【実施例】
【0034】
本発明の実施例1〜8、比較例1〜3、及び従来例1〜4の銅ボンディングワイヤの構成を表1に示す。また、後述する評価項目についての評価結果も表1に示す。
【0035】
【表1】
【0036】
表1における実施例1〜8、及び比較例1〜3は、概略として、基材としての銅からなる心材上に、種々の厚さの亜鉛の被覆層を電解めっきにより形成し、作製したものである。
【0037】
すなわち、実施例1〜8の銅ボンディングワイヤは、無酸素銅からなる線に、亜鉛めっきの厚さを変えた被覆層を形成し、その後、大気中で焼鈍をして作製したものである。
【0038】
一方、比較例1の銅ボンディングワイヤは、銅系材料の特性に及ぼす亜鉛層の厚さの影響を評価すべく、厚さを変化させた亜鉛層を形成し、その後、実施例1と同様の加熱処理をしたものであり、比較例2及び3の銅ボンディングワイヤは、銅系材料の特性に及ぼす加熱処理条件の影響を評価すべく、加熱処理をせずに(比較例2)、又は加熱処理条件を変化させ(比較例3)、作製したものである。
【0039】
さらに従来例として、無酸素銅(従来例1)、高純度銅(6N)(従来例2)、無酸素銅の表面にPdめっきを施したもの(従来例3)、Auワイヤ(従来例4)を用意した。
【0040】
以下に、各実施例、比較例及び従来例の詳細を説明する。
【0041】
[実施例1]
心材2として直径1mmの4N銅(純度99.99重量%)線に、電解めっきにより厚さ0.07μmのZn層を形成した。その後、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。その後、50℃の温度で10分間、大気中で加熱処理して、表面処理層を備えた銅ボンディングワイヤを作製した。作製した銅ボンディングワイヤに対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)から構成される表面処理層が、0.003μmの厚さに形成されていることを確認した。
【0042】
[実施例2]
心材2として直径1mmの4N銅(純度99.99重量%)線に、電解めっきにより厚さ0.17μmのZn層を形成した。その後、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。その後、50℃の温度で1時間、大気中で加熱処理した銅ボンディングワイヤを作製した。作製した銅ボンディングワイヤに対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)から構成される表面処理層が、0.006μmの厚さに形成されていることを確認した。
【0043】
[実施例3]
心材2として直径1mmの4N銅(純度99.99重量%)線に、電解めっきにより厚さ0.27μmのZn層を形成した。その後、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。その後、100℃の温度で5分間、大気中で加熱処理した銅ボンディングワイヤを作製した。作製した銅ボンディングワイヤに対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)から構成される表面処理層が、0.01μmの厚さに形成されていることを確認した。
【0044】
[実施例4]
心材2として直径1mmの4N銅(純度99.99重量%)線に、電解めっきにより厚さ0.60μmのZn層を形成した。その後、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。その後、100℃の温度で5分間、大気中で加熱処理した銅ボンディングワイヤを作製した。作製した銅ボンディングワイヤに対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)から構成される表面処理層が、0.02μmの厚さに形成されていることを確認した。
【0045】
[実施例5]
心材2として直径1mmの4N銅(純度99.99重量%)線に、電解めっきにより厚さ1.33μmのZn層を形成した。その後、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。その後、120℃の温度で10分間、大気中で加熱処理した銅ボンディングワイヤを作製した。作製した銅ボンディングワイヤに対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)から構成される表面処理層が、0.05μmの厚さに形成されていることを確認した。
【0046】
[実施例6]
心材2として直径1mmの4N銅(純度99.99重量%)線に、電解めっきにより厚さ2.67μmのZn層を形成した。その後、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。その後、150℃の温度で30秒間、大気中で加熱処理した銅ボンディングワイヤを作製した。作製した銅ボンディングワイヤに対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)から構成される表面処理層が、0.1μmの厚さに形成されていることを確認した。
【0047】
[実施例7]
心材2として直径1mmの4N銅(純度99.99重量%)線に、電解めっきにより厚さ17μmのZn層を形成した。その後、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。その後、150℃の温度で30秒間、大気中で加熱処理した銅ボンディングワイヤを作製した。作製した銅ボンディングワイヤに対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)から構成される表面処理層が、0.6μmの厚さに形成されていることを確認した。
【0048】
[実施例8]
酸素濃度、硫黄濃度、チタン濃度が、それぞれ7〜8 mass ppm、5 mass ppm、13 mass ppmである希薄銅合金からなる直径1mmの銅線を作製した。この銅線に、電解めっきにより厚さ0.27μmのZn層を形成した。その後、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。その後、150℃の温度で30秒間、大気中で加熱処理した銅ボンディングワイヤを作製した。作製した銅ボンディングワイヤに対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)から構成される表面処理層が、0.01μmの厚さに形成されていることを確認した。
【0049】
[比較例1]
心材2として直径1mmの4N銅(純度99.99重量%)線に、電解めっきにより厚さ31.7μmのZn層を形成した。その後、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。その後、100℃の温度で5分間、大気中で加熱処理した銅ボンディングワイヤを作製した。作製した銅ボンディングワイヤに対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)から構成される表面処理層が、1μmの厚さに形成されていることを確認した。
【0050】
[比較例2]
心材2として直径1mmの4N銅(純度99.99重量%)線に、電解めっきにより厚さ0.67μmのZn層を形成した。その後、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。作製した銅ボンディングワイヤに対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)から構成される表面処理層が、0.02μmの厚さに形成されていることを確認した。
【0051】
[比較例3]
心材2として直径1mmの4N銅(純度99.99重量%)線に、電解めっきにより厚さ0.33μmのZn層を形成した。その後、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。その後、400℃の温度で30秒間、大気中で加熱処理した銅ボンディングワイヤを作製した。作製した銅ボンディングワイヤに対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)から構成される表面処理層が、0.02μmの厚さに形成されていることを確認した。
【0052】
[従来例1]
直径1mmの4N銅(純度99.99重量%)線を、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。
【0053】
[従来例2]
直径1mmの6N銅(純度99.9999重量%)線を、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。
【0054】
[従来例3]
心材2として直径1mmの4N銅(純度99.99重量%)線に、電解めっきにより厚さ1.67μmのパラジウム(Pd)層を形成した。その後、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。作製した銅ボンディングワイヤに対し、表面から深さ方向のオージェ分析を行うことで、Pdで構成される表面処理層が、0.05μmの厚さに形成されていることを確認した。
【0055】
[従来例4]
直径1mmの金(純度99.99重量%)線を、直径0.03mmまで伸線加工を行い、更に続けて、通電焼鈍により銅心材を軟質化させた。
【0056】
[評価方法]
表1における各銅ボンディングワイヤに形成された表面処理層は、オ一ジェ分光分析の結果から求めた。
【0057】
表1におけるハローパターンの存在の確認は、RHEED分析(Reflection High Energy Electron Diffraction)により行った。ハローパターンが確認できたものを「有」とした。
【0058】
表1における作製した各銅ボンディングワイヤのボール硬さ、接続不良率(%)、ループ形状の各評価及び総合評価は、以下のようにして行った。
【0059】
ボール硬さは、フリーエアボールを形成した後、ボールの断面の材料硬さをビッカス硬度計で測定した。60Hv以下を◎、60Hvを超え70Hv以下を○、70Hvを超え80Hv以下を△とした。また、実際のワイヤボンディングの際に、この測定硬さに比例して、アルミパッドのダメージ(アルミスプラッシュ)が大きいことを目視にて確認した。
【0060】
接続不良率は、サンプル数n=30のワイヤボンディング及びプルテストにより評価した。ボンディングの未接着及びプルテストによる接続強度が導体強度の70%以下であるものを不良と判断し、それらの不良数をテスト総数で除した値を接続不良率とした。
【0061】
ループ形状は、ループ高さのばらつきで評価し、ループ高さばらつきが±150μm以内を◎、±150μmを超え±300μm以内を○、±300μmを超える場合を△とした。
【0062】
これらの項目及びコストを合わせ総合的に評価して、◎最良、○良好、△不足、×不適と判断した。
【0063】
[評価結果]
図3は、実施例3に係る銅ボンディングワイヤの恒温(100℃)保持試験における3600時間試験品の、表層からスパッタを繰り返しながら深さ方向のオージェ元素分析を行った結果を示すグラフである。横軸は表面からの深さ(nm)、縦軸は原子濃度(at%)を表し、実線は酸素(O)の含有比率としての原子濃度(at%)、長い破線は亜鉛(Zn)の原子濃度、短い破線は銅(Cu)の原子濃度を示している。酸素侵入深さは、表面から10nm程度であり、特に深さ0〜3nmの表層部位における平均元素含有比率を(深さ0〜3nmでの各元素の最大原子濃度−最小原子濃度)/2と定義すると、実施例3では、亜鉛(Zn)が60at%、酸素(O)が33at%、銅(Cu)が7at%であった。
【0064】
また、他の実施例を含めると、上記平均元素含有比率は、亜鉛(Zn)が35〜68at%、酸素(O)が30〜60at%、銅(Cu)が0〜15at%の範囲にあることがわかった。
【0065】
一方、比較例1の銅ボンディングワイヤは、亜鉛(Zn)が33at%、酸素(O)が41at%、銅(Cu)が26at%であり、比較例2の銅ボンディングワイヤは、亜鉛(Zn)が5at%、酸素(O)が46at%、銅(Cu)が49at%であった。
【0066】
図4は、本発明の実施例3、比較例1、及び従来例1に係る銅ボンディングワイヤの恒温(100℃)保持試験における、表層からの酸素侵入深さ(酸化膜厚さ)の時間変化を示すグラフ図である。酸素侵入深さは、各時間保持したサンプル表面から、スパッタを繰り返しながら、深さ方向にオージェ分析を行うことで求めた。
図4において、横軸は100℃等温保持時間(h)、縦軸は酸素侵入深さ(nm)を表し、実線は実施例3、破線は従来例1の酸素侵入深さを示している。なお、比較例1は点で示されている。
【0067】
実施例3では、
図3に示すように、3600時間保持経過後の状態で、表面近傍での酸素濃度が増加しているものの、その侵入深さは試験前と殆ど変化せず約0.01μm以下であり、実施例3の銅ボンディングワイヤは高い耐酸化性を示した。
【0068】
一方、
図4に示すように、恒温保持試験前の従来例1では酸素を含む層の厚さが表面から約0.006μm程度と、恒温保持試験前の実施例3と同程度の深さであったが、3600時間保持試験後の従来例1では、表面近傍での酸素濃度が恒温保持試験前に比較して顕著に増加し、従来例1の酸素侵入深さは約0.036μmと試験前の5倍以上となった。また、試験後の従来例1は外観上も赤茶系に変色しており、明らかに酸素を含む層が厚く形成されていると判断することができた。また、無酸素銅に1μmのZn層を形成した比較例1は、1000時間保持試験後に既に酸素侵入深さが約0.080μmに達していた。
【0069】
耐食性に優れた実施例3の表面をRHEED分析した結果を
図5に示す。電子線の回折像は、ハローパターンを示していることがわかった。
【0070】
(ボール硬さ)
ボール硬さについて、実施例1〜8、比較例1〜3、及び従来例1、2,4のボンディングワイヤは全て良好な特性を示した。実施例8及び素材全体の純度が高い従来例2、及び従来例4は、更にやわらかいボールを形成していた。実施例8において、◎の結果となった理由は、添加したチタンが不純物である硫黄をトラップすることで、銅母材(マトリックス)が高純度化し、素材の軟質特性が向上したためであると考えられる。
【0071】
一方、従来例3に示すPd被覆したボンディングワイヤは、ボールが硬い結果となった。これは、心材のCu中へPdが固溶した場合、その値がごく微量であってもボールが硬くなり易いことを示している。一方、実施例に示すZn被覆は、Cu中へZnが固溶したとしても、硬さの上昇は少ない、この理由として、CuとZnは原子半径がほぼ同等であるため、固溶による歪の発生が小さく、硬さへの影響が小さいためと考えられる。
【0072】
(接続信頼性)
接続信頼性に関して、実施例1〜8については、不良率がゼロの優れた特性を示した。一方、同じくZn系の表面処理層を持つ比較例1〜3であっても、良好な特性が得られない場合が認められた。比較例1のように、亜鉛の厚さが厚い場合、比較例2のようにめっき後の加熱処理を実施していない場合、比較例3のようにめっき後に過剰な加熱処理を行った場合はいずれも、評価結果は不良となった。従来例1、2についても、銅の酸化による接着不良が発生した。また、従来例2は、強度が不十分なネック切れが発生した。これは、高純度銅であるため、結晶粒が粗大化し強度低下が生じたためである。従来例3、4は、良好な特性を示した。
【0073】
以上の結果から、Zn処理を行った場合の加熱処理の条件としては、酸素を1%以上含む雰囲気中で50℃以上であることが好ましいことが確認された。
【0074】
(ループ形状)
ループ形状に関して、軟質である反面ループが安定しなかった従来例2以外は良好であった。特に、実施例8はより安定したループ特性を示した。
【0075】
(コスト)
コスト(経済性)に関して、4Nの銅(従来例1)、及び本発明の実施例1〜8、比較例1〜3は、材料そのものの耐食性に優れていながら材料コストが高い貴金属コーティング等を必要とせず、安価なZnを使用し、しかもその厚さが極めて薄いため、生産性と経済性に極めて優れている。従来例2の高純度銅は、従来例3のPdや従来例4のAuよりは安価であるものの、製造方法が特殊であるため4N銅をベースとした材料よりも高価にならざるを得ない。
【0076】
導電率と熱伝導率について、銅、及び銅を心材とした実施例1〜8が優れていることは言うまでもない。
【0077】
これらの結果から総合的に判断すると、表面処理により酸化劣化を低減させ、優れたワイヤボンディング特性、及び高い導電性と経済性を併せ持つ、ボンディングワイヤ材料として、実施例1〜8に示す本実施例の銅ワイヤボンディングが提案できる。
【0078】
なお、本発明は、上記実施の形態、上記実施例に限定されず種々に変形実施が可能である。