数により変化する。そのため、前記集電板61は、複数枚重ね合わせても、材料抵抗が増加しない厚さであることも重要である。また、溶接された極板タブ58と端子基体部51’との間に流れる電流を許容できる断面積、そして端子基体部51’と押さえ板63に挟持され、ねじ込みボルト62、貫通ボルト64とナット65の組み合わせによる締結で変形、破断しない強度が必要である。
【0176】
前記押さえ板63は、導電性の金属、例えばアルミニウム、チタン、ニッケル、銅等で構成されており、材料抵抗を低減させるため、前記集電板61と同一金属であることが望ましい。本実施の形態2では前記正極端子基体部51’aの押さえ板にアルミニウム、前記負極端子基体部51’bの押さえ板に銅を用い、ほぼ直方体状に形成されている。押さえ板の厚みは3mm以上であることが好ましい。この程度の厚みがあることで、押さえ板部材の剛性を十分に確保し、均一に押さえることができる。
【0177】
図23では集電板61、押さえ板63、端子基体部51’を3か所で固定する方法を示した。この場合は、穴の位置は対称性が見られるように配置し、貫通穴59を2箇所とすることが望ましい。理由は貫通穴59による固定は集電板61と端子基体部51’を均一に押さえつける役割を果たすため、対称性があるよう配置する事で全面をバランスよく押さえつけることが出来るからである。同様に、穴の数を集電板61の接続1箇所に付き4箇所以上を固定する場合についても、穴の位置は対称性が見られるように配置し、貫通穴59をネジ穴の数と同じもしくはそれ以上にするほうが望ましい。
【0178】
また、
図24では、集電板61、押さえ板63、端子基体部51’を2か所で固定する方法を示す。この場合も、貫通ボルト64が貫通する貫通穴と、ねじ込みボルト62が締結されるネジ穴とは、端子基体部51’の端面の重心を中心として互いに対称な2つの位置の各々にそれぞれ配置されることが望ましい。これにより、集電板61の全面をバランスよく端子基体部51’に押さえつけることができる。
【0179】
<摩擦撹拌溶接による溶接方法>
図25は、摩擦撹拌による接合方法を示す図である。すなわち、
図25は、タブが端子基体部に溶接された溶接部付近を示す図である。
【0180】
図25では、溶接の際に金属片などが飛散しにくい摩擦攪拌溶接による接合方法を示す。摩擦攪拌溶接は先端に突起のある円筒状の工具を回転させ、摩擦熱により母材を軟化させ複数の部材を一体化させる接合方法である。
図25は、例えば正極タブである極板タブ58を、例えば正極端子の端子基体部51’に摩擦攪拌溶接した場合を示すものである。タブが端子基体部に溶接された部分は、溶接部66である。このようにすると、前述した集電板61と押さえ板63を使用してねじ込みボルト62や貫通ボルト64で接続する方法よりも、端子51と発電要素56との伝導距離が短くなるほか、溶接部66を通しても電流を流すことができるので、抵抗値を更に小さくすることができる。
【0181】
上記いずれかの接続方法を用いてタブと端子を接続することにより、電池缶54内に収容された複数枚の全ての正極板57aと負極板57bがそれぞれ電池蓋55に設けられた正極端子51aと負極端子51bに電気的に接続される。
【0182】
<電極群の構成形態>
電極群は、正極板と負極板がセパレータを介して交互に積層して構成されたものである。具体的には、次の3種類の電極群A、B、Cを用意した。
【0183】
<電極群A>
正極板と負極板の積層方向の一方の端面と他方の端面とも負極板57bで構成されたものである。
【0184】
<電極群B>
積層方向の一方の端面と他方の端面とも正極板57aで構成されたものである。
【0185】
<電極群C>
積層方向の一方の端面が正極板57a、他方の端面が負極板57bで構成されたものである。電極群A、B、Cいずれの電極群も複数枚の正極タブ、負極タブは同一方向に構成されている。以下の実施例では、上記A、B、Cの電極群を組み合わせ、ボルトナットによる接続方法と摩擦撹拌溶接による接続方法を行った。
【0186】
<実施の形態2の実施例>
以下、本実施の形態2における、リチウムイオン電池の実施例を説明する。
【0187】
本実施の形態2の実施例のリチウムイオン電池は、本実施の形態2で説明したリチウムイオン電池と同様に作製した。より具体的には、電解液としてエチレンカーボネートとジメチルカーボネートとの混合溶媒に六フッ化リン酸リチウム(LiPF
6)、セパレータにはポリエチレン多孔質材料を用いた。そのほか、上述した本実施の形態2を適用して電池を作製した。
【0188】
<実施例5>
実施例5のリチウムイオン電池を作製した。
図26は、実施例5の説明図であり、実施例5のリチウムイオン電池の電極群を示す図である。
【0189】
図26に示すように、実施例5では、正極板は200枚、負極板は204枚を用いて、4つの電極群を作製した。すなわち、1つの組は正極板50枚、負極板は51枚である。本実施例5では、電極群Aの構成を4つ用いて、発電要素56を作製した。その後、上述したボルトナットによる固定方法を用いて、極板タブが溶接された集電板61と端子基体部51’を溶接した。本実施例では電極群を4群作製したが、本実施例の電極群の並びであれば、何群作製しても構わない。電極群の並べ方を1種類とすることで、電極群作製工程の高効率化を図ることが期待できる。組立工程においては電池缶54へ電極群を挿入する際、正極板同士が対向する並びは生じないため、短絡などの不良低減が期待できる。また、電池缶と隣接する電極群の最外面は、必ず負極面であり、負極板のみではイオン反応に関与しないため、作業時に触れることがあった場合でも品質に影響を与えない。特に、電極群(A)を隣同士に配置する構成は、製造後に振動等により電極群単位で上下や左右にずれることとなった場合でも、正極板は対向しないため、より安全性を高めることが可能となる。
【0190】
なお、このような実施例5に代表される二次電池は、電池缶54に収容され、複数の正極板57aの各々と複数の負極板57bの各々とがセパレータを介してある方向、すなわち積層方向に交互に積層された電極群を複数備えている。複数の電極群は、当該積層方向に配列されている。複数の電極群の各々の当該積層方向における両端面に、それぞれ負極板57bが配置されている。
【0191】
<実施例6>
実施例6のリチウムイオン電池を作製した。
図27は、実施例6の説明図であり、実施例6のリチウムイオン電池の一部の電極群を示す図である。
【0192】
実施例6では、正極板は200枚、負極板は201枚を用いて、5つの電極群を作製した。すなわち、正極板40枚、負極板41枚の電極群A、正極板40枚、負極板39枚の電極群Bを作成した。本実施例6では、電極群Aを3つ、電極群Bを2つと計5つの電極群を用いて、A群とB群を交互に配置し発電要素を作製した。なお、
図27では、2つの電極群Aと1つの電極群Bのみを示している。本実施例では電極群を5つ作製し、その後、上述したボルトナットによる固定方法を用いて、極板タブが溶接された集電板61と端子基体部51’とを溶接した。本実施例の電極群の並びであれば、何群作製しても構わない。集電板61に溶接可能なタブの枚数であり、接触抵抗が目的の電池特性を満たす範囲であれば各電極群の枚数は様々であっても良いが、抵抗を可能な限り均一化するため電極群の枚数構成は各々均等であることが好ましい。正極板57aと負極板57bが完全に交互に配列されるため、正極板57aと負極板57bの総枚数を最小限に抑制できる効果がある。
【0193】
なお、このような実施例6に代表される二次電池は、電池缶54に収容され、複数の正極板57aの各々と複数の負極板57bの各々とがセパレータを介してある方向、すなわち積層方向に交互に積層された電極群を3つ以上備えている。3つ以上の電極群は、2つ以上の電極群(A)と、1つ以上の電極群(B)とを含み、かつ、当該積層方向に配列されている。電極群(A)の当該積層方向における両端面に、それぞれ負極板57bが配置されている。電極群(B)の当該積層方向における両端面に、それぞれ正極板57aが配置されている。電極群の配列の両端の位置には、それぞれ電極群(A)が配置されている。電極群の配列の両端以外の位置には、1つの電極群(B)のみが配置されるか、電極群(B)同士が隣り合わないように、2つ以上の電極群(B)と、1つ以上の電極群(A)とが配置されている。
【0194】
<実施例7>
実施例7のリチウムイオン電池を作製した。
図28は、実施例7の説明図であり、実施例7のリチウムイオン電池の電極群を示す図である。
【0195】
図28に示すように、実施例7では、正極板は200枚、負極板は202枚を用いた。本実施例7では、電極群Aを2つ、電極群Cを2つ、計4つの電極群を用いた。電極群Cは、電池缶と向き合う端面が負極板57b、電極群Aと向き合う面が正極板57aとなるように配置した。
図28のように電極群Aは、電極群C同士に挟み込まれるように配置した。その後、上述したボルトナットによる固定方法で極板タブ58と端子基体部51’を固定した。本実施例では電極群を4群に分割したが、本実施例の電極群の並びであれば、A群が増えることは構わないが、C群は電池缶側面と極板面が接する方向に対して、電極群の並びの両端に位置することとなる。
【0196】
<実施例8>
実施例8のリチウムイオン電池を作製した。実施例8では、正極板は200枚、負極板は204枚を用いて、4つの電極群を作製した。1つの電極群は正極板50枚、負極板は51枚である。本実施例8では、電極群Aの構成を4つ用いて、発電要素56を作製した。その後、上述した摩擦撹拌による溶接方法で極板タブ58と端子基体部51’を溶接した。本実施例では電極群を4群に分割したが、本実施例の電極群の並びであれば、何群に分割しても構わない。
【0197】
<比較例5>
一方、比較例5のリチウムイオン電池を作製した。比較例5では、正極板は200枚、負極板は201枚を用い、正負極板計401枚を用いて、1つの電極群を作製し、発電要素56とした。その後、ボルトナットを使用する固定方法によって極板タブ58と端子基体部51’を固定した。
【0198】
以下、本発明と比較を行った要素について列挙する。すなわち、以下の表3に、実施例5〜8および比較例5における、正極板枚数、負極板枚数および電極群数を示す。
【0200】
実施例5〜7については、上述したボルトナットによる接続方法を行い、集電板61を介して極板タブ58と端子基体部51’を接続した部分の接触抵抗を計測し、実施例8については、摩擦撹拌溶接を用いて、極板タブ58と端子基体部51’を接続した部分の接触抵抗を計測した。比較例5については、正極タブ58a、負極タブ58bをそれぞれ1つにまとめボルトで固定した際の接触抵抗を計測した。結果を表4に示す。
【0202】
表4では、接触抵抗が0.1mΩ未満を◎、0.1〜1mΩを○、1mΩ以上を△で標記した。実施例5〜7のように、集電板61を介して正極端子基体部51’aまたは負極端子基体部51’bに、ねじ込みボルト62、貫通ボルト64とナット65の組み合わせを用いて固定することにより、比較例5に比べて接触抵抗を下げることが可能である。実施例8では、正極端子基体部51’aまたは負極端子基体部51’bに直接正極タブ58aまたは負極タブ58bが溶接されることで、接触抵抗を比較例5に比べて大きく下げることが可能である。
【0203】
次に、実施例5〜8の電極積層作業から端子基体部への固定までにかかる作業時間を検討した。この検討として、それぞれの実施例と比較例に対応してリチウムイオン電池を3個ずつ作製し、その平均作業時間を比較した。結果を表5に示す。
【0205】
表5では、比較例5に対する平均作業時間が短いものに対して○を標記する。比較例5の場合は、電極枚数が多いことから、一度の溶接で全ての電極を端子基体部に固定することが困難であり、且つ対向する電極がずれることを調整するのに多大な時間を要した。それに対し、実施例5〜8の場合は、電極群に分け、集電板61を使用してねじ込みボルト62、貫通ボルト64とナット65の組み合わせを用いて固定することや摩擦攪拌溶接を使用したことにより平均作業時間の短縮が可能となった。
【0206】
実施例5〜7では、集電板51を介した正極板57aと負極板57bを、正極端子基体部51’aと負極端子基体部51’bの貫通穴59を通した貫通ボルト64と、ネジ山が彫られた非貫通穴60に固定されたねじ込みボルト62の3点で固定している。また、比較例6では、正極板57aと負極板57bを、貫通穴59を通した貫通ボルト64のみの2点で固定している。これらの実施例5〜7と比較例6を接触抵抗の観点から比較した。結果を表6に示す。表6では、接触抵抗が1mΩ以上の場合は△、1mΩ以下の場合は○で示す。
【0208】
実施例5〜7で製造されたリチウムイオン電池は、比較例6に比べ、均一に集電板同士が接触すること、非貫通穴60に貫通ボルト64で固定したことにより電気伝導経路が増加したことで、接触抵抗の低減が可能となった。
【0209】
<本実施の形態の主要な特徴と効果>
本実施の形態2の二次電池は、正極板同士が対向する並びは生じないため、安全性が向上する。また、電極群(A)を隣同士に配置する構成は、電池使用時に振動等により電極群単位で上下や左右にずれることとなった場合でも、正極板は対向しないため、安全性をより高めることが可能となる。
【0210】
極板のタブを集電板に接合し、前記集電板と端子基体部を貫通ボルトとナット、ねじ込みボルトを併用する接続方法を用いることで、同一箇所に溶接とボルト固定を施す必要がなく、接触抵抗を小さく抑えることができ、また大電流放電が可能となる。これは、貫通ボルトは外部からの振動や充放電に伴う熱による、ゆるみ防止の機能、ねじ込みボルトは集電板と端子との導電性を高める効果、を発揮することによる。さらに、溶接は端子に集電板を固定する前に用いるため、端子の金属片が混入する恐れは少ない。
【0211】
電極群に分けて、極板タブと端子を直接、摩擦撹拌溶接で接合する方法を用いることによって、伝導距離は短くなるため、さらなる抵抗成分の低減が可能となる。また、摩擦撹拌溶接は摩擦熱によって接合部の金属を流動させて加圧固定させる方法であるため、金属片の飛散は大幅に削減することができる。このようにして、高い安全性と高い信頼性とを兼ね備えた二次電池を提供することができる。
【0212】
以上、本発明者によってなされた発明をその実施の形態および実施例に基づき具体的に説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
【0213】
例えば、上記実施の形態は、リチウムイオン電池以外の各種の二次電池にも適用可能である。
【0214】
また、上記実施例および比較例においては、安全性の評価において電流遮断機構等を有するセルコントローラー等の他の安全装置を用いずに評価を行ったが、実製品においては、上記セルコントローラーを含むさらなる安全対策を施し、二重三重に安全性の強化が図られていることは言うまでもない。