【文献】
THE JOURNAL OF BIOLOGICAL CHEMISTRY,2009年 5月,vol.284 no.19,pp.13023−13032
(58)【調査した分野】(Int.Cl.,DB名)
目的タンパク質をコードするDNAおよび選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含むタンパク質発現ベクターを無血清培養で生存および増殖可能な浮遊性の哺乳動物細胞に導入し、一対のトランスポゾン配列の間に挿入された該遺伝子断片を該哺乳動物細胞の染色体に組み込んで該目的タンパク質を発現する哺乳動物細胞を得て、かつ該哺乳動物細胞を浮遊培養して該目的タンパク質を生産する方法であって、
上記浮遊性の哺乳動物細胞が、CHO細胞を浮遊培養に馴化した浮遊性のCHO細胞、PER.C6細胞、ラットミエローマ細胞YB2/3HL.P2.G11.16Ag.20(またはYB2/0ともいう)および浮遊培養に馴化した浮遊性のマウスミエローマ細胞NS0から選ばれる1であり、
上記一対のトランスポゾン配列が、一対のTol1トランスポゾン由来の塩基配列またはTol2トランスポゾン由来の塩基配列である、
方法。
目的タンパク質をコードするDNAおよび選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含むタンパク質発現ベクターを無血清培養で生存および増殖可能な浮遊性の哺乳動物細胞に導入し、一対のトランスポゾン配列の間に挿入された該遺伝子断片を該哺乳動物細胞の染色体に組み込んで該目的タンパク質を発現する浮遊性の哺乳動物細胞を得る方法であって、
上記浮遊性の哺乳動物細胞が、CHO細胞を浮遊培養に馴化した浮遊性のCHO細胞、PER.C6細胞、ラットミエローマ細胞YB2/3HL.P2.G11.16Ag.20(またはYB2/0ともいう)および浮遊培養に馴化した浮遊性のマウスミエローマ細胞NS0から選ばれる1であり、
上記一対のトランスポゾン配列が、一対のTol1トランスポゾン由来の塩基配列またはTol2トランスポゾン由来の塩基配列である、
方法。
CHO細胞がCHO−K1、CHO−K1SV、DUKXB11、CHO/DG44、Pro−3およびCHO−Sから選ばれる少なくとも1である請求項1〜3に記載の方法。
一対のTol2トランスポゾン由来の塩基配列が、配列番号2で表される塩基配列を含む塩基配列および配列番号3で表される塩基配列である請求項1〜8のいずれか1項に記載の方法。
一対のTol1トランスポゾン由来の塩基配列が、配列番号14で表される塩基配列および配列番号15で表される塩基配列である請求項1〜8のいずれか1項に記載の方法。
【背景技術】
【0002】
遺伝子組換え技術による外来タンパク質の生産は、医薬品および食品業界など様々な産業に利用されている。多くの場合、組換えタンパク質の生産は、目的タンパク質をコードする塩基配列を含む発現ベクターを、大腸菌、酵母、昆虫細胞、植物細胞および動物細胞などの宿主に導入し、該発現ベクターが染色体に組み込まれた形質転換株を選択し、さらに該細胞株を適切な培養条件で培養して目的タンパク質を発現させることにより行われている。
【0003】
しかし、外来タンパク質を効率よく生産できる宿主を開発するためには、目的とするタンパク質ごとに生産性の良い宿主細胞を選定することが必要であり、個々の宿主における外来タンパク質生産技術においてさらなる技術革新が望まれている。
【0004】
大腸菌などの細菌および酵母の系では、動物細胞とは異なり糖鎖修飾など翻訳後修飾が困難であることが多く、活性を有するタンパク質を生産する上で問題となる。
【0005】
昆虫細胞の系は、生産されたタンパク質がリン酸化、糖鎖の付加など翻訳後修飾を受け、本来の生理活性を保持したまま発現させることができるというメリットを有する。しかし、分泌タンパク質の糖鎖構造は哺乳類由来の細胞のものとは異なることから、医薬品用途とするには抗原性などが問題となる。
【0006】
また、昆虫細胞の系は外来遺伝子の導入に組換えウイルスを用いることから、安全性の点から、その不活性化や封じ込めが必要であるという課題がある。
【0007】
動物細胞の系では、ヒトをはじめとする高等動物由来のタンパク質に対し、リン酸化、糖鎖付加およびフォールディングなどの翻訳後修飾を、より生体でつくられるものと同じように施すことが可能である。この正確な翻訳後修飾は、タンパク質の本来有する生理活性を組換えタンパク質で再現するために必要なものであり、そのような生理活性が必要とされる医薬品などには、哺乳動物細胞を宿主としたタンパク質生産系がよく用いられている。
【0008】
しかしながら、動物細胞を宿主としたタンパク質発現系の生産性は一般に低く、導入遺伝子の安定性にも問題がある場合が多い。哺乳動物培養細胞を宿主としたタンパク質の生産性向上は、治療用医薬品や診断薬などの製造において非常に重要であるばかりでなく、それらの開発研究にも多いに寄与している。そのため、哺乳動物培養細胞、特にチャイニーズ・ハムスター卵巣細胞(CHO細胞)を宿主として、容易に高生産株の獲得を可能にする遺伝子発現系の開発は急務とされている。
【0009】
トランスポゾンは、染色体のひとつの遺伝子座から別の遺伝子座へ移動しうる転位性遺伝要素である。トランスポゾンは、分子生物学や遺伝学の研究において強力なツールであり、昆虫や線虫(例えば、Drosophila melanogasterまたはCaenorhabditis elegans)および植物において、変異導入、遺伝子トラッピングおよびトランスジェニック個体の作製などの目的として利用されている。しかし、このような技術は、哺乳動物細胞を含む脊椎動物では開発が遅れていた。
【0010】
ところが近年、脊椎動物においても活性のあるトランスポゾンが報告され、そのいくつかがマウスやヒトなどの哺乳動物細胞でも活性をもつことが確認された。代表的なものに、メダカからクローニングされたトランスポゾンTol1(特許文献1)、Tol2(非特許文献1)、サケ科魚類ゲノムに存在していた非自律性のトランスポゾンから再構築されたSleeping Beauty(非特許文献2)、カエル由来の人工トランスポゾンFrog prince(非特許文献3)および昆虫由来のトランスポゾンpiggyBac(非特許文献4)が挙げられる。
【0011】
これらのDNAトランスポゾンは、哺乳動物細胞のゲノムに新たな表現系を持ち込むための遺伝子導入ツールとして、変異導入、遺伝子トラッピング、トランスジェニック個体の作製および薬剤耐性タンパク質を発現させることなどに利用されるようになった(非特許文献5〜12)。
【0012】
昆虫においては、鱗翅目昆虫由来のトランスポゾンpiggyBacを用いて、外来遺伝子をカイコ染色体へ導入し、該外来遺伝子がコードするタンパクを発現させる方法が研究され、その技術を用いたタンパク質生産方法が開示されている(特許文献2)。
【0013】
しかし、発現させた目的タンパクの発現量が十分ではなく、かつ、カイコ全身に生産されるため、大量の夾雑タンパク質が存在する体液から発現させた外来タンパク質を高純度な形で回収するためには、高度な精製技術を必要とすることから、経済的に問題があった。
【0014】
また、メダカ由来Tol2トランスポゾンを用いて、哺乳動物細胞にG418耐性に関わるタンパク質を発現させた例が知られている(非特許文献12)。
【発明の概要】
【発明が解決しようとする課題】
【0017】
目的タンパク質を生産、解析するためには、哺乳動物由来の培養細胞を用いて目的タンパク質を安定的に高発現する細胞株を選択しなければならないが、目的タンパク質を生産する細胞の作製および培養には、多大な労力と時間を要する。
【0018】
また、これまでに、トランスポゾン配列を用いて哺乳動物細胞で目的タンパク質の発現を行うことは知られていたが、トランスポゾン配列を用いることで、タンパク質の生産系として利用できるような、目的タンパク質を高発現する細胞を作製すること、トランスポゾン配列を用いた目的タンパク質を高生産する哺乳動物細胞の作製方法および該細胞を用いたタンパク質の生産方法については何ら知られてない。
【0019】
上記のように哺乳動物培養細胞を用いて目的タンパク質を高発現するタンパク質生産系を効率的かつ短期間に作製し、目的のタンパク質を高生産することが従来求められていた。従って、本発明は、効率的に作製し得る目的タンパク質を高発現する細胞および該細胞を用いて目的タンパク質を生産する方法を提供することを目的とする。
【課題を解決するための手段】
【0020】
本発明者らは、上述した課題を解決するために鋭意研究を重ねた結果、目的タンパク質をコードするDNAおよび選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含むタンパク質発現ベクターを浮遊性の哺乳動物細胞に導入し、一対(二つ)のトランスポゾン配列の間に挿入された該遺伝子断片を該哺乳動物細胞の染色体に組み込むことにより、該目的タンパク質を高発現する哺乳動物細胞を効率的に作製できることを見出した。さらに、当該細胞を用いることにより、目的タンパク質を高効率で生産できることを見出し、本発明を完成させるに至った。
【0021】
すなわち、本発明は以下のとおりである。
1.目的タンパク質をコードするDNAおよび選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含むタンパク質発現ベクターを浮遊性の哺乳動物細胞に導入し、一対のトランスポゾン配列の間に挿入された該遺伝子断片を該哺乳動物細胞の染色体に組み込んで該目的タンパク質を発現する哺乳動物細胞を得て、かつ該哺乳動物細胞を浮遊培養して該目的タンパク質を生産する方法。
2.以下の工程(A)〜(C)を含むことを特徴とする、目的タンパク質の生産方法。
(A)以下の発現ベクター(a)および(b)を浮遊性の哺乳動物細胞に同時に導入する工程
(a)目的タンパク質をコードするDNAと選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含む発現ベクター
(b)トランスポゾン配列を認識し、かつ一対のトランスポゾン配列の間に挿入された遺伝子断片を染色体に転移させる活性を有するトランスポゼースをコードするDNAを含む発現ベクター
(B)工程(A)で導入した発現ベクター(b)によりトランスポゼースを一過性発現させて、一対のトランスポゾン配列の間に挿入された前記遺伝子断片を前記哺乳動物細胞の染色体に組み込み、目的タンパク質を発現する浮遊性の哺乳動物細胞を得る工程
(C)工程(B)で得られた目的タンパク質を発現する浮遊性の哺乳動物細胞を浮遊培養して、目的タンパク質を生産させる工程
3.目的タンパク質をコードするDNAおよび選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含むタンパク質発現ベクターを浮遊性の哺乳動物細胞に導入し、一対のトランスポゾン配列の間に挿入された該遺伝子断片を該哺乳動物細胞の染色体に組み込んで該目的タンパク質を発現する浮遊性の哺乳動物細胞を得る方法。
4.浮遊性の哺乳動物細胞が、無血清培養で生存および増殖可能な細胞である、前項1〜3のいずれか1項に記載の方法。
5.浮遊性の哺乳動物細胞が、CHO細胞を浮遊培養に馴化した浮遊性のCHO細胞、PER.C6細胞、ラットミエローマ細胞YB2/3HL.P2.G11.16Ag.20(またはYB2/0ともいう)および浮遊培養に馴化した浮遊性のマウスミエローマ細胞NS0から選ばれる少なくとも1である前項1〜4のいずれか1項に記載の方法。
6.CHO細胞がCHO−K1、CHO−K1SV、DUKXB11、CHO/DG44、Pro−3およびCHO−Sから選ばれる少なくとも1である前項5に記載の方法。
7.選択マーカー遺伝子がシクロヘキシミド耐性遺伝子である前項1〜6のいずれか1項に記載の方法。
8.シクロヘキシミド耐性遺伝子がヒトリボソームタンパク質L36aの変異体をコードする遺伝子である前項7に記載の方法。
9.変異体がヒトリボソームタンパク質L36aの54位のプロリンが他のアミノ酸に置換された変異体である前項8に記載の方法。
10.他のアミノ酸がグルタミンである前項9に記載の方法。
11.一対のトランスポゾン配列が哺乳動物細胞で機能する一対のDNA型トランスポゾン由来の塩基配列である前項1〜10のいずれか1項に記載の方法。
12.一対のDNA型トランスポゾン由来の塩基配列が、一対のTol1トランスポゾン由来の塩基配列またはTol2トランスポゾン由来の塩基配列である前項11に記載の方法。
13.一対のTol2トランスポゾン由来の塩基配列が、配列番号2で表される塩基配列を含む塩基配列および配列番号3で表される塩基配列である前項12に記載の方法。
14.一対のTol1トランスポゾン由来の塩基配列が、配列番号14で表される塩基配列および配列番号15で表される塩基配列である前項12に記載の方法。
15.目的タンパク質をコードするDNAおよび選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含むタンパク質発現ベクターが導入され、一対のトランスポゾン配列の間に挿入された該遺伝子断片が染色体に組み込まれ、且つ該目的タンパク質を生産する浮遊性の哺乳動物細胞。
16.目的タンパク質をコードするDNAと選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含む発現ベクター(a)、および該トランスポゾン配列を認識し、かつ一対のトランスポゾン配列の間に挿入された遺伝子断片を染色体に転移させる活性を有するトランスポゼース(転移酵素)をコードするDNAを含む発現ベクター(b)を同時に導入されることで、該一対のトランスポゾン配列の間に挿入された該遺伝子断片が染色体に組み込まれ、かつ該目的タンパク質を生産する浮遊性の哺乳動物細胞。
17.無血清培養で生存および増殖可能な浮遊性の哺乳動物細胞である、前項15または16に記載の細胞。
18.CHO細胞を浮遊培養に馴化した浮遊性のCHO細胞、PER.C6細胞、ラットミエローマ細胞YB2/3HL.P2.G11.16Ag.20(またはYB2/0ともいう)および浮遊培養に馴化した浮遊性のマウスミエローマ細胞NS0から選ばれる少なくとも1の浮遊性の哺乳動物細胞である前項15〜17のいずれか1項に記載の細胞。
19.CHO細胞がCHO−K1、CHO−K1SV、DUKXB11、CHO/DG44、Pro−3およびCHO−Sから選ばれる少なくとも1である前項18に記載の細胞。
20.選択マーカー遺伝子がシクロヘキシミド耐性遺伝子である前項15〜19のいずれか1項に記載の細胞。
21.シクロヘキシミド耐性遺伝子がヒトリボソームタンパク質L36aの変異体をコードする遺伝子である前項20に記載の細胞。
22.変異体がヒトリボソームタンパク質L36aの54位のプロリンが他のアミノ酸に置換された変異体である前項21に記載の細胞。
23.他のアミノ酸がグルタミンである前項22に記載の細胞。
24.一対のトランスポゾン配列が哺乳動物細胞で機能する一対のDNA型トランスポゾン由来の塩基配列である前項15〜23のいずれか1項に記載の細胞。
25.一対のDNA型トランスポゾン由来の塩基配列が、一対のTol1トランスポゾン由来の塩基配列またはTol2トランスポゾン由来の塩基配列である前項24に記載の細胞。
26.一対のTol2トランスポゾン由来の塩基配列が、配列番号2で表される塩基配列および配列番号3で表される塩基配列である前項25に記載の細胞。
27.一対のTol1トランスポゾン由来の塩基配列が、配列番号14で表される塩基配列および配列番号15で表される塩基配列である前項25に記載の細胞。
28.目的タンパク質をコードするDNAおよび選択マーカー遺伝子を含む遺伝子断片の両端に一対のトランスポゾン配列を含むタンパク質発現ベクター。
29.一対のトランスポゾン配列が一対のTol1トランスポゾン由来の塩基配列またはTol2トランスポゾン由来の塩基配列である前項28に記載のタンパク質発現ベクター。
30.一対のTol2トランスポゾン由来の塩基配列が、配列番号2で表される配列および配列番号3で表される塩基配列である前項29に記載のタンパク質発現ベクター。
31.一対のTol1トランスポゾン由来の配列が、配列番号14で表される塩基配列および配列番号15で表される塩基配列である前項29に記載のタンパク質発現ベクター。
【発明の効果】
【0022】
本発明のタンパク質の生産方法によれば、哺乳動物細胞を用いて目的タンパク質を効率よく生産することができる。また、本発明の細胞は、遺伝子組み換えタンパク質を高効率で生産するためのタンパク質生産細胞として使用することができる。
【発明を実施するための形態】
【0024】
本発明は、目的タンパク質をコードするDNAおよび選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含むタンパク質発現ベクターを浮遊性の哺乳動物細胞に導入し、一対(二つ)のトランスポゾン配列の間に挿入された該遺伝子断片を該哺乳動物細胞の染色体に組み込んで該目的タンパク質を発現する哺乳動物細胞を得て、かつ該哺乳動物細胞を浮遊培養して該目的タンパク質を生産する方法に関する。
【0025】
本発明の目的タンパク質を生産する方法としては、以下の工程(A)〜(C)を含む、目的タンパク質の生産方法を挙げることができる。
(A)以下の発現ベクター(a)および(b)を浮遊性の哺乳動物細胞に同時に導入する工程
(a)目的タンパク質をコードするDNAと選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含むタンパク質発現ベクター
(b)トランスポゾン配列を認識し、かつ一対のトランスポゾン配列の間に挿入された遺伝子断片を染色体に転移させる活性を有するトランスポゼースをコードするDNAを含むベクター
(B)工程(A)で導入した発現ベクター(b)によりトランスポゼースを一過性発現させて、一対のトランスポゾン配列の間に挿入された前記遺伝子断片を前記哺乳動物細胞の染色体に組込み、目的タンパク質を発現する浮遊性の哺乳動物細胞を得る工程
(C)工程(B)で得られた目的タンパク質を発現する浮遊性の哺乳動物細胞を浮遊培養して、目的タンパク質を生産させる工程
【0026】
また、本発明は、目的タンパク質をコードするDNAおよび選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含むタンパク質発現ベクターが導入され、一対のトランスポゾン配列の間に挿入された該遺伝子断片が染色体に組み込まれ、かつ該目的タンパク質を生産する浮遊性の哺乳動物細胞に関する。
【0027】
また、本発明の目的タンパク質を生産する細胞としては、目的タンパク質をコードするDNAと選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含むタンパク質発現ベクター(a)、および該トランスポゾン配列を認識し、かつ一対のトランスポゾン配列の間に挿入された遺伝子断片を染色体に転移させる活性を有するトランスポゼース(転移酵素)をコードするDNAを含むベクター(b)を同時に導入されることで、該一対のトランスポゾン配列の間に挿入された該遺伝子断片が染色体に組み込まれ、かつ該目的タンパク質を生産する浮遊性の哺乳動物細胞が挙げられる。
【0028】
本明細書において、「トランスポゾン」とは、転位性遺伝要素であり、一定の構造を保ったまま染色体上を、または染色体から別の染色体へ転位(transposition)する遺伝子単位を意味する。
【0029】
トランスポゾンは、遺伝子単位の両端に逆向きまたは同じ向きの繰り返しのトランスポゾン配列[Inverted Repeat Sequence(IR配列)またはTerminal Inverted Repeat Sequence(TIR配列)ともいう]および、該トランスポゾン配列を認識して、該トランスポゾン配列の間に存在する遺伝子を転移させるトランスポゼースをコードする塩基配列を含む。
【0030】
トランスポゾンから翻訳されたトランスポゼースは、トランスポゾンの両端のトランスポゾン配列を認識し、一対のトランスポゾン配列の間に挿入されたDNA断片を切り出し、転移先へ挿入することで、DNAの転移を行うことができる。
【0031】
本明細書において「トランスポゾン配列」とは、トランスポゼースによって認識されるトランスポゾンの塩基配列を意味し、IR配列またはTIR配列と同義である。該塩基配列を含むDNAは、トランスポゼースの作用により転移(ゲノム中のほかの位置に挿入)可能であれば、不完全な繰り返し部分を含んでいてもよく、トランスポゼースに特異的なトランスポゾン配列が存在する。
【0032】
本発明で用いるトランスポゾン配列は、DNA型トランスポゾン由来の塩基配列が好ましく、トランスポゼースにより認識される、哺乳動物細胞内で転位可能な天然または人工の一対のDNA型トランスポゾン由来の塩基配列がより好ましい。
【0033】
DNA型トランスポゾン由来の塩基配列としては、例えば、メダカ由来のTol1トランスポゾンおよびTol2トランスポゾン、サケ科魚類ゲノムに存在していた非自律性のトランスポゾンから再構築されたSleeping Beauty、カエル由来の人工トランスポゾンFrog Prince並びに昆虫由来のトランスポゾンPiggyBac由来の塩基配列が挙げられる。
【0034】
これらの中でも、配列表の配列番号6で表される塩基配列からなるメダカ由来Tol2トランスポゾンおよび配列表の配列番号13で表される塩基配列からなるメダカ由来Tol1トランスポゾン由来の塩基配列が好ましい。
【0035】
一対のTol2トランスポゾン由来の塩基配列としては、配列表の配列番号6で表されるTol2トランスポゾンの塩基配列の1番目から2229番目の塩基配列および4148番目から4682番目の塩基配列が挙げられる。
【0036】
一対のTol2トランスポゾン由来の塩基配列としては、より好ましくは、配列表の配列番号1で表されるTol2トランスポゾンの塩基配列における、1番目から200番目の塩基配列(配列番号2)(以下、「Tol2−L配列」と記載する)と、2285番目から2788番目の塩基配列(配列番号3)(以下、「Tol2−R配列」と記載する)が挙げられる。
【0037】
一対のTol1トランスポゾン由来のトランスポゾン配列としては、配列表の配列番号13で表されるTol1トランスポゾンの塩基配列の1番目から157番目の塩基配列を含む塩基配列および1748番目から1855番目の塩基配列が挙げられる。
【0038】
一対のTol1トランスポゾン由来のトランスポゾン配列としては、より好ましくは、配列表の配列番号13で表されるTol1トランスポゾンの塩基配列における、1番目から200番目の塩基配列(配列番号14)(以下、「Tol1−L配列」と記載する)と、1351番目から1855番目の塩基配列(配列番号15)の(以下、「Tol1−R配列」と記載する)が挙げられる。
【0039】
本発明に用いるトランスポゾン配列には、上記のトランスポゾン由来のトランスポゾン配列の部分配列を用いること、塩基配列の長さを調節すること、および塩基配列の付加、欠失または置換による改変を行うことにより、転移反応が制御されたトランスポゾン配列も含まれる。
【0040】
トランスポゾンの転移反応の制御は、トランスポゼースによるトランスポゾン配列の認識を促進または抑制することによって、転移反応を促進または抑制することができる。
【0041】
本明細書において「トランスポゼース」とは、トランスポゾン配列を有する塩基配列を認識して、該塩基配列の間に存在するDNAを染色体上、または染色体から別の染色体へ転位させる酵素を意味する。
【0042】
トランスポゼースとしては、例えば、メダカ由来のTol1およびTol2、サケ科魚類ゲノムに存在していた非自律性のトランスポゾンから再構築されたSleeping Beauty、カエル由来の人工トランスポゾンFrog Prince、昆虫由来のトランスポゾンPiggyBac由来の酵素を用いることができる。
【0043】
トランスポゼースは、天然型の酵素を用いてもいいし、トランスポゼースと同様の転位活性を保持していれば、その一部のアミノ酸が置換、欠失、挿入、および/または付加されていてもよい。トランスポゼースの酵素活性を制御することで、トランスポゾン配列の間に存在するDNAの転移反応を制御することができる。
【0044】
トランスポゼースと同様の転移活性を保持するかを解析するには、日本国特開2003−235575号公報により開示されている2−コンポーネント解析システムにより測定することができる。
【0045】
具体的には、別々の、Tol2トランスポゼースを欠損したTol2トランスポゾン(Tol2由来非自律性トランスポゾン)を含むプラスミドとTol2トランスポゼースを含むプラスミドを用いて、トランスポゼースの作用により非自律性Tol2エレメントが哺乳動物細胞の染色体内に転移、挿入し得るかを解析することができる。
【0046】
本明細書において「非自律性トランスポゾン」とは、トランスポゾン内に存在するトランスポゼースを欠損し、自律的には転移し得ないトランスポゾンをいう。非自律性トランスポゾンは、トランスポゼースのタンパク質、トランスポゼースのタンパク質をコードするmRNAまたはトランスポゼースのタンパク質をコードするDNAを細胞内に同時に存在させることで、非自律性トランスポゾンのトランスポゾン配列の間に挿入されたDNAを、宿主細胞の染色体内に転移させることができる。
【0047】
トランスポゼース遺伝子とは、トランスポゼースをコードする遺伝子を意味する。哺乳動物細胞での発現効率を向上させるために、該遺伝子の翻訳開始コドンATGの上流に、kozakのコンセンサス配列(Kozak, M.Nucleic Acids Res.,12,857−872(1984))や、リボソーム結合配列であるシャイン・ダルガルノ(Shine−Dalgarno)配列と開始コドンとの間を適当な距離(例えば6〜18塩基)に調節する配列が連結されてもよい。
【0048】
本発明の方法において、発現ベクター中の目的タンパク質をコードするDNAおよび選択マーカー遺伝子を含む遺伝子断片を宿主細胞の染色体に組み込むためには、目的タンパク質をコードするDNAと選択マーカー遺伝子を含む遺伝子断片の両端にトランスポゾン配列を含む発現ベクターを宿主細胞に導入し、該細胞内に導入された発現ベクターに含まれるトランスポゾン配列に対してトランスポゼースを作用させる。
【0049】
宿主細胞内に導入された発現ベクターに含まれるトランスポゾン配列に対してトランスポゼースを作用させるためには、トランスポゼースを該細胞内に注入してもよいし、トランスポゼースをコードするDNAを含む発現ベクターを、目的タンパク質をコードするDNAおよび選択マーカー遺伝子を含む発現ベクターと共に宿主細胞に導入してもよい。また、トランスポゼース遺伝子をコードするRNAを宿主細胞内に導入して、トランスポゼースを該細胞内で発現させても良い。
【0050】
発現ベクターとしては特に限定はなく、トランスポゼース遺伝子を組み込んだ発現ベクターを導入する宿主細胞、用途などに応じて、当業者において知られている発現ベクターから適宜選択して使用することができる。
【0051】
本発明の方法において、2以上のポリペプチドから構成されるタンパク質を生産する場合には、2以上のポリペプチドをコードするDNAを同一のまたは異なる発現ベクターに組み込み、当該発現ベクターを宿主細胞に導入することにより、該細胞の染色体に該DNAを組み込むことができる。
【0052】
トランスポゼースは、発現ベクターに組み込んで目的タンパク質と一緒に発現させてもいいし、発現ベクターとは別のベクターに組み込んで発現させてもいい。トランスポゼースは一過性に働かせてもいいし、継続的に働かせても良いが、安定した産生細胞を作製するためにはトランスポゼースを一過性に働かせることが望ましい。
【0053】
トランスポゼースを一過性に働かせる方法としては、例えば、目的タンパク質をコードするDNAを含む発現ベクターとは別の発現ベクターにトランスポゼースをコードするDNAを組み込み、両発現プラスミドを宿主細胞に同時に導入する方法が挙げられる。
【0054】
本明細書において「発現ベクター」とは、目的タンパク質を発現させるために、哺乳動物細胞を形質転換させるために用いる発現ベクターを意味する。本発明で用いる発現ベクターは、発現カセットの両側に少なくとも1対のトランスポゾン配列が存在する構造を有する。
【0055】
本明細書において「発現カセット」とは、目的タンパク質を発現させるために必要な遺伝子発現制御領域および目的タンパク質をコードする配列を有する核酸配列を意味する。該遺伝子発現制御領域としては、例えば、エンハンサー、プロモーターおよびターミネーターなどが挙げられる。発現カセットには、選択マーカー遺伝子を含んでいても良い。
【0056】
プロモーターとしては、哺乳動物細胞中で機能を発揮できるものであればいずれも用いることができる。例えば、サイトメガロウイルス(CMV)のIE(immediate early)遺伝子のプロモーター、SV40の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、SRαプロモーター、モロニーマウス白血病ウイルス(moloney murine leukemia virus)のプロモーターおよびエンハンサー等を挙げることができる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてもよい。
【0057】
「選択マーカー遺伝子」とは、プラスミドベクターが導入された細胞と該ベクターを欠く細胞とを区別するために使用することができる任意の他マーカー遺伝子を意味する。
【0058】
選択マーカー遺伝子としては、例えば、薬剤耐性遺伝子(ネオマイシン耐性遺伝子、DHFR遺伝子、ピューロマイシン耐性遺伝子、ブラストサイジン耐性遺伝子、ハイグロマイシン耐性遺伝子、シクロヘキシミド耐性遺伝子(日本国特開2002−262879号公報))並びに蛍光および生体発光マーカー遺伝子(緑色蛍光タンパクGFPなど)などを用いることができる。
【0059】
本発明において、好ましい選択マーカーは薬剤耐性遺伝子であり、特に好ましい選択マーカーはシクロヘキシミド耐性遺伝子である。更に、選択マーカー遺伝子の遺伝子改変を行うことで、選択マーカータンパク質の薬剤耐性能および発光能を変えることもできる。
【0060】
シクロヘキシミド(以下、CHXと略記する場合もある)はタンパク質合成阻害剤であり、CHX耐性遺伝子を選択マーカーとした利用例としては、酵母(Kondo K.J.Bacteriol.,177,24,7171−7177(1995))、動物細胞(日本国特開2002−262879号公報)の例が知られている。
【0061】
動物細胞では、配列表の配列番号5で表される塩基配列でコードされるヒトリボソームタンパク質サブユニットのL36aの54位のプロリンがグルタミンに置換された、配列表の配列番号7で表される塩基配列でコードされるタンパク質を発現させた形質転換株が、シクロヘキシミドに対する耐性を付与することが明らかとなっている。
【0062】
宿主細胞に、上記のトランスポゾン配列を含むタンパク質発現ベクター、トランスポゼースを発現するプラスミドベクターおよびRNAを導入する方法は、特に限定はなく、例えば、リン酸カルシウム法、エレクトロポレーション法、リポソーム法、ジーンガン法およびリポフェクション法などを用いることができる。
【0063】
トランスポゼースを直接タンパク質として導入する方法としては、例えば、マイクロインジェクション法およびエンドサイトーシスによる細胞への供給が挙げられる。遺伝子導入は、例えば、新遺伝子工学ハンドブック、村松正實・山本雅/編、羊土社、ISBN 9784897063737に記載の方法で実施できる。
【0064】
宿主細胞としては、継代培養が可能で安定的に目的タンパク質を発現することができる哺乳動物細胞が挙げられる。宿主細胞としては、例えば、PER.C6細胞、ヒト白血病細胞Namalwa細胞、サル細胞COS細胞、ラットミエローマ細胞YB2/3HL.P2.G11.16Ag.20(またはYB2/0ともいう)、マウスミエローマ細胞NS0、マウスミエローマ細胞SP2/0−Ag14、シリアンハムスター細胞BHK、HBT5637(日本国特開昭63−000299号公報)チャイニーズ・ハムスター卵巣細胞CHO細胞(Journal of Experimental Medicine,108,945(1958);Proc.Natl.Acad.Sci.USA,601275(1968);Genetics,55,513(1968);Chromosoma,41,129(1973);Methods in Cell Science,18,115(1996);Radiation Research,148,260(1997);Proc.Natl.Acad.Sci.USA,77,4216(1980);Proc.Natl.Acad.Sci.,60,1275(1968);Cell,6,121(1975);Molecular Cell Genetics, Appendix I,II(pp.883−900);)、CHO/DG44、CHO−K1(ATCC CCL−61)、DUKXB11(ATCC CCL−9096)、Pro−5(ATCC CCL−1781)、CHO−S(Life Technologies,Cat #11619)、Pro−3およびCHO細胞の亜株が挙げられる。
【0065】
また、上記の宿主細胞は、染色体DNAの改変および外来性遺伝子の導入等により、タンパク質の生産に適するように改変して、本発明のタンパク質の生産方法に用いることもできる。
【0066】
更に、宿主細胞として、生産する目的タンパク質に結合した糖鎖構造を制御するために、レクチン耐性を獲得したLec13[Somatic Cell and Molecular genetics,12,55(1986)]およびα1,6−フコース転移酵素遺伝子が欠損したCHO細胞(国際公開第05/35586号、国際公開第02/31140号)を用いることもできる。
【0067】
目的タンパク質は、本発明の方法により発現可能であれば、いかなるタンパク質でもよい。具体的には、例えば、ヒト血清タンパク質、ペプチドホルモン、増殖因子、サイトカイン、血液凝固因子、線溶系タンパク質および抗体並びに各種タンパク質の部分断片などが挙げられる。
【0068】
また、目的タンパク質として、例えば、キメラ抗体、ヒト化抗体、ヒト抗体などのモノクローナル抗体、Fc融合タンパク質およびアルブミン結合タンパク質並びに該部分断片などが好適に挙げられる。
【0069】
本発明の方法により生産されるモノクローナル抗体のエフェクター活性は、種々の方法で制御することができる。例えば、抗体のFc領域の297番目のアスパラギン(Asn)に結合するN結合複合型糖鎖の還元末端に存在するN−アセチルグルコサミン(GlcNAc)にα-1,6結合するフコース(コアフコースともいう)の量を制御する方法(国際公開第05/035586号、国際公開第02/31140号、国際公開第00/61739号)や、抗体のFc領域のアミノ酸残基を改変することで制御する方法などが知られている。本発明の方法により生産されるモノクローナル抗体にはいずれの方法を用いても、エフェクター活性を制御することができる。
【0070】
「エフェクター活性」とは、抗体のFc領域を介して引き起こされる抗体依存性の活性をいい、抗体依存性細胞傷害活性(ADCC活性)、補体依存性傷害活性(CDC活性)や、マクロファージや樹状細胞などの食細胞による抗体依存性ファゴサイトーシス(Antibody−dependent phagocytosis、ADP活性)などが知られている。
【0071】
また、本発明の方法により生産されるモノクローナル抗体のFc領域のN結合複合型糖鎖のコアフコースの含量を制御することで、抗体のエフェクター活性を増加または低下させることができる。
【0072】
抗体のFc領域に結合しているN結合複合型糖鎖に結合するフコースの含量を低下させる方法としては、α1,6−フコース転移酵素遺伝子が欠損したCHO細胞を用いて抗体を発現することで、フコースが結合していない抗体を取得することができる。フコースが結合していない抗体は高いADCC活性を有する。
【0073】
一方、抗体のFcに結合しているN結合複合型糖鎖に結合するフコースの含量を増加させる方法としては、α1,6−フコース転移酵素遺伝子を導入した宿主細胞を用いて抗体を発現させることで、フコースが結合している抗体を取得できる。フコースが結合している抗体は、フコースが結合していない抗体よりも低いADCC活性を有する。
【0074】
また、抗体のFc領域のアミノ酸残基を改変することでADCC活性やCDC活性を増加または低下させることができる。例えば、米国特許出願公開第2007/0148165号明細書に記載の抗体のFc領域のアミノ酸配列を用いることで、抗体のCDC活性を増加させることができる。
【0075】
また、米国特許第6,737,056号明細書、米国特許第7,297,775号明細書、や米国特許第7,317,091号明細書に記載のアミノ酸改変を行うことで、抗体のADCC活性またはCDC活性を、増加させることも低下させることもできる。
【0076】
本発明で用いられる「浮遊性の哺乳動物細胞」とは、マイクロビーズや組織培養用培養器(組織培養または接着培養容器などともいう)などの、培養細胞が接着し易くコーティングされた細胞培養支持体に接着せずに、培養液中に浮遊して生存および増殖できる細胞のことをいう。
【0077】
細胞培養支持体に細胞が接着しなければ、培養液中において1つの細胞の状態で生存、増殖してもよく、または細胞同士が複数凝集した細胞塊の状態で生存、増殖していても、いずれの状態でもよい。
【0078】
更に本発明で用いられる浮遊性の哺乳動物細胞としては、ウシ胎児血清(fetal calf serum、以下FCSと記す)などが含まれていない無血清培地中で、細胞培養支持体に接着せず培養液中に浮遊して生存および増殖できる細胞が好ましく、タンパク質が含まれていない無タンパク質培地中で、浮遊して生存および増殖できる哺乳動物細胞がより好ましい。
【0079】
組織培養用培養器としては、接着培養用のコーティングがなされているフラスコ、シャーレ等であればいかなる培養器でもよい。具体的には、例えば、市販されている組織培養フラスコ(グライナー社製)および接着培養フラスコ(住友ベークライト社製)などを用いることで、浮遊性の哺乳動物細胞であることが確認できる。
【0080】
本発明で用いられる浮遊性の哺乳動物細胞としては、元来浮遊性の性質を有する浮遊培養に馴化された細胞でもよいし、接着性の哺乳動物細胞を浮遊性の培養条件に馴化させた浮遊性の哺乳動物細胞いずれのものでもよい。
【0081】
元来浮遊性の性質を有する哺乳動物細胞としては、例えば、PER.C6細胞、ラットミエローマ細胞YB2/3HL.P2.G11.16Ag.20(またはYB2/0ともいう)およびCHO−S細胞(Invitrogen社製)などを挙げることができる。
【0082】
前記「接着性の哺乳動物細胞を浮遊性の培養条件に馴化させた浮遊性の哺乳動物細胞」は、Mol.Biotechnol.2000,15(3),249−57記載の方法や、以下に示す方法などで作製することができ、浮遊培養馴化前と同様、または浮遊培養馴化前より優れた増殖および生存性を示す細胞を確立することで作製することができる(J.Biotechnol.2007,130(3),282−90)。
【0083】
「浮遊培養馴化前と同等」とは、浮遊培養に馴化された細胞の生存率および増殖速度(倍化時間)などが、浮遊培養馴化前の細胞と比べて実質的に同じであることを意味する。
【0084】
本発明において接着性の哺乳動物細胞を浮遊性の培養条件に馴化させる方法としては、次の方法が挙げられる。血清含有の培地の血清含量を1/10に減らし、比較的高い細胞濃度で継代培養を繰り返し、哺乳動物細胞が生存および増殖できるようになった時点で、更に血清含量を斬減して、継代培養を繰り返す。この方法により、非血清下で生存、増殖可能な浮遊性の哺乳動物細胞を作製することができる。
【0085】
また、培養液中に適当な非イオン性界面活性剤Pluronic−F68などを添加して培養する方法によっても、浮遊性の哺乳動物細胞を作製することができる。
【0086】
浮遊性の培養条件に馴化させることにより浮遊性となる接着性の哺乳動物細胞としては、例えば、マウスミエローマ細胞NS0およびCHO細胞などが挙げられる。
【0087】
本発明において、浮遊性の哺乳動物細胞が有する性質としては、該細胞を2×10
5細胞/mLで浮遊培養した場合、3〜4日間後の培養終了時の細胞密度が、5×10
5細胞/mL以上であることが好ましく、8×10
5細胞/mL以上であることがより好ましく、1×10
6細胞/mL以上であることが特に好ましく、1.5×10
6細胞/mL以上であることが最も好ましい。
【0088】
また、本発明の浮遊性の哺乳動物細胞の倍化時間としては、48時間以下であることが好ましく、24時間以下がより好ましく、18時間以下が特に好ましく、11時間以下が最も好ましい。
【0089】
浮遊培地は、例えば、CD−CHO培地(Invitrogen社)、EX−CELL 325−PF培地(SAFC Biosciences社)およびSFM4CHO培地(HyClone社)などの市販の培地を用いることができる。また、哺乳動物細胞の培養に必要な糖類、アミノ酸類などを配合して調製することによっても得られる。
【0090】
浮遊性の哺乳動物細胞の培養は、浮遊培養が可能な培養容器を用いて、浮遊培養が可能な培養条件によって行うことができる。培養容器としては、例えば、細胞培養用の96穴プレート(コーニング社)、T−フラスコ(ベクトン・ディッキンソン社)および三角フラスコ(コーニング社)などを利用できる。
【0091】
培養条件としては、例えば、5% CO
2雰囲気中、培養温度37℃で静置培養などによって行うことができる。浮遊培養専用の培養設備であるWaveバイオリアクター(GEヘルスケアバイオサイエンス社)などの振とう培養装置などを用いることもできる。
【0092】
Waveバイオリアクター装置を用いた浮遊性の哺乳動物細胞の浮遊培養条件についてはGEヘルスケアバイオサイエンス社ホームページhttp://www.gelifesciences.co.jp/tech_support/manual/pdf/cellcult/wave_03_16.pdfに記載の方法で行うことができる。
【0093】
振とう培養の他、バイオリアクターなどの旋回撹拌装置による培養も可能である。バイオリアクターでの培養は、Cytotechnology(2006)52:199−207に記載の方法などで行うことができる。
【0094】
本発明において浮遊性の哺乳動物細胞以外の細胞株を用いる場合、上記のような方法で浮遊培養に馴化させた哺乳動物細胞株であり、かつ本発明のタンパク質生産方法を用いることができる細胞株であれば、いずれの細胞株も用いることができる。
【0095】
浮遊性の哺乳動物細胞で生産した目的タンパク質の精製は目的タンパク質を含む培養液や細胞破砕液から目的タンパク質と目的タンパク質以外の不純物を分離することによって行う。分離の方法は、例えば、遠心、透析、硫安沈殿、カラムクロマトグラフィーおよびフィルターなどを用い、目的タンパク質と不純物の物理化学的性質の違いやカラム単体への結合力の違いによって行うことができる。
【0096】
目的タンパク質を精製する方法は、例えば、タンパク質実験ノート(上)抽出・分離と組換えタンパク質の発現(羊土社、岡田雅人・宮崎香/編、ISBN 9784897069180)に記載の方法によって実施できる。
【0097】
本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。
【0098】
以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本発明をさらに具体的に説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。したがって、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、請求の範囲によってのみ限定される。
【0099】
以降に記述するクローニング等、遺伝子組換えに関する各種実験技術については、J.Sambrook,E.F.Frisch,T.Maniatis著;モレキュラー クローニング第2版(Molecular Cloning 2nd edition)及びFrederick M. Ausubelら編、Current Protocols発行、Current Protocols in Molecular Biology等に記載の遺伝子工学的方法に準じて行った。
【実施例】
【0100】
[実施例1]
抗ヒトインフルエンザM2抗体発現トランスポゾンベクターの作製
タンパク質発現用プラスミドベクターには、一対のTol2トランスポゾン配列の間に挿入された任意のヒト抗体遺伝子および薬剤耐性マーカー遺伝子を含む、哺乳動物細胞用遺伝子発現カセットを含むプラスミドを用いた。
【0101】
用いた遺伝子のDNAは既知の塩基配列をもとに、人工的に化学合成するか、またはその両端配列のプライマーを作製し、適当なDNAソースを鋳型としてPCRを行うことにより取得した。プライマーの端には後の遺伝子操作のために制限酵素切断部位を付加した。
【0102】
トランスポゾン配列は、日本国特開2003−235575号公報により開示されている非自律性Tol2トランスポゾンの塩基配列(配列番号1)のうち、1番目から200番目の塩基配列(Tol2−L配列)(配列番号2)と、2285番目から2788番目の塩基配列(Tol2−R配列)(配列番号3)の塩基配列を用いた。
【0103】
次の方法により、それぞれ一対のトランスポゾン配列を含む合成DNA断片を作製した(タカラバイオ株式会社製)。Tol2−R配列の5’末端および3’末端の両方に制限酵素NruIの認識配列を連結した塩基配列を含むDNA断片を作製した。また、Tol2−L配列の5’末端には制限酵素FseIの認識配列を連結し、3’末端には制限酵素AscIの認識配列を連結した塩基配列を含むDNA断片を作製した。
【0104】
次に、作製したTol2−R配列およびTol2−L配列を含むDNA断片を、抗ヒトインフルエンザM2抗体Z3G1のアミノ酸配列をコードしている塩基配列を含む発現ベクターN5LG1_M2_Z3ベクター(国際公開第06/061723号)に挿入した。
【0105】
抗体遺伝子発現カセットには、CMVエンハンサー/プロモーター制御下に、抗ヒトインフルエンザM2抗体Z3G1(ATCC Deposit No.PTA−5968;deposited March 13,2004,American Type Culture Collection, Manassas,VA,USA)のH鎖をコードする塩基配列(配列番号8)およびL鎖(配列番号9)をコードする塩基配列(配列番号10および配列番号11)が挿入されたN5LG1_M2_Z3ベクター(国際公開第06/061723号)を用いた。
【0106】
M5LG1_M2_Z3ベクターの、抗体遺伝子発現カセットおよび耐性マーカー遺伝子発現カセットを含む遺伝子断片の5’末端側に存在する制限酵素NruIサイトに、Tol2−R配列を含むDNA断片を挿入した。また、3’末端側に存在する制限酵素FseIおよびAscIサイトに、Tol2−L配列を含むDNA断片を挿入した。
【0107】
更にCMVエンハンサー/プロモーター制御下に、シクロヘキシミドに対する耐性遺伝子(ヒトリボソームタンパク質L36aの54位のプロリンがグルタミンに変異した遺伝子)をコードする塩基配列(配列番号5)が接続されたシクロヘキシミド耐性遺伝子発現カセットを、Tol2トランスポゾン配列が連結されたN5LG1_M2_Z3ベクターのFseI認識部位に挿入し、抗ヒトインフルエンザM2抗体トランスポゾン発現ベクターを構築した(
図1)。
【0108】
一方、トランスポゾン配列を含まないベクターを抗ヒトインフルエンザM2抗体発現ベクターと命名し、コントロールベクターとして使用した(
図2)。
【0109】
[実施例2]
トランスポゼース発現ベクターの作製
トランスポゼースは、目的とする抗体の発現ベクターとは独立した発現ベクターを用いて発現させた。すなわち、pCAGGSベクター(Gene 108,193−200,1991)のCAGGSプロモーターの下流にメダカ由来のTol2トランスポゼースをコードする遺伝子(配列番号4)を挿入し、発現ベクターとして利用した(
図3)。
【0110】
[実施例3]
哺乳動物細胞を用いた形質転換体の作製
(1)浮遊化CHO細胞の作製
10%血清(FCS)を添加したα−MEM培地(Invitrogen社)で培養した接着性CHO細胞を、トリプシン処理により剥離、回収し、新しい10% FCS添加α−MEM培地を用いて、5% CO
2インキュベータ内で、37℃にて振とう培養した。数日後、これらの細胞が増殖していることを確認したのち、5%FCS添加α−MEM培地に2×10
5個/mLの濃度で播種し、振とう培養を行った。
【0111】
さらに数日後、5% FCS添加α−MEM培地を用いて同様の播種作業を行った。最終的に、血清を含まないα−MEM培地を用いて継代、振とう培養を繰り返し、血清存在下での培養と同様の増殖能を有していることを確認して、浮遊培養馴化株を作製した。
【0112】
(2)抗体を生産するCHO細胞の作製
発現ベクターとして、実施例1および実施例2の抗ヒトインフルエンザM2抗体発現トランスポゾンベクター(以下、トランスポゾンベクターと略記する)およびTol2トランスポゼース発現ベクターpCAGGS−T2TP(
図3、Kawakami K&Noda T.Genetics.166,895−899(2004))を用いた。また、コントロールとしてトランスポゾン配列を有していない抗ヒトインフルエンザM2抗体発現ベクターを用いた。
【0113】
前記発現ベクターを浮遊培養に馴化したCHO−K1細胞(American Type Culture Collection Cat.No.CCL−61)またはHEK293細胞(Invitrogen社FreeStyle 293F細胞)に導入し、シクロヘキシミドに対する耐性クローンが得られる頻度を比較した。
【0114】
各細胞(4×10
6個)を400μLのPBSに懸濁し、抗ヒトインフルエンザM2抗体発現トランスポゾンベクター(10μg)とTol2トランスポゼース発現ベクター(25μg)を、エレクトロポレーション法により環状DNAのまま共導入した。なお、Tol2トランスポゼース発現ベクターは、Tol2トランスポゼースを一過性に発現させるため、宿主染色体への組込みを防ぐ目的で、環状DNAのまま導入した。
【0115】
また、コントロールとして、抗ヒトインフルエンザM2抗体発現ベクター(10μg)を、標準的なエレクトロポレーションによる遺伝子導入法に従い、制限酵素により直鎖状にした後、各細胞に導入した。
【0116】
エレクトロポレーションは、エレクトロポレーター(Gene Pulser XceII system(Bio−Rad社製)を用い、電圧300V、静電容量500μF、室温の条件で、gap幅4mmのキュベット(Bio−Rad社製)を使用して行った。
【0117】
エレクトロポレーションによる遺伝子導入後、各々の細胞について3枚の96穴プレートに播種し、CHO細胞はSAFC Biosciences社 EX−CELL 325−PF培地を、HEK293細胞はfreeStyle−293培地(Invitrogen社)を用いて、CO
2インキュベータ内で3日間培養した。
【0118】
次に、遺伝子導入後4日後の培地交換から、3μg/mLのシクロヘキシミドを加え、シクロヘキシミド存在下で培養し、1週間毎に培地交換を行いながら、3週間培養した。
【0119】
3週間培養後、シクロヘキシミド耐性コロニーが認められるウェル数をカウントした。その結果を表1および表2に示す。
【0120】
【表1】
【0121】
【表2】
【0122】
表1に示すように、浮遊性のCHO−K1細胞に、抗ヒトインフルエンザM2抗体発現トランスポゾンベクターまたは抗ヒトインフルエンザM2抗体発現ベクターを導入したところ、抗ヒトインフルエンザM2抗体発現ベクターを導入した細胞からは、他の細胞株と同様に、シクロヘキシミド耐性の形質転換株が取得されなかったが、抗ヒトインフルエンザM2抗体発現トランスポゾンベクター導入細胞からは、シクロヘキシミド耐性の形質転換株が高頻度で得られた。
【0123】
一方、表2に示すように、HEK293細胞に、抗ヒトインフルエンザM2抗体発現トランスポゾンベクターまたは抗ヒトインフルエンザM2抗体発現ベクターのいずれの発現ベクターを導入しても、シクロヘキシミド耐性の形質転換株は取得されなかった。
【0124】
これらの結果から、浮遊性の哺乳動物細胞において、一対のトランスポゾン配列の間に挿入された目的タンパク質をコードする遺伝子およびシクロヘキシミド耐性遺伝子が、効率よく宿主細胞の染色体内に導入されることがわかった。
【0125】
(3)浮遊性CHO細胞と接着性CHO細胞における抗体生産の検討
浮遊性CHO細胞または接着性CHO細胞における抗体生産効率を検討するために、各細胞株における抗体の産生量を検討した。浮遊性CHO細胞としては、浮遊培養に馴化した浮遊性CHO−K1細胞を用いた。また、接着性CHO細胞としては浮遊培養馴化前の接着性CHO−K1細胞を用いた。
【0126】
浮遊性CHO−K1細胞および接着性CHO−K1細胞に抗ヒトインフルエンザM2抗体発現トランスポゾンベクター(10μg)とTol2トランスポゼース発現ベクター(25μg)をそれぞれ、エレクトロポレーションした。その後、浮遊性CHO−K1細胞と接着性CHO−K1細胞を、各々3枚の96穴プレートに播種した。
【0127】
浮遊性CHO−K1細胞は浮遊細胞用培地(SAFC Biosciences社EX−CELL 325−PF)を用い、接着性CHO−K1細胞は10%血清を添加したα−MEM培地(Invitrogen社)を用いた。各細胞をCO
2インキュベータ内で3日間培養し、エレクトロポレーションから4日後の培地交換から、3μg/mLのシクロヘキシミド存在下で3週間培養した。この際、1週間毎に培地交換を行った。
【0128】
浮遊性CHO−K1細胞は1×10
6個の細胞を6穴プレートに播種し、CO
2インキュベータ内で3日間振とう培養し、培養上清を用いて抗ヒトインフルエンザM2抗体のタンパク質量をHPLCにて測定した。
【0129】
接着性CHO−K1細胞は6穴プレートでコンフルエントに到達した後(2×10
6個)培地交換し、3日間静置培養した後、培養上清を用いて抗体タンパク質量をHPLCにて測定した。
【0130】
培養上清中の抗体濃度の測定はFEMS Yeast Res.,7,(2007),1307−1316に記載の方法に従って行った。結果を
図4Aおよび
図4Bに示す。
【0131】
図4Aに示すように、浮遊培養に馴化したCHO−K1細胞では、極めて高い抗体発現量を示す細胞が多数得られた。一方、
図4Bに示すように、接着性のCHO−K1細胞では、HPLCの検出限界(5μg/mL)以下の発現量を示す細胞しか得られなかった。
【0132】
これらの結果から、トランスポゾンベクターを用いて目的タンパク質を発現させるためには、浮遊性の哺乳動物細胞を用いた場合に目的タンパク質を高発現できることを見出した。
【0133】
また、実施例1〜3の結果より、本発明の方法は、浮遊培養に馴化した浮遊性の哺乳動物細胞を用いて外来遺伝子を高発現する生産細胞を効率的に作製し、目的タンパク質を生産する新規な方法として利用し得ることがわかった。
【0134】
[実施例4]
抗ヒトインフルエンザM2抗体発現Tol1トランスポゾンベクターの作製
実施例1と同様に、タンパク質発現用プラスミドベクターには、一対のTol1トランスポゾン配列の間に挿入された任意のヒト抗体遺伝子および薬剤耐性マーカー遺伝子を含む、哺乳動物細胞用遺伝子発現カセットを含むプラスミドを用いた。
【0135】
用いた遺伝子のDNAは既知の配列情報をもとに、人工的に化学合成するか、またはその両端配列のプライマーを作製し、適当なDNAソースを鋳型としてPCRを行うことにより取得した。プライマーの端には後の遺伝子操作のために制限酵素切断部位を付加した。
【0136】
トランスポゾン配列は、配列表の配列番号13で表される非自律性Tol1トランスポゾンの塩基配列(国際公開第2008/072540号)のうち、1番目から200番目の塩基配列(Tol1−L配列)(配列番号14)と、1351番目から1855番目の塩基配列(Tol1−R配列)(配列番号15)を用いた。
【0137】
次の方法により、それぞれ一対のトランスポゾン配列を含む合成DNA断片を作製した。Tol1−R配列の5’末端および3’末端の両方に制限酵素NruIの認識配列を連結した塩基配列を含むDNA断片を作製した。また、Tol1−L配列の5’末端には制限酵素FseIの認識配列を連結し、3’末端には制限酵素AscIの認識配列を連結した塩基配列を含むDNA断片を作製した。
【0138】
次に、作製したTol1−R配列およびTol1−L配列を含むDNA断片を、N5LG1_M2_Z3ベクターに挿入した。N5LG1_M2_Z3ベクターの、抗体遺伝子発現カセットおよび耐性マーカー遺伝子発現カセットを含む遺伝子断片の5’末端側に存在する制限酵素NruIサイトに、Tol1−R配列を含むDNA断片を、3’末端側に存在する制限酵素FseIおよびAscIサイトに、Tol1−L配列を含むDNA断片を挿入した。
【0139】
更にCMVエンハンサー/プロモーター制御下に、シクロヘキシミドに対する耐性遺伝子(ヒトリボソームタンパク質L36aの54位のプロリンがグルタミンに変異した遺伝子)(配列番号7)が接続されたシクロヘキシミド耐性遺伝子発現カセットを、Tol1トランスポゾン配列が連結されたN5LG1_M2_Z3ベクターのFseI認識部位に挿入し、抗ヒトインフルエンザM2抗体Tol1トランスポゾン発現ベクターを構築した(
図5)。
【0140】
[実施例5]
Tol1トランスポゼース発現ベクターの作製
トランスポゼースは目的抗体の発現ベクターとは独立した発現ベクターを用いて発現させた。すなわち、CMVエンハンサー/プロモーター制御下に、配列表の配列番号16で表される塩基配列からなるメダカ由来のTol1トランスポゼースをコードするDNA断片が接続されたTol1トランスポゼース遺伝子発現カセットを、pBluescriptII SK(+)(Stratagene社製)に挿入し、発現ベクターpTol1aseとして利用した(
図6)。
【0141】
[実施例6]
(1)抗体を生産するCHO細胞の作製
発現ベクターとして、実施例4および実施例5の抗ヒトインフルエンザM2抗体発現Tol1トランスポゾンベクター(以下、Tol1トランスポゾンベクターと略記する)およびTol1トランスポゼース発現ベクターpTol1aseを用いた。また、細胞は実施例3(1)と同様にして浮遊培養に馴化したCHO−K1細胞を用いた。
【0142】
前記発現ベクターを浮遊培養に馴化したCHO−K1細胞に導入し、シクロヘキシミドに対する耐性クローンの得られる頻度を測定した。浮遊培養に馴化したCHO−K1細胞(4×10
6個)を400μLのPBSに懸濁し、抗ヒトインフルエンザM2抗体発現Tol1トランスポゾンベクター(10μg)とTol1トランスポゼース発現ベクター(50μg)を、エレクトロポレーション法により環状DNAのまま共導入した。Tol1トランスポゼース発現ベクターは、Tol1トランスポゼースを一過性に発現させるため、宿主染色体への組込みを防ぐ目的で、環状DNAのまま導入した。
【0143】
エレクトロポレーションは、エレクトロポレーター(Gene Pulser XceII system(Bio−Rad社製))を用い、電圧300V、静電容量500μF、室温の条件で、gap幅4mmのキュベット(Bio−Rad社製)を使用して行った。
【0144】
エレクトロポレーションによる遺伝子導入後、各々の細胞について2枚の96穴プレートに播種し、CHO細胞はEX−CELL 325−PF培地(SAFC Biosciences社)を用いて、CO
2インキュベータ内で3日間培養した。次に、遺伝子導入後4日後の培地交換から、3μg/mLのシクロヘキシミドを加え、シクロヘキシミド存在下で培養し、1週間毎に培地交換を行いながら、3週間培養した。
【0145】
3週間培養後、シクロヘキシミド耐性コロニーが認められるウェル数をカウントした。その結果を表3に示す。表3において実験1〜3は、それぞれ遺伝子導入を3度行った結果を示している。
【0146】
【表3】
【0147】
表3に示すように、浮遊性のCHO−K1細胞に、抗ヒトインフルエンザM2抗体発現Tol1トランスポゾンベクターを導入すると、抗ヒトインフルエンザM2抗体発現Tol2トランスポゾンベクターを導入した実施例3と同様に、シクロヘキシミド耐性の形質転換株が高頻度で得られた。
【0148】
この結果から、浮遊性の哺乳動物細胞において、Tol1トランスポゾンを使用しても2つのトランスポゾン配列の間に挿入された抗体遺伝子およびシクロヘキシミド耐性遺伝子が、効率よく宿主細胞の染色体内に導入されることがわかった。
【0149】
(2)浮遊性CHO細胞における抗体生産の検討
Tol1トランスポゾンを用いて、浮遊性CHO細胞における抗体生産効率を検討した。浮遊培養に馴化した浮遊性CHO−K1細胞に抗ヒトインフルエンザM2抗体発現トランスポゾンベクター(10μg)とTol1トランスポゼース発現ベクター(50μg)をエレクトロポレーションした。
【0150】
その後、各々2枚の96穴プレートに播種し、浮遊細胞用培地EX−CELL 325−PFを用いて、CO
2インキュベータ内で3日間培養した。エレクトロポレーションから4日後の培地交換から、3μg/mLのシクロヘキシミド存在下で3週間培養した。この際、1週間毎に培地交換を行った。
【0151】
浮遊性CHO−K1細胞は1×10
6個の細胞を6穴プレートに播種し、CO
2インキュベータ内で3日間振とう培養し、培養上清を用いて抗ヒトインフルエンザM2抗体のタンパク質量をHPLCにて測定した。
【0152】
培養上清中の抗体濃度の測定はFEMS Yeast Res.,7,(2007)、1307−1316に記載の方法に従って行った。結果を
図7に示す。
【0153】
図7に示すように、Tol1トランスポゾンを用いた場合でも、極めて高い抗体発現量を示す細胞が多数得られた。この結果から、トランスポゾン配列としてTol1トランスポゾン由来の塩基配列を用いた場合にも、Tol2トランスポゾン由来の塩基配列を用いた場合と同様に、目的タンパク質を高発現する浮遊性の哺乳動物細胞が得られることがわかった。
【0154】
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお、本出願は、2009年6月11日付けで出願された日本特許出願(特願2009−140626号)および2009年6月11日付けで出願された米国仮出願(61/186,138号)に基づいており、その全体が引用により援用される。