【国等の委託研究の成果に係る記載事項】(出願人による申告)平成23年度、独立行政法人科学技術振興機構、戦略的創造研究推進事業 チーム型研究(CREST)の研究領域「先進的統合センシング技術」における研究課題「パラサイトヒューマンによる五感伝送・環境計測・行動誘導の研究および次世代パラサイトヒューマンの装置開発および行動伝達応用への具現化」に係る委託研究、産業技術力強化法第19条の適用を受ける特許出願
【文献】
前田太郎,安藤英由樹,幾何学的完全解としてトロコイド曲線を実現する機械的回転機構の提案,ロボティクス・メカトロニクス講演会2010,2010年 1月13日,2A2−D11
【文献】
前田太郎,安藤英由樹,幾何学的完全解としてトロコイド曲線を実現する機械的回転機構の改良,ロボティクス・メカトロニクス講演会2011,2011年 5月26日,1P−I10
(58)【調査した分野】(Int.Cl.,DB名)
周方向に1又は複数の作用部材を有し、駆動軸周りに旋回する作用部と、前記作用部と連結軸で回転自在とされ、前記作用部を旋回面上で2次元方向に移動させる操舵部とを備えたトロコイド駆動機構において、
前記操舵部は、前記駆動軸を前記連結軸に対して前記旋回面と平行な面上で相対移動させるスライド部と、前記駆動軸と同軸に設けられた回転力伝達基部とを備え、
前記作用部は、前記駆動軸と一体で旋回する基盤と、前記スライド部によるスライド分に応じたステアリング角を前記作用部材に作用させるステアリング部と、前記回転力伝達基部と前記作用部材との間に介在され、前記基盤の旋回動作を前記作用部材に伝達する回転力伝達機構とを備えたことを特徴とするトロコイド駆動機構。
前記回転力伝達基部及び前記回転力伝達機構はギアであり、前記回転力伝達基部のギアと前記回転力伝達機構の最下流のギアとは同一歯数であることを特徴とする請求項1に記載のトロコイド駆動機構。
【発明の開示】
【発明が解決しようとする課題】
【0006】
平面内での全方位移動は、トロコイド曲線に沿った軌道を回転機構の連続的運動による直線移動の幾何学解として実現することが求められる。しかし、実際には、特許文献1のように、トロコイド曲線を近似解で再現していることから、キャスタ駆動で走行させる場合、キャスタの回転方向の運動と並進方向の運動との間に生じる床面との不効率分となるスリップによる摩擦損失が大きいという問題があった。そこで、本発明者は、トロコイド曲線の幾何学的完全解を簡単な機械要素からなる機構によって実現した低損失のトロコイド駆動機構を提案した(特願2010−134580)。特願2010−134580(先願)に基づいて、トロコイド曲線の幾何学的完全解とリンク機構との作用について説明する。中心の垂直な駆動軸周りの円周上に複数の車輪を配置した構成の全方位移動機構を想定する。この機構は、ヘリコプターやサイクロイダル、プロペラと同様の推進原理を有し、軸対称で全方位性を持った推進機構であり、その特徴として軸回転に対して並進速度を連続に変速させる機構としても機能する。
【0007】
図1は、一定の角速度ωで特定の方向に並進している場合に、同機構において各車輪に求められる舵角を示す図である。各車輪は中心(駆動軸)から半径r
dに位置している。
図1において、各速度ベクトルは、各車輪の駆動軸周りの接線速度v
d、回転中心の並進速度v
m、各車輪の進行速度v
wである。車輪の接線速度v
dは、図略のモータ等で実現される。そして、トロコイド運動を実現するための速度ベクトルの相互関係、すなわちv
w=v
d+v
mを満たすためには、車輪の舵角方向は常にV
wと同一方向を向く必要がある。これは同機構が全方位移動機構として成立するためには、各車輪の舵角の方向がトロコイド曲線上の接線方向を常に向いていることが求められるということを意味している。
【0008】
この関係は、数1に示すトロコイド曲線を示す数式、及び
図1において、v
d=r
d・ω、v
m=r
m・ω、v
w=(dx/dt,dy/dt)、p
w=(x、y)とするとき、数1のトロコイド曲線を時間微分した数2に対して、数3のように解析的にも求めることができる。なお、式中、r
mは偏心量である。
【0009】
【数1】
【0010】
【数2】
【0011】
【数3】
【0012】
次に、
図2は、
図1に示したトロコイド曲線を用いた推進機構の一例を概念的に示した図で、(a)は平面図、(b)は側面図、(c)は正面図である。
図2に示す推進機構では、各車輪WHを旋回させるための主アームMAに対する操舵リンク板NLの2次元方向(平面内での全方位)への偏心移動よって各車輪WHの舵角(ステアリング角)が決定される。2次元方向への偏心移動は、例えば井桁スライダISが利用できる。操舵リンク板NLは、井桁スライダIS、リニアスライダLSによって主アームMAと連結され、供回りしながら、すなわち同位相で回転しながら回転中心を水平移動させることができる。リニアスライダLSは主アームMAの先端と操舵リンク板NLの先端とを連結するもので、前記偏心移動に応じてリニアスライダLSの向きを可変する。
図2に示した偏心量ds=0の際の操舵リンク板NLの先端位置は、車輪WHの舵角の回転中心から主アームMAの旋回円周の接線方向の前方一定距離d
w=d0になるように設定されている。ここで、この先端位置と旋回中心とをリニアスライダLSで結び、その方向が車輪WHの舵角方向(すなわちステアリング角)となるように装置を構成する。
【0013】
このように、平面内での全方位移動を考えた場合、トロコイド曲線に沿った軌道は連続的な回転機構による直線移動の幾何学解として有効である。また、
図3は、ステアリング機構の一例であって、回転系としての車輪舵角機構周り(駆動アーム座標系)から見た速度と各リンク系の関係を説明するための図で、(a)は速度関係を示す図、(b)は本出願人の前記先願でのリンク接続を示す図である。
図3(b)における駆動アームベクトルrと操舵リンク中心のずらし量ベクトルaによって、操舵リンクの接続ピン352(
図10参照)はステアリング軸363a(同じく
図10参照)の前方(Y軸正方向)にd0進んだ点を中心にベクトルaだけ遷移した円運動を行う。これによって、d0をvd、aをvmに対応させて、3つの速度ベクトルvd、vm、vwがなす三角形と相似形を構成したリンク系を構築することができるため、このリンク系において常にvwに対応する方向に車輪をステアリングさせることで、トロコイド軌道を辿らせるステアリング系を構築できたことになる。これにより機構全体の移動速度ベクトルであるvmとずらし量ベクトルaとを完全な比例関係を有して操作可能な機構とすることができることとなる。さらに、本発明者は、キャンバー角を設定して段差乗り越え能力を持つ単車輪型のトロコイド駆動機構も提案している(特願2011−117496)。
【0014】
ところで、段差を含む凸凹地形を、多輪で車輪走行する際に重要な懸案事項として、接地/不接地の問題がある。すなわち、不整地の凸凹に対して、特定の車輪の接地がサスペンション等の能力で保持しきれない瞬間が生じた場合の車輪の挙動についての問題がある。これは、一般的に走行体の接地点が剛体接地としての静的安定性のためには3点以上を必要とすることに基づく要求でもある。全ての接地車輪に対して、不整地対応能力を上げる方策を施す際には、接地車輪としてフリーホイール機構を用いる、先行特許出願(特願2010−134580)の機構の制約として、常時3輪以上の接地を必要とする。さらに、それらの車輪軸が全て同一の一点で交わっていないことが剛体としての3次元安定接地の条件となる。これは通常、2輪がフリーホイールである4輪普通自動車でも事情は同様である。この問題は、サスペンションによる凸凹対応性の強化や多輪化する方策を採用すれば、確率的に回避しやすくなるものの、非接地輪を生じさせる確率も増えるため、それだけでは確実とまでは言い難い。
【0015】
また、不整地問題は、硬質不整地等に限らず、軟弱砂地や軟泥地にも同様に存在し、これらの場合、外部との作用部は、車輪に代えて、砂や泥を掻いて進むプロペラ翼となる。もしくはスポ−ク型ではなく、ディスク型の車輪を用いて車輪自体に翼面としての効果を持たせることで作用部を運用する。
【0016】
本発明は、上記に鑑みてなされたもので、外部と作用する作用部を駆動化して不整地安定性を得るトロコイド駆動機構を提供することを目的とするものである。
【課題を解決するための手段】
【0017】
本発明は、周方向に1又は複数の作用部材を有し、駆動軸周りに旋回する作用部と、前記作用部と連結軸で回転自在とされ、前記作用部を旋回面上で2次元方向に移動させる操舵部とを備えたトロコイド駆動機構において、前記操舵部は、前記駆動軸を前記連結軸に対して前記旋回面と平行な面上で相対移動させるスライド部と、前記駆動軸と同軸に設けられた回転力伝達基部とを備え、前記作用部は、前記駆動軸と一体で旋回する基盤と、前記スライド部によるスライド分に応じたステアリング角を前記作用部材に作用させるステアリング部と、前記回転力伝達基部と前記作用部材との間に介在され、前記基盤の旋回動作を前記作用部材に伝達する回転力伝達機構とを備えたことを特徴とするものである。
【0018】
この発明によれば、作用部が駆動軸周りに旋回することで、作用部材が外部と物理的に関わることとなる。なお、作用部材の態様としては、外部である地面(床面)に対して全方位方向に走行する車輪の場合、外部である空中や水上、水中(流体)に対して全方位に推進するフィン(翼)とかプロペラの場合が考えられ、さらには、風車や水車として、外部である流体の流れからフィンを介して回転力を取り出す目的にも応用可能であり、従来のシステムよりも遙かに広範囲の速度領域に亘って変化する流体から安定した回転力を取り出すことが可能となる。作用部は駆動軸から回転力を受けて旋回する。操舵部は旋回面上を2次元方向に相対移動(スライド)可能にされており、かつステアリング部によって作用部の作用部材に対してトロコイド曲線に沿った動きを行うように操作される。例えば、作用部材が床面を走行する車輪である態様で作用を説明すると、以下のようになる。
【0019】
説明の便宜上、床面が水平整地である。床面を転動する車輪は、基盤に設けられている。スライド部による操舵操作がなければ、連結軸と駆動軸とは一致し、各車輪は基盤の旋回方向に沿って床面上を旋回するのみである。一方、スライド部による操舵操作があると、連結軸は駆動軸に対して相対的に前記回動方向の前後一方側に所定距離だけ離間した位置となり、この操舵に応じて前記所定距離に応じて床面上を並進移動するようになる。更に、作用部の基部は駆動軸から回転力を受けて旋回する一方、このとき操舵部の回転力伝達基部は静止している。この状態で、基部の旋回によって、回転力伝達機構が回転力伝達基部の周りに回転し、この回転力伝達機構に生じた回転力によって車輪が回転駆動させられる。このため、車輪は、床面との摩擦で回転する従動ではなく、駆動輪化される。
【0020】
従って、今、不整地を走行する場合を想定すると、いずれかの車輪が地面の凹部に位置して地面と接していない場合であっても、他の車輪と同期して回転しているので、走行に支障はなく、走行方向も維持される。また、凸部に乗り上げる場合でも、駆動輪であることから滑落も抑止され、段差乗り越えが一層確実となり、不整地安定性が向上する。
【0021】
また、本発明に係るトロコイド駆動機構は、前記回転力伝達基部及び前記回転力伝達機構はギアであり、前記回転力伝達基部のギアと前記回転力伝達機構の最下流のギアとは同一歯数であることを特徴とする。この構成によれば、作用部材を駆動化するための、最上流側の連結軸と同心のギア(回転力伝達基部)と、回転力伝達機構のうちの最下流側のギアとを同一歯数としたので、その途中に介在するギアの歯数サイズに左右されることなく、作用部材の作用動作を作用部の回転と同期させることが可能となる。
【0022】
また、本発明に係るトロコイド駆動機構は、前記
作用部材は車輪であることを特徴とする。この構成によれば、車輪の回転が作用部の回転と同期する。
【0023】
また、本発明に係るトロコイド駆動機構は、前記車輪は、所定の傾斜を有して前記作用部に支持されていることを特徴とする。この構成によれば、固定的であるものの、所要の乃至は平均的なキャンバー角を予め設定しておくことで、キャンバー角を付与しない場合に比して、接地面との摩擦のロスを低減することが可能となる。
【発明の効果】
【0024】
本発明によれば、作用部材の駆動化によって不整地安定性が確保できる。
【発明を実施するための形態】
【0026】
以下、図面を参照しつつ、本発明に係るトロコイド駆動機構が車輪を備えた推進機構に適用された実施形態について説明する。
【0027】
図4は、本発明に係るトロコイド駆動機構が車輪を備えた推進機構に適用された実施形態の概略を示す全体概略図である。
図4において、推進機構1は、操舵部としての偏心駆動部20及び作用部としての走行部30を備えている。偏心駆動部20と走行部30とは、後述するように軸受(連結軸)を介して水平面上で相対回転可能に連結されている。走行部30は、その下部に地面と当接する、同一形状の複数、本実施形態では3個の車輪部34が周方向に等間隔で配置されている。本実施形態では、車輪部34の車輪346(
図9参照)には所定のキャンバー角が設定されている。偏心駆動部20は、推進機構1の並進方向(走行方向)を設定する構成部で、
図2に示した主アームと操舵アーム板との相対位置を変更することで、旋回中の車輪に周期的なステアリング角を付与し、推進機構1を所要の方向に走行させるようにしたものである。なお、車輪346の駆動輪化の構造については後述する。
【0028】
図5は、偏心駆動部の機構を説明する斜視図である。
図6は、偏心駆動部の下部に設けられている駆動軸の回転駆動を説明する斜視図である。
【0029】
図5、
図6において、偏心駆動部20は、例えば直方体形状の枠体21と駆動軸22とを備えると共に、駆動軸22に回転力を付与する回転駆動部23、回転駆動部23を支持する基部24、基部24を水平面上で偏心させるスライド部25、及び枠体21の下面の一部分に敷設された、長孔261が形成された底板26を備える。
【0030】
スライド部25は、基部24の底面と枠体21の底面との間に配設された水平面上で全方位方向への移動を可能にする部材、例えば井桁状のリニアスライダを備えている。スライド部25は、
図5で示すように、Y方向と平行となる向きに配設された一対のリニアスライダ251と、X方向と平行となる向きに配設された一対のリニアスライダ252とを備えている。リニアスライダ251は、枠体21の底面に固設されたガイド部材251aと、ガイド部材251a上を摺動自在な移動部材251bとを備えており、移動部材251bの上面にはリニアスライダ252が固設されている。リニアスライダ252は、リニアスライダ251の移動部材251bの上面に固設されたガイド部材252aと、ガイド部材252a上を摺動自在な移動部材252bとを備えており、移動部材252bの上面は基部24の底面に固設されている。この結果、基部24は、枠体21に対して水平面上をXY方向、すなわち全方位に移動可能に構成されている。
【0031】
また、スライド部25は、駆動源を有しており、リニアスライダ251の移動部材251bをY方向に移動させるための駆動部253と、リニアスライダ252の移動部材252bをX方向に移動させるための駆動部254とを備えている。駆動部253,254はいずれも駆動力を発生する部材、例えばモータ253a,254aを備えている。モータ253aからの駆動力は、回動リンク構造253bを介してガイド部材252a(移動部材251b)をY方向に往復動させる。モータ254aからの駆動力は、回動リンク構造254bを介して移動部材252bをY方向に往復動させる。回動リンク構造は、
図5から判るように、モータの出力軸周りに回動する出力アームと、出力アームの先端に回動可能に設けられた伝達アームとから構成され、伝達アームの先端は、ユニバーサル構造を有してガイド部材に連結されている。これによって、モータの回転力が出力アーム、伝達アームを経由してガイド部材に確実に伝達され、基部24のXY方向への移動を可能にしている。
【0032】
図6において、回転駆動部23は、駆動軸22に回転力を付与する駆動源、例えばモータ230と、モータ230の回転力を駆動軸22に伝達する伝達機構としての、例えばギア群とを備える。ギア群は、本実施形態では、モータ出力軸230aに取り付けられた出力ギア230bに噛合するように配置された第1中継ギア部231から順番に第2中継ギア部232〜第4中継ギア部234を備える。第1中継ギア部231は回転軸231a、第1ギア231b、第2ギア231cを備える。第2中継ギア部232は回転軸232a、第1ギア232b、第2ギア232cを備える。第3中継ギア部233は回転軸233a、第1ギア233b、第2ギア233cを備える。第4中継ギア部234は回転軸234a、第1ギア234b、第2ギア234cを備える。
【0033】
そして、モータ230の回転力は、出力ギア230bから第1ギア231bに伝達され、次いで、第2ギア231cから第1ギア232bに伝達され、次いで、第2ギア232cから第1ギア233bに伝達され、次いで、第2ギア233cから第1ギア234bに伝達される。
【0034】
第4中継ギア部234まで伝達された回転力は、第2ギア234cから最終ギア237aに伝達される。これにより、駆動軸22は回転する。この場合、各ギアの比を予め調整設定しておくことで、駆動軸22を所定の速度比で回転させるようにすることができる。駆動軸22は、所要長を有している。駆動軸22には同心状に筒部27が配置されている。筒部27は、上端の鍔状部27aで基部24の下面に一体固定され、下端には所定径及び所定の歯数を有するギア27bが同心に設けられている。
【0035】
図5に戻って、無線指示器28は、偏心指示部材281、旋回速度指示部材282及び送信用のアンテナ283を備えている。偏心指示部材281は、例えばジョイスティック等で構成され、傾倒方向X,Y及び傾倒角度に応じて、モータ253a,254aの偏心方向及び偏心量に相当する信号が生成され、電波信号に変調されてアンテナ283から送信されるようになされている。一方、旋回速度指示部材282は、操作(スライド)量に応じて、モータ230の回転速度信号が生成され、アンテナ283から送信されるようになされている。
【0036】
枠体21の適所、本実施形態では基部24内の適所に駆動制御部29を備えている。駆動制御部29は、アンテナ283からの電波信号を受信するためのアンテナ291を備え、受信した信号から、モータ230、モータ253a,254aを駆動させる駆動制御信号を生成するものである。なお、旋回速度指示信号、偏心方向指示信号及び偏心量指示信号を電波信号に変調して伝送する形態に代えて、光や超音波を利用する近距離通信方式でもよいし、有線で伝送する方式でもよい。このように、遠隔式で旋回速度を指示したり、偏心量すなわち操舵方向を指示することで、操作が容易となる。
【0037】
図7は、偏心駆動部と走行部との連結構造の一例を示す側面断面図である。
図8は、走行部の概略構造とギアの配置とを示す概略上面図である。
図9は、1個の車輪部34について、その取付構造を説明する側面図である。
【0038】
まず、走行部30は、天板31と基盤32とが上下方向に所定の間隔を置いて同心状に配置され、その間にスライド部33が介設されている。
図8に示すように、天板31は、本実施形態では円盤形状を有し、一方、基盤32は、本実施形態では、周方向の120度毎に延設されたY字状を有する。基盤32の各周縁の所定箇所には、
図9に示すように車輪部34が取り付けられている。各車輪部34の形状は同一である。また、天板31と車輪部34との間には操舵リンク部35(
図10参照)が設けられている。
【0039】
なお、基盤32をY字状としたのは、操舵リンク部35が基盤32と位置的に干渉しないようにしたためであり、Y字状の他、干渉の回避し得る種々の形状が採用可能である。また、基盤32上には、
図9に示すように、駆動軸22の回転力を車輪部34に伝達する機構としての互いに噛み合うギア列36が配置されている。
【0040】
天板31は、
図2における操舵リンクアームNLとして機能している。天板31の中心には、所定径の軸受部311が突設され、内径側は円孔312とされている。偏心駆動部20と走行部30との組み付け(連結)時には、この軸受部311の円孔312に軸受21b(
図5参照)が嵌合され、連結軸O(
図7参照)とされる。操舵用の軸はこの軸受部311(すなわち円孔312)の中心であり、実体としての軸パーツが存在するわけではないが、この連結軸と駆動軸22との相対位置を変化させることで移動(操舵)を行う。
【0041】
駆動軸22の下端は、基盤32の中心に固定され、モータ230から伝達されてきた回転力を伝えている。一方、筒部27は、スライド板331の長孔331aを経由した適宜の位置、例えばスライド板331と基盤32の間を下端とし、ここに、所要径及び所定歯数のギア27bが固設されている。
【0042】
スライド部33は、所定形状、例えば略三角形のスライド板331と井桁状のリニアスライダ332〜336を有する。なお、スライド板331の径は所要径として設計可能であるが、天板31に形成された円孔312より大径である一方、周縁部の回転軌跡が操舵リンク部35の位置と干渉しないサイズであることが好ましい。
【0043】
スライド板331は、
図7に示すように、中心を通る長孔331aが形成されている。長孔331aに偏心駆動部20の筒部27が貫通するように走行部30と偏心駆動部20とが組み付けられる。長孔331aは筒部27を貫通させることで、スライド板331が天板31と基盤32に対してそれぞれ直交する向きにスライド(偏心)可能とするためのものであり、これによって天板31と基盤32に対して水平面内でそれぞれの回転軸の2次元的なずれを許容しながらも回転位相を保った供回り可能に設置されている。
【0044】
リニアスライダ332〜336は、ガイド部材332a〜336aと、ガイド部材332a〜336a上を摺動自在な移動部材332b〜336bとから構成されている(なお、
図7では、リニアスライダ333は見えておらず、リニアスライダ336は省略している。)。リニアスライダ332,333とは対となって水平方向で一の方向(
図7の左右方向)に向けられ、円孔312を挟んで並設されている。リニアスライダ334〜336は水平方向で前記一の方向と直交する他の方向(
図7の紙面奥行き方向)に向けられ、円孔312の周りの3箇所に分散配置されている。すなわち、
図7に示すように、リニアスライダ332,333等のガイド部材332a,333aはスライド板331の上面に固定され、移動部材332b,333bは天板31の下面に固定される。これによって、スライド板331は、天板31に対して一の方向に移動(偏心)可能となる。また、リニアスライダ334〜336のガイド部材334a〜336aは基盤32の上面に固定され、移動部材334b〜336b(なお、336bは見えていない。)はスライド板331の下面に固定される。これによって、基盤32は、スライド板331に対して一の方向に直交する他の方向へ移動(偏心)可能となる。このように、駆動軸22が連結軸Oに対して相対的に水平面上を一の方向及び他の方向に、すなわち合成方向として全方位方向に移動すると、これに応じて基盤32が連動して移動することとなる。
【0045】
また、
図8において、各ギア列36は、奇数個のギア、例えばギア361、ギア362、ギア363が順番に噛み合った状態で配列されている。最外周(ギア27bから見て最下流)のギア363は、後述するように操舵軸363aとして機能する。ギア27bとギア363とは歯数の等しい(同一の形状)ものが採用され、一方、ギア361,362はギア27bとの関係において、形状の異同は特に問わない。なお、本実施形態では、全て同一形状のギアを採用している。
【0046】
図9において、基盤32の頂点(周縁)部位には、車輪部34が設けられている。車輪部34は、内部に互いに方向の異なる3本の軸に支持された各斜歯ギアを備え、また各斜歯ギアの支持軸を軸支している。すなわち、車輪部34は、ギア363の操舵軸363aが基盤32を貫通して下方に延設され、基盤32の下部で、操舵軸363a周りに回動可能に支持されている。車輪部34は、操舵軸363aの下端側に所定のギア数を有する斜歯ギア341と、斜歯ギア341と水平方向で噛み合う斜歯ギア342と、斜歯ギア342を水平周りに軸支する軸343と、斜歯ギア342と斜め下方で噛み合う斜歯ギア344と、斜歯ギア344を所定の傾斜角を有して軸支する車輪軸345と、車輪軸345の下端に軸周りに回転する所要径の車輪346とを備えている。車輪346の径及びキャンバー角は所要値に設定されており、車輪346の床面との接触点は、操舵軸363aの直下と一致するように設定されている。
【0047】
斜歯ギア341、342、344の歯数の比は、本実施形態では、車輪346の半径を駆動軸22と操舵軸363aとの間の水平距離の1/2とするとき、2対1対1に設定されている。また、車輪346の半径を駆動軸22と操舵軸363aとの間の水平距離と一致させたときは、1対1対1に設定すればよい。一般には、斜歯ギア341、342、344の歯数の比は、車輪346の半径と駆動軸22と操舵軸363aとの間の水平距離の比(1/n)に対応させて、n対1対1とすればよい。このようにする理由を、
図10の説明の後で述べる。
【0048】
図10は、操舵軸を操舵する機構の一例を示す操舵リンク部を含む側面図である。操舵リンク部35は、ステアリング部として機能するもので、本実施形態では、リンク機構を構成するリニアスライダ351と回動軸352とを備えている。リニアスライダ351は、長尺のガイド部材351aとこのガイド部材351a上を摺動する移動部材351bとで構成されている。ガイド部材351aは、水平姿勢とされ、操舵軸363aの鉛直線と交差する向きにして、車輪部34に固設されている。回動軸352は、上部で天板31に回動可能に支持され、下部で移動部材351bの上部に回動可能に連結されている。
【0049】
上記構成において、連結軸Oが駆動軸22に対して偏心すると、基盤32の頂点が移動する。具体的には、天板31が相対的に移動する。この天板31と回動軸352とは、共にリンク機構を構成するリニアスライダ351の移動部材351bがガイド部材351aによって直線的に係合されているため、旋回に伴って操舵軸363aの回動量が変化することとなる。すなわち、連結軸Oが駆動軸22に対して偏心すると、基盤32が相対変位して旋回することで、リンク機構によって操舵軸363aの回転量(操舵量)が変化する。この操舵量によって、車輪346の接線方向が決まり、水平走行を行うことになる。
【0050】
また、リンク機構は、連結軸Oが駆動軸22に対して偏心していない状態で、リニアスライダ351の移動部材351bがガイド部材351a上であって、操舵軸363aから所定距離だけ、例えば後述する旋回方向に離間した位置に位置設定されるように予め設計されている。さらに、後述するように、走行部30は駆動軸22を介して回転駆動力を受けて所定の速度で旋回するようになっている。この結果、車輪部34の車輪は、
図1及び数3に示されるように、トロコイド曲線の幾何学的完全解に沿った動きを実現することとなる。
【0051】
さて、
図9において、基盤32は駆動軸22によって旋回される。また、ギア361〜363は、ギア27bとかみ合い、かつ基盤32の旋回によってギア27bの周囲を回転することとなる。この結果、車輪346はギア361〜363、斜歯ギア341、342、344、車輪軸345を経て回転駆動(駆動輪化)されることとなる。この結果、車輪は、基盤32の旋回に起因する床面との摩擦による従動回転力と駆動回転力を付与される。ここで、
図1に示すように、車輪346の回転速度は、駆動軸22の回転角速度ωに応じた操舵軸363aの速度vに対して、旋回動作に応じたステアリング操作に起因して速度vwのように変動分を有しているため、両者は一致していない。そこで、車輪346の速度vwの平均を操舵軸363aの速度vに可及的に一致させることで、回転動作が可能なレベルで実現している。また、車輪346を駆動させる系は、通常車両の4輪駆動のように過剰拘束系となり、車輪速度に該当する車輪軸の角速度が生み出されることで、機構上部が反動で逆回転することもなく、安定した直進を実現することができることとなる。
【0052】
次に、
図11を用いて、車輪346の回転の円滑性を検証する。
図11(a)に示すように、今回の条件では、W≒r、θ≒sinθ(θが充分小さい)を前提とする。まず、推進機構1における角速度の関係から、
ω−ωw=ω(r−b)/rが厳密に導かれる。
【0053】
ここで、θが充分に小さいことと、
図11(a)の幾何学的な関係から、
r−b≒a×cosωt
とする。これを上式に代入して、
ω−ωw≒(a/r)ωcosωt
とし、両辺を時間積分すると、
∫(ω−ωw)dt≒(a/r)sinωt
となる。一方、幾何学的に、
a×sinωt=b×sinθ
であるから、これを右辺に代入して、r≒bから、
∫(ω−ωw)dt≒(b/r)sinθ≒θ
となる。この結果、ωとωwを伝達すべき各回転軸の間の軸回転の誤差を角度θでもって埋めることが可能であることが示されたことになる。
【0054】
あるいは、角速度で表現すると、
dθ/dt≒ω−ωw
とも表される。すなわち、車輪346の半径をWとするとき、
図11(a)に示すように、
ωw=(b/W)ω
と見なすことができ、この結果、ステアリング角度の範囲を狭い範囲とすることで、また、各ギアの遊び範囲を考慮することで、車輪346を好適に駆動することが可能となる。
【0055】
また、
図11(b)は、横軸を車輪の回転量[rad]、縦軸を接地している車輪の実際の転がり量と車軸の駆動量との回転ずれ[θ−(ω−ωwの積分値)]/2π[rotate(回転)]としたの特性図である。この特性は他のパラメータによらずVm/Vdの比のみによって決定される。これは同機構においては偏心量aと主アーム半径rの比a/rに等しく、これは同時に同機構における主軸の回転角速度ωから推進速度Vmへの変速比に比例している。同図はこの比を0.1に設定した場合における、駆動軸と車輪の回転量のずれの特性図であり、最大変動差は、プラスマイナスで0.0006回転程度であり、この程度の速度変動差はギアの遊び範囲で吸収可能であり、機構的に実用上充分な性能を期待できる。
【0056】
以上のように、本推進機構1は、高い直進性が求められている直線的な高速移動には適用するよりも、小さな足元占有面積と低速での連続的な全方位速度制御を可能とし、階段等の凸部を登れる段差乗り越え能力を有するなど、その特性から歩行移動を行う人と共存するパーソナルモービルや対人サービスロボットの走行系として高い有用性を持つ機構であると期待される。特に、全方位への並進と回転において複合的な動きを求められる建機等の作業用車両への応用ではこの不整地走破性に高い価値があり、駆動輪化による不整地安定性によってその対応力は極めて大きくなる。また、建機や作業用車両への応用として考えた場合、特に軟弱砂地や軟泥地等の流動体に車輪が埋もれるために接地点は失わないが、摩擦係数が低くて接地点での駆動トルクが取れない等の条件、環境下ではトロコイド推進機構は効果的に機能する。これはトロコイド推進機構が、もともと車輪軸トルクによる推進ではなく、トロコイド軌道沿いに舵を切ることで推進しているためであり、旧来、船舶用全方位プロペラとして運用されていた特性をそのまま利用できる。その際には、車輪はプロペラ翼と同様に砂や泥を掻いて進むことになる。同様な理由で車輪側面を翼面とできるように板面化しておけば、水上推進も可能であると考えられる。
【0057】
また、本発明は、不整地走行時における車輪の軸拘束による滑落防止の点で効果が高い。また、この自由度数の過剰拘束性を活用すれば、パーソナルモービルとしての適用時にフットプリントを最小化する可能性を広げることにも繋げることができる。これは、車輪の駆動輪化によって、所要の高速で旋回させる等、転倒さえ防止できれば原理的には一輪車タイプでも並進運動が可能な拘束条件を得たものとなる。
【0058】
続いて、不整地対応能力を向上させるための他の方策として、サスペンション機構の向上が考えられる。
図12は、不整地対応機構としてサスペンション機構を備えたトロコイド推進機構を説明する図で、(a)は差動回転伝達機構の正面図、(b)はその側面図、(c)は差動回転伝達機構が採用された走行部の一部の構成図である。
【0059】
図12に示すトロコイド推進機構は、
図5〜
図7に示す偏心駆動部20と共通である一方、走行部30の一部において相違している。
図12に示す走行部30’は、車輪部34に代えて、差動回転伝達機構部37、38及びスライダ部39を有するサスペンション部を備えている。
【0060】
差動回転伝達機構部37、38及びスライダ部39は、本実施形態では、近似平行運動を実現するスコットラッセル近似平行運動(Scott Russell's parallel motion)の機構を適用したものである。すなわち、
図12(c)の適用例に示すように、軸374aから軸384aまでの寸法が、リンクを構成するアーム393のスライダ392上への回転軸393aから384aまでの寸法、及びそのアーム393の延長線上に設置された車輪346の下端点Pから384aまでの寸法に等しいとき、スライダ392上の回転軸393aを軸374aと同一高さ上で、軸374aに対して接離方向にスライド移動させると、車輪346の下端点Pを、矢印で示すように上下方向にのみ移動させることが可能となる。
【0061】
まず、差動回転伝達機構部37,38の構造と作用について説明する。なお、差動回転伝達機構部37と差動回転伝達機構部38とは同一構成であるので、ここでは差動回転伝達機構部37について説明する。なお、両機構部37,38は同一サイズでもよいし、取付箇所に応じた適宜のサイズが採用されることが好ましい。
【0062】
図12(a)に、その一例を示すように、差動回転伝達機構部37は、入力ギア371、リングギア372、差動ギア部373、回転反転ギア部374、傘歯ギア375,376を備えて構成されている。
【0063】
入力ギア371は、傘歯ギアであり、操舵軸363aの下部に一体的に取り付けられたもので、傘歯のリングギア372と直交する向きで噛合している。差動ギア部373は、公知のもので、リングギア372と同心の枠体を有し、この枠体内に左右側のサイドギアと上下側のピニオンギアとが交互に噛合された状態でそれぞれ軸支されている。なお、リングギア372と同心の軸373aは、図中、差動ギア部373の枠体内の左側のサイドギアとのみ連結されている。枠体内の右側のサイドギアからは出力軸373bが延設されている。
【0064】
回転反転ギア部374は、公知のもので、差動ギア部373と同一構造のものが採用され、かつ枠体の軸373b周りの水平軸周りの回転が規制部材374bによって規制されている。規制部材374bは、サスペンション部の適所であって操舵軸363aと同一の系内の適所に設けておけばよい。これにより、軸373bの回転方向と軸374aの回転方向とが反転する。2個の傘歯ギア375は互いに軸373bの同軸に同心で対向位置され、左側の傘歯ギア375は軸373aと連結され、右側の傘歯ギア375は軸374aと連結されている。左右の傘歯ギア375の間には傘歯ギア376が噛合されている。傘歯ギア376は左右の傘歯ギア375の差動分で旋回し、出力軸376aに伝達する。このように構成することで、入力軸363a、出力軸376aは傘ギア375の周方向の任意の向きに向ける(
図12(b)の矢印参照)ことが可能となり、かつ入力軸363aの回転速度が位相までも保持した状態で出力軸376aに伝達されることになる。この結果、
図12(c)に示すように、操舵軸363aの下部に差動回転伝達機構部37を設けることで、出力軸376aを鉛直面上で任意の向きに向けることが可能となる。
【0065】
出力軸376aの下部には差動回転伝達機構部38が同じ向きで設けられている。なお、差動回転伝達機構部38の各部の添え字は、差動回転伝達機構部37に対応して付している。上記構成により、差動回転伝達機構部38は、出力軸376aが入力軸として作用し、出力軸386aが車輪軸として作用する。そして、出力軸376aの回転状態がそのまま出力軸386aに伝達されることになる。この結果、操舵軸363aの回転動作が車輪軸(出力軸386a)にそのまま伝達され、車輪346は操舵軸363aの回転に同期して駆動されることになる。
【0066】
一方、走行部30’の基盤32の適所には、駆動軸22と操舵軸363aとを含む鉛直面上であって水平方向にガイド部材391(例えば水平面上で平行な2本のステーで構成)が掛け渡されている。スライダ392はガイド部材391に係合され、ガイド部材391の長手方向に沿って摺動可能にされている。スライダ392と軸384aとの間にはアーム393と釣り合いバネ394(本実施形態では、圧縮ばねとして作用する)とがそれぞれ掛け渡されている。スライダ392のアーム393の上端係止位置と釣り合いバネ394の上端係止位置とは水平方向で所定距離だけ離間されている。また、少なくともスライダ392のアーム393の上端係止位置は、前記スコットラッセル近似平行運動を実現するべく、出力軸374aと水平面上で一致するように設定されている。
【0067】
アーム393の下端と軸384aとの係合は、アーム393と車輪346との向き、例えば角度δを一定に保持する必要があることから、
図12(c)では詳細は示していないが、アーム393の下端を軸384aに軸支すると共に、例えば出力軸386a(車輪軸)に、軸方向への移動が規制された軸受を外嵌し、この軸受けにアーム393の下端が一体固定されるなどすればよい。また、釣り合いバネ394の下端も同様に、軸384aに係止さてもよいし、あるいは軸384aの近傍であって出力軸376a又は386aに係止されてもよい。
【0068】
このように構成することで、地面が整地の状態では、釣り合いバネ394によって、推進機構1の自重及び釣り合いバネ394のバネ力との均衡で車輪346の傾き、すなわちキャンバー角が設定されることになる。一方、3個の車輪の内の
図12(c)に示す車輪346が不整地(凸部)に乗り上げる場合、車輪346の下端点Pが上方向の力を受けることとなり、スライダ392が、
図12(c)中で左方向にスライドし、出力軸376a、386aが任意に旋回して、車輪346がより傾倒する(キャンバー角が大きくなる)。これにより、地面の凸部に対応したサスペンション機能が発揮される。逆に、
図12(c)の車輪346が地面の凹部に遭遇した場合、前記とは逆に、スライダ392が、
図12(c)中で右方向にスライドし、出力軸376a、386aが任意に旋回して、車輪346はより起立し(キャンバー角が小さくなる)、これにより地面の凹部に対応したサスペンション機能が発揮される。すなわち、不整地の凸凹面のそれぞれに応じて、所要のバネ圧で当接することとなる。
【0069】
なお、スライダ392のアーム393の上端係止位置と釣り合いバネ394の上端係止位置との水平方向距離を所定値に設定することで、キャンバー角の中心値、すなわち整地でのキャンバー角を設定することが可能となる。また、スライダ393をステアリングに応じてスライドさせてキャンバー角を可変設定する態様とすることも可能となる。
【0070】
このように、サスペンション機構を活用してのキャンバー角の設定方法として、以下の方法も採用可能である。例えば並進静止時のキャンバー角を90度に近い設計として運用し、段差の乗り越えや、不整地走行または大きなステアリング角を要する高速走行時にのみ、キャンバー角を小さくして車輪と車高を持ち上げるという構成が提案できる。これらの場合には,最悪キャンバー角を最適制御せずとも車高を上げてキャンバー角を小さく保つことの方がメリットは大きいと見なすことが出来る。このような態様を採用する場合,例えば不整地走行ではキャンバー角はステアリング角に同期させる制御に拘らず45度付近に保持するようにしてもよい。この考え方によれば,接地点の大きな上下動を吸収するためのサスペンション機能としてキャンバー角の変化を用いるという設計も可能となる。
【0071】
また、段差乗り越え時には接地点の段差乗り越えが繰り返し生じることになるため、推進機構の安定のためにもこうした高いサスペンション能力は必須である。この機構ではキャンバー角を制御すると、同時に接地点の上下動が生じることになるため、キャンバー角の激しい変化を伴うような大きなステアリング角を切る条件下での運用は難しい。その一方でサスペンションとして用いるならば、釣り合いバネの支持端点を可動にすることによって、キャンバー角の釣り合い姿勢を変化させて車高調整を行うことが可能な機構となっている。この機構を用いることで、車輪直径の8割近い接地点の上下動に対応することが可能なサスペンションとして用いることが可能になると考えられる。
【0072】
なお、本発明は以下の態様が採用可能である。
【0073】
(1)本実施形態では、車輪を円周方向に均等な3箇所に設けた態様としたが、均等であれば、3箇所以上の所定の複数箇所に設けてもよい。
【0074】
(2)本実施形態では、作用部材の一例としての車輪346の数を3個としたが、これに限定されず、4個以上の所定数でもよく、また逆に2個あるいは1個タイプでもよい。2個あるいは1個タイプの場合には、旋回速度をより高速化することで、姿勢の安定化が図れる。
【0075】
(3)本実施形態では、偏心駆動部20と走行部30の各構成部を組み付けた構成例で示したが、両者は別体として構成されたものに限定されず、両方の機構部分を備えた構造体として構成されたものでもよい。
【0076】
(4)本実施形態では、駆動軸22を無線指示器28からの指示信号に基づいて偏心制御したが、これに代えて、駆動軸22を操作者が直接操作する態様としてもよい。