(58)【調査した分野】(Int.Cl.,DB名)
前記基準パターンは設計データに基づくパターン又は、シミュレーションパターン又は撮影した1枚若しくは複数のSEM像から作成したパターンであることを特徴とする請求項2記載の画像評価装置。
前記輪郭線生成パラメータ情報は前記輪郭線生成部で輪郭線を生成するための情報であり、輪郭線の数とその数に対応した輪郭線各々を生成するための情報であることを特徴とする請求項4記載の画像評価装置。
前記基準パターンは設計データに基づくパターン又は、シミュレーションパターン又は撮影した1枚若しくは複数のSEM像から作成したパターンであることを特徴とする請求項6記載の画像評価装置。
前記推定部で求めた露光条件に関する値をモニタ上に表示するモニタ手段を備え、前記SEM像の撮影位置に対応する位置に露光条件に関する値を表示することを特徴とする請求項7記載の画像評価装置。
【発明を実施するための形態】
【0020】
以下に説明する実施例にて例示する画像評価装置は、SEM撮影によるパター画像データからプロセス変動をモニタするためのパターン画像の評価手法、および装置に関するものである。また、その具体的な一例として、画像データからパターンの複数の輪郭線の2次元形状を用いてプロセス変動を検出する例を示す。
【0021】
また、画像データからパターンの複数の輪郭線の2次元形状を用いてプロセス変動を検出するためのモデル及び輪郭線の生成パラメータを求める例を示す。
【0022】
以下に、画像データからパターンの輪郭線の2次元形状を用いてプロセス変動を検出する機能を備えた装置、測定検査システムについて、図面を用いて説明する。より具体的には、測定装置の一種である測長用走査電子顕微鏡(Critical Dimension−Scanning Electron Microscope:CD−SEM)を含む装置、システムについて説明する。
【0023】
なお、以下の説明では、画像を形成する装置として荷電粒子線装置を例示すると共に、その一態様として、SEMを用いた例を説明するが、これに限られることはなく、例えば試料上にイオンビームを走査して画像を形成する集束イオンビーム(Focused Ion Beam:FIB)装置を荷電粒子線装置として採用するようにしても良い。但し、微細化が進むパターンを高精度に測定するためには、極めて高い倍率が要求されるため、一般的に分解能の面でFIB装置に勝るSEMを用いることが望ましい。
【0024】
図19は、複数の測定、或いは検査装置がネットワークに接続された測定、検査システムの概略説明図である。当該システムには、主に半導体ウエハやフォトマスク等のパターン寸法を測定するCD−SEM2401、試料に電子ビームを照射することによって、画像を取得し当該画像と予め登録されている参照画像との比較に基づいて欠陥を抽出する欠陥検査装置2402がネットワークに接続された構成となっている。また、ネットワークには、半導体デバイスの設計データ上で、測定位置や測定条件等を設定する条件設定装置2403、半導体デバイスの設計データと、半導体製造装置の製造条件等に基づいて、パターンの出来栄えをシミュレーションするシミュレーター2404、及び半導体デバイスのレイアウトデータや製造条件が登録された設計データが記憶される記憶媒体2405が接続されている。
【0025】
設計データは例えばGDSフォーマットやOASISフォーマットなどで表現されており、所定の形式にて記憶されている。なお、設計データは、設計データを表示するソフトウェアがそのフォーマット形式を表示でき、図形データとして取り扱うことができれば、その種類は問わない。また、記憶媒体2405は測定装置、検査装置の制御装置、或いは条件設定装置2403、シミュレーター2404内蔵するようにしても良い。なお、CD−SEM2401、及び欠陥検査装置2402、には、それぞれの制御装置が備えられ、各装置に必要な制御が行われるが、これらの制御装置に、上記シミュレーターの機能や測定条件等の設定機能を搭載するようにしても良い。
【0026】
SEMでは、電子源より放出される電子ビームが複数段のレンズにて集束されると共に、集束された電子ビームは走査偏向器によって、試料上を一次元的、或いは二次元的に走査される。
【0027】
電子ビームの走査によって試料より放出される二次電子(Secondary Electron:SE)或いは後方散乱電子(Backscattered Electron:BSE)は、検出器により検出され、前記走査偏向器の走査に同期して、フレームメモリ等の記憶媒体に記憶される。このフレームメモリに記憶されている画像信号は、制御装置内に搭載された演算装置によって積算される。また、走査偏向器による走査は任意の大きさ、位置、及び方向について可能である。
【0028】
以上のような制御等は、各SEMの制御装置にて行われ、電子ビームの走査の結果、得られた画像や信号は、通信回線ネットワークを介して条件設定装置2403に送られる。なお、本例では、SEMを制御する制御装置と、条件設定装置2403を別体のものとして、説明しているが、これに限られることはなく、条件設定装置2403にて装置の制御と測定処理を一括して行うようにしても良いし、各制御装置にて、SEMの制御と測定処理を併せて行うようにしても良い。
【0029】
また、上記条件設定装置2403或いは制御装置には、測定処理を実行するためのプログラムが記憶されており、当該プログラムに従って測定、或いは演算が行われる。
【0030】
また、条件設定装置2403は、SEMの動作を制御するプログラム(レシピ)を、半導体の設計データに基づいて作成する機能が備えられており、レシピ設定部として機能する。具体的には、設計データ、パターンの輪郭線データ、或いはシミュレーションが施された設計データ上で所望の測定点、オートフォーカス、オートスティグマ、アドレッシング点等のSEMにとって必要な処理を行うための位置等を設定し、当該設定に基づいて、SEMの試料ステージや偏向器等を自動制御するためのプログラムを作成する。また、後述するテンプレートの作成のために、設計データからテンプレートとなる領域の情報を抽出し、当該抽出情報に基づいてテンプレートを作成するプロセッサ、或いは汎用のプロセッサをテンプレートを作成させるプログラムが内蔵、或いは記憶されている。
【0031】
図20は、走査電子顕微鏡の概略構成図である。電子源2501から引出電極2502によって引き出され、図示しない加速電極によって加速された電子ビーム2503は、集束レンズの一形態であるコンデンサレンズ2504によって、絞られた後に、走査偏向器2505により、試料2509上を一次元的、或いは二次元的に走査される。電子ビーム2503は試料台2508に内蔵された電極に印加された負電圧により減速されると共に、対物レンズ2506のレンズ作用によって集束されて試料2509上に照射される。
【0032】
電子ビーム2503が試料2509に照射されると、当該照射個所から二次電子、及び後方散乱電子のような電子2510が放出される。放出された電子2510は、試料に印加される負電圧に基づく加速作用によって、電子源方向に加速され、変換電極2512に衝突し、二次電子2511を生じさせる。変換電極2512から放出された二次電子2511は、検出器2513によって捕捉され、捕捉された二次電子量によって、検出器2513の出力Iが変化する。この出力Iに応じて図示しない表示装置の輝度が変化する。例えば二次元像を形成する場合には、走査偏向器2505への偏向信号と、検出器2513の出力Iとの同期をとることで、走査領域の画像を形成する。また、
図20に例示する走査電子顕微鏡には、電子ビームの走査領域を移動する偏向器(図示せず)が備えられている。
【0033】
なお、
図20の例では試料から放出された電子を変換電極にて一端変換して検出する例について説明しているが、無論このような構成に限られることはなく、例えば加速された電子の軌道上に、電子倍像管や検出器の検出面を配置するような構成とすることも可能である。制御装置2514は、走査電子顕微鏡の各構成を制御すると共に、検出された電子に基づいて画像を形成する機能や、ラインプロファイルと呼ばれる検出電子の強度分布に基づいて、試料上に形成されたパターンのパターン幅を測定する機能を備えている。
【0034】
次に、画像認識を行うための画像評価装置1の一態様を説明する。画像評価装置1は、制御装置2514内に内蔵、或いは画像処理を内蔵された演算装置にて実行することも可能であるし、ネットワークを経由して、外部の演算装置(例えば条件設定装置2403)にて画像評価を実行することも可能である。
【実施例1】
【0035】
図1(a)はSEM画像と露光条件の関係を求めるモデルの作成とそれに用いる輪郭線生成パラメータを出力する画像評価装置のモデル作成部1の一例を説明する図である。
【0036】
予めショット(1回の露光単位)ごとに露光条件(フォーカス、露光量)を変えてパターンを焼き付けたFEM(Focus Exposure Matrix)ウエハをSEMを用いて撮影し、その撮影したウエハ上の位置により、どの露光条件のショットかの対応がとれるので、この情報を露光条件情報30とする。
図1(a)では、それら複数の異なる露光条件(フォーカス、露光量)情報30と撮影したSEM画像31を用いる。また、パターンが崩れているようなモデル作成に適さないSEM画像は予め除いておく必要がある。
【0037】
輪郭線生成部11ではSEM画像31から輪郭線生成パラメータ32に基づいて複数の輪郭線を生成する。輪郭線生成パラメータ32は輪郭線生成部11で生成する輪郭線の数とその各々の輪郭線を生成するためのパラメータの情報である。
【0038】
輪郭線生成部11で生成した複数の輪郭線のデータを用いてモデル生成部12で特徴量を求め、露光条件(フォーカス、ドーズ)の情報に対応させ、特徴量と露光条件の関係を示すモデルを作成する。モデル生成部12で作成したモデルを用いて評価部13でモデルの評価を行う。
【0039】
モデルを作成する際、露光条件によるパターンの側壁の変化を捉えるのに適した複数の輪郭線を生成するパラメータを求めることが重要になる。なぜなら、プロセス変動により起こる上部の丸まりや下部の裾引きの形状変化は、パターン形状やパターン間隔の大小、感光体の材質や膜厚等によって、様々であり、側壁のどの高さのポイント(高さ位置)で見るかによって変化の大きさが変わる。
図13にフォーカスによりパターン側壁の変化の例を示す。
図13(a)の例ではフォーカスがF1,F2,F3と変わると感光体の上部が縮んで感光体の上部PAの点が右に移動していくが、感光体の下部PBの点はあまり変化しない。
【0040】
図13(b)の例ではフォーカスがF1,F2,F3と変わると感光体の上部PAの点は変化が小さいが、感光体の下部が縮んで感光体の下部PBの点が左に移動していく。
【0041】
図13(c)の例ではフォーカスがF1,F2,F3と変わると感光体の上部PAの点、感光体の下部PBの点は変化が小さいが、感光体の上部PAと下部PBの間のPC点では感光体が縮んで右に移動していく。
【0042】
また、輪郭線の閾値とパターン側壁の関係について
図14に示す。これはホールパターンであり、(a)は(b)のSEM画像のiラインのパターン側壁部の断面である。SEM画像では(b)に示すようにパターンの形状がホワイトバンドとして現れる。ホワイトバンドはパターンをSEMで撮影する際、パターン側壁で反射する2次電子の量が増えて、輝度が高くなり、パターン形状に沿って白い帯のように現れる。このホワイトバンドはパターン側壁の断面の傾きが最も大きい個所がプロファイル(c)のホワイトバンドの輝度のピークの位置Ppに相当する。また、パターン上部PAと下部PBは、ホワイトバンドの輝度のプロファイルの山の両端の裾野Pa、Pbに相当する。ホワイトバンドの両端のどちらがパターンの上部と下部かは、パターンの内側若しくは外側が凹か凸か等の情報を用いれば判る。
【0043】
ホワイトバンドの両端を内側と外側として、ここではホールパターンなのでホワイトバンドの内側の円は凹で下部に相当する。逆にホワイトバンドの外側の円は上部に相当する。このように輝度のプロファイルからパターンの上部や下部、またその間の位置等を捉えることができる。このプロファイルから輪郭線を生成する際、例えば、ホワイトバンドのピークを100%としてホワイトバンドの内側(ピーク位置の右側)50%の位置を生成する輪郭線の点とする。輝度のプロファイルから同様にパターン形状に沿ってそれぞれのホワイトバンドの内側(ピーク位置の右側)50%の位置の点を結んで作成した線を内側、50%で作成した輪郭線とする。例えば50%以外にも30%、70%、90%の4つの点を用いて、同様に4つの輪郭線を作成することができる。
【0044】
その場合、輪郭線を生成するパラメータとして例えば、“内側、th(閾値)30、th(閾値)50、th(閾値)70、th(閾値)90”と設定し、ピークを100%としてホワイトバンドの外側(ピーク位置の左側)50%の位置で同様に輪郭線を作成する場合は“外側、閾値50”と設定することが考えられる。また、輪郭線生成パラメータ32の輪郭線の本数分の各の輪郭線を生成するパラメータはこの閾値の情報である。
【0045】
上記のようにパターン側壁の高さ位置の情報を含むホワイトバンドのプロファイルを用いて、パターン側壁の高さ位置相当する任意の閾値で輪郭線を作成する。
【0046】
パターン側壁の変化が殆ど無いと、プロセス変動を捉えることはできない。逆に変化の大きい高さ位置を求めることができれば、プロセス変動を精度よく捉えることができると考える。また、パターン側壁の変化の大きい高さ位置を見ても高さ位置が1点だとフォーカスのベスト位置から対象的に変化が同じになり、フォーカスを推定する際のプラスかマイナスの符号の判別ができない。また、高さ位置が2点では曲線的な形状の変化は捉えられないため、精度の良い判別は難しい。そこで、3点以上の高さ位置で見て、曲線的な形状の変化が大きく捉えられるそれぞれの高さ位置を求めることを考えた。これにより、上部の丸まりや下部の裾引きの曲線的な形状変化の大きい個所を捉えることができ、フォーカスを推定する際も精度のよい符号の判別及び露光条件の推定が可能となる。
【0047】
輪郭線2本による2点を用いて変化を求める場合と、輪郭線3本による3点を用いて変化を求める場合の違いについて説明する。
【0048】
例えば、輪郭線2本による2点をA点とB点とした場合、この2点では、A−B間の1つの変化しか捉えられないが、輪郭線3本によるA,B,Cの3点あれば、A−B間,B−C間,A−C間の3つの変化を、つまり複数個所の変化を捉える事が出来る。ちなみに、輪郭線4本でA,B,C,Dの4点あればA−B間,B−C間,C−D間,A−C間,A−D間,B−D間の6つの変化を捉える事が出来る。
【0049】
フォーカスによって変化が見えるレジストの高さ位置が変わると、2本の輪郭線による2点から得られる1つの変化量だけを用いてもフォーカス値を精度よく求めることは難しい。
【0050】
局所的な変化が1か所でなく、2か所、複数個所で起きる場合、2点では1つの変化量でしか捉えられないため、1か所の変化のみを捉えるか、若しくは、複数の変化を1つに纏めて捉えることしかできない。例えば、フォーカスのプラス側ではA点付近が変化し、マイナス側ではB点付近の変化が大きいとすると、輪郭線2本による2点を用いて変化を求める場合は、A点付近か、B点付近のどちらかの変化のみを求めるか、若しくは、A点付近とB点付近の両方を挟んで変化を求めるしかない。両方を含む場合、A点付近とB点付近のどちらが変化したのか分からない。変化の方向が逆の場合も有る可能性もありえる。しかし、輪郭線3本による3点を用いることで、A点付近、B点付近のどちらかの変化も捉えることが可能となり、3つの変化量からマイナス側の推定ができ、精度の向上が期待できる。さらに、4つの輪郭線での4点を用いると6つの変化を捉えることができ、より複数のレジストの高さ位置の変化を捉えることができる。また、1つの変化量ではその絶対値のみであるが、3つの変化量を用いれば、それぞれの絶対値だけでなく、相対値、差分値の変化量も用いることが可能となる。
【0051】
以上、3つ以上の輪郭線を用いることで、複数のレジストの高さ位置での変化量を求めることが可能となり、フォーカス値の推定精度が向上する。ただし、あまり多くの輪郭線を用いると処理時間がかかり、実用的でないため、10本以内で充分と考える。また、本数が多ければ、閾値を調整しなくても、固定の閾値でいいと考えられる。また、処理時間の問題で、輪郭線の本数が少ない場合は、フォーカスにより変化するレジストの高さ位置を求めておくことが有効と考える。例えば、予め、多くの異なるレジストの高さ位置の閾値で作成した輪郭線を用いて、フォーカスにより変化量の大きい点間のそれぞれの閾値を調べておき、実際に評価する際は、選んだ閾値での輪郭線を用いることが考えられる。
【0052】
パターン側壁を複数の高さ位置で見た場合に、形状の変化が大きく捉えられるそれぞれの高さ位置を求める際、特徴量の取り方やモデルにより、どの高さ位置がよいか判断するのが難しいため、結果的に得られたモデルを評価部13で評価することで判断する。つまり、モデルの評価が良い輪郭線生成パラメータ32は露光条件を求めるモデルに有効な特徴をより現す輪郭線を生成するパラメータであり、また、パターン側壁の形状変化をより捉える輪郭線を生成するパラメータと考える。
【0053】
そのため、複数の輪郭線生成パラメータ32を用いて、上記処理により複数のモデルを作成し、評価部13で評価したモデルの当てはまりの評価での最も評価値の高いモデル34及び輪郭線生成パラメータ35を出力する。
【0054】
これにより、パターン形状やパターン間隔の大小、感光体の材質や膜厚等によって、様々なパターン側壁の変化に対応できる輪郭線生成パラメータとモデルを生成することが可能となる。
【0055】
図11(a)に複数の輪郭線生成パラメータの一例を示す。
図11(a)のように輪郭線生成パラメータ32は輪郭線数とその輪郭線数分の高さ位置(閾値)の情報であり、パターン側壁の上部か下部かを示す情報、例えばパターンのホワイトバンドの内側、外側に関する情報やパターンの凹凸に関する情報も加えてもよく、1行ごとに1つの輪郭線生成パラメータを示し、複数行のリストにして、上から順に処理することが考えられる。また、
図11(b)のように輪郭線の数は明示しなくても、高さ位置(閾値)の数の情報から輪郭線の数を判定できるので、輪郭線を生成する複数個の高さ位置(閾値)の情報であってもよい。
【0056】
図2に輪郭線生成部の実施例を示す。輪郭線生成部11はSEM画像31に対して輪郭線生成パラメータ32に基づいて複数の輪郭線データ11aを生成する。
【0057】
輪郭線生成パラメータ32の生成する輪郭線の本数、例えばn本であれば、n個の輪郭線作成部1101〜11nにそれぞれの輪郭線を生成するパラメータを読み込む。そしてSEM像から輪郭線作成部1101〜11nでn個の輪郭線を生成する。生成した輪郭線データは輪郭線記憶部1100に記憶しておいてもよい。ここでは輪郭線作成部をn個用いているが、輪郭線作成部を1個にしてn回作成してもよい。
【0058】
図3にモデル生成部の実施例を示す。輪郭線生成部11で生成した輪郭線データから特徴量を求めて、Focus値、Dose値情報と特徴量との関係を示すモデルを作成する。
【0059】
特徴量算出部121では輪郭線データと基準パターンの位置合わせを行い、輪郭線の各画素とそれに対応する基準パターンの画素位置の距離を求める。輪郭線データと基準パターンの位置合わせは輪郭線データと基準パターンを画像化し、それぞれを膨張処理し、正規化相関を用いたマッチング処理を行い位置合わせする。また、画像化した後に画像の重心を求めて重心位置が合うように位置合わせを行うことも考えられる。これに限らず、公知のマッチング技術で輪郭線データと基準パターンの位置合わせを行うことができる。また、基準パターンについては、設計データでも良いし、シミュレーションデータでも良いし、1枚若しくは複数のSEM像から作成した画像データや輪郭線データでも良い。また、輪郭線生成部11で生成した複数の輪郭線データの中の1つを基準パターンとしても良い。位置合わせを行った後の輪郭線の画素と基準パターンの画素との対応付けは、輪郭線の画素を基準にして基準パターンの各画素の中で最も距離の近い画素を対応する基準パターンの画素とし、その対応する画素間の距離を求める。輪郭線の全ての画素において対応する基準パターンの画素との距離を求め、全画素で求めた距離の統計量、例えば平均値や分散値等を求めて特徴量とする。全画素でなくても複数の画素で求めてもよい。また、特徴量は複数でもよい。また、この特徴量はそれぞれ輪郭線毎に求める。対応付けはここでは輪郭線の画素を基準にして求めたが、基準パターンの画素を基準にして求めてもよい。また、ラインエッジラフネスは露光条件により変化することが知られており、ラインエッジラフネスは周期性が有るため、フーリエ変換(FFT)等の空間周波数を求めて、ラインエッジラフネスの周期性を示す特徴量を用いて、フォーカス値を求めることも考えられる。
【0060】
特徴量算出部121で求めた輪郭線毎の特徴量と、露光条件(Focus値、Dose値)情報30を用いてモデル化部122でモデルを作成する。モデルは回帰式を求めて作成してもよいし、線形計画法を用いて求めてもよい。例えば回帰式では、特徴量A1、A2、…Anに、それぞれ重み係数X1、X2、…Xnの線形和で露光条件Yを表すことができる。
【0061】
Y=X1A1+X2A2+・・・XnAn+b
この場合、モデルは各特徴量の重み係数X1、X2、…Xn、bの値となる。図示しないが、モデル化部122にメモリ等の記憶部を設けておき、露光条件の情報とSEM像の輪郭線から得た特徴量は記憶しておく。
【0062】
図4に評価部の実施例を示す。
【0063】
評価部13ではモデル作成部1で求めた複数のモデルについて評価を行い、評価値に基づいてその中から最も良いモデルと輪郭線生成パラメータを選出する。
【0064】
モデル評価部131ではモデルの当てはまりを評価する。当てはまりの評価には例えば、自由度調整済決定係数を求めて当てはまりの評価値としてもよい。また、赤池情報量基準(AIC)の評価基準に基づいて評価値を決めてもよいし、その他の公知技術を用いても良い。モデル評価部131で求めた評価値及びモデルと輪郭線生成パラメータを記憶/選択部132で記憶し、記憶した複数のモデル評価値の中から評価値の良いモデル34と輪郭線生成パラメータ35を出力する。また、輪郭線の数を生成する処理時間がかかるため、評価値はモデルの当てはまりだけでなく、輪郭線の数が増えるに合わせて評価値を下げるようにして、同じ評価値であれば用いる輪郭線の数が小さい方が評価値を良くすることも考えられる。
【0065】
図1(b)は画像評価装置1で求めたモデル34と輪郭線生成パラメータ35を用いてSEM像から露光条件を推定する画像評価装置の露光条件推定部2の一例を説明する図である。
【0066】
モデル作成部1で求めた輪郭線生成パラメータ35に基づいて輪郭線生成部21でSEM像から複数の輪郭線を生成し、生成した複数の輪郭線から特徴量を求めて、モデル作成部1で求めたモデルを用いて推定部22で露光条件を推定する。輪郭線生成部21は
図1(a)に示した輪郭線生成部21と同じである。
図5に推定部の実施例を示す。
【0067】
輪郭線生成部21で生成した複数の輪郭線から特徴量算出部221で特徴量を算出する。この特徴量算出部221は
図3で説明した特徴量算出部121と同じであり、説明は省く。
【0068】
モデル演算部222ではモデル作成部1で求めたモデルを用いて特徴量算出部221で得た特徴量から露光量を推定する。
【0069】
モデルが各特徴量の重み係数X1、X2、…Xn、bの値で、特徴量算出部221で得た特徴量A1、A2、…Anであれば、
Y=X1A1+X2A2+・・・XnAn+b
で露光量を推定することができる。
【0070】
推定した結果は表示手段を用いて
図15に示すようなGUI画面38に例えばウエハマップ386の示す位置に対応するSEM画像から推定して求めた露光条件の結果を配置して表示させてもよし、そのパターンの露光条件とモデルで推定した露光条件の差分を示してもよい。その差分の大きさによって色を変えることも考えられる。また、推定部で用いる特徴量を得るための3つ以上の輪郭線を生成するパラメータを設定する設定部381を設ける。この設定は、ユーザーが手で入力しても良いし、モデル作成時や予めファイルにしておき、そのファイルを読み込むようにしてもよい。
【0071】
また、用いたモデル384や輪郭線生成パラメータ385を表示させることも考えられる。モデルが重み係数の場合は、その重みを表示させる。輪郭線生成パラメータは、生成する輪郭線の本数とそれぞれの閾値である。
【0072】
また、
図1(a)の露光条件のモデルを作成する際も
図15に示すようなウエハマップ386の示す位置に対応するSEM画像から露光条件とモデルで推定した露光条件を配置して表示してもよい。また、その際、複数の輪郭線生成パラメータを用いて得たそれぞれのモデルとその評価値を表示する窓383を設けてもよい。また、その複数のモデルの中から1つのモデルを選択し、そのモデルを使用した際のウエハ上のSEMの撮影位置に相当する位置にその露光条件と選択したモデルで推定した露光条件を並べて表示してもよい。また、上記の
図1(a)の露光条件のモデルを作成する際について説明したが、
図1(b)の露光条件を推定する際にも同様に行うことが考えられる。また、輪郭線を生成するのに処理時間がかかるため、予め許容できる処理時間に合わせて最大の輪郭線数を設定する設定部382を設けて、設定された最大の輪郭線数未満の数の輪郭線を輪郭線生成部で生成して評価値の良いモデル及びその輪郭線生成パラメータを求めることも考えられる。また、輪郭線生成パラメータは外部から設定せずに自動で複数の輪郭線生成パラメータを生成してモデル及び輪郭線生成パラメータを求めてもよい。その場合は、例えば設定部382に自動モードを設定できるようにしておくことが考えられる。また、高さ位置(閾値)の刻み値を10と設定し、0から10刻みで増やして最大値の100までの11個のパラメータを自動で生成してもよい。パターンの内側外側(パターン側壁の上部下部)も含めて複数の輪郭線の閾値を各々その刻み値で変えて評価値の良いモデル及びその輪郭線生成パラメータを求めることが考えられる。
【0073】
図6に露光条件を求める画像評価方法の処理フローを示す。
【0074】
S10のモデル作成段階で露光条件を推定するためのモデルを作成し、S20の露光条件推定段階で作成したモデルを用いてSEM画像から露光条件推定する。
【0075】
図7にモデル作成部の処理フローを示す。モデル作成部では、S11の輪郭線生成パラメータ設定で複数の輪郭線生成パラメータを設定する。S12の輪郭線生成段階で設定された複数の輪郭線生成パラメータの中の1つの輪郭線生成パラメータに基づいて輪郭線を生成する。S13で全てのSEM画像について輪郭線の生成が行われるまで輪郭線生成段階を繰り返す。全てのSEM画像について輪郭線の生成が済むとS14でモデル作成段階に入る。モデル作成段階では、全てのSEM画像から生成したそれぞれ複数の輪郭線から特徴量を求めて、露光条件との関係を示すモデルを作成する。そして、S15で作成したモデルの当てはまりの評価を行い、その評価結果及びモデルとその輪郭線生成パラメータを記憶する。S16で全ての輪郭線生成パラメータについてモデルを作成が済んだかを確認し、済んでいなければ、S17でまだモデルを作成していない輪郭線生成パラメータに更新して読み込み、全ての輪郭線生成パラメータについてモデルを作成するまで上記処理を繰り返す。全ての輪郭線生成パラメータについてモデルが作成できたら、S18で作成したモデルの中から評価値の最も良いモデル及び輪郭線生成パラメータを選出する。
図8に輪郭線生成段階の処理フローを示す。輪郭線生成段階ではS121で輪郭線生成パラメータを読み込んでS122でその輪郭線生成パラメータの輪郭線の数及びその各々の閾値に基づいて複数の輪郭線を生成する。S123では生成した輪郭線のデータを記憶手段に記憶する。
【0076】
図9にモデル作成段階の処理フローを示す。S141でSEM画像に対応する輪郭線データと露光条件(フォーカス、露光量)の情報を読み込む。S142で輪郭線と基準パターンの位置合わせを行う。そして、S143で輪郭線の各画素に対応する基準パターンの画素との距離を求め、S144で求めた距離値の統計量を計算して特徴量として記憶手段に格納する。S145でモデル作成に使用する全てのSEM画像について特徴量を求めたか確認し、求めていなければ、残っているSEM画像の特徴量を求めてS146のモデル化でモデルを作成する。モデルは特徴量とその露光条件に基づいて回帰式や線形計画法等を用いて求める。
【0077】
図10に露光量推定段階の処理フローを示す。
【0078】
S21でモデル作成段階S10で求めた輪郭線生成パラメータ及びモデルを設定し、S22の輪郭線生成段階で設定した輪郭線生成パラメータの輪郭線の数及びその各々の閾値に基づいて複数の輪郭線を生成し、S23の推定段階で複数の輪郭線から特徴量を求めて、その特徴量に基づいてモデルを用いて露光条を推定する。S22の輪郭線生成段階はS21の輪郭線生成段階と同じ処理である。
【0079】
図11に推定段階の処理フローを示す。S231で輪郭線と基準パターンの位置合わせを行い、S232で輪郭線の各画素に対応する基準パターンの画素との距離を求め、S233で全画素の距離値の統計量(特徴量)を求めて、S234で求めた特徴量でモデルを計算し、露光条件を求める。
【0080】
S231の位置合わせとS232の距離の求める詳細は、
図3のモデル生成部の実施例で説明したので省く。
【0081】
また、上記ではモデルを回帰式や線形計画法で作成したが、例えば複数の輪郭線から得た特徴量をアドレスとして露光条件を引くようなテーブルを作成し、評価時は作成したテーブルを用いて複数の輪郭線から得た特徴量を基に、最も特徴量の値が近いテーブルのアドレスを引いて、露光条件を求めるようにしてもよい。
【0082】
また、
図16のようにホールパターンの間隔やホールの径の大きさによる、パターン側壁の変化を考えてみる。パターンを露光した際、パターン間隔Lが狭いとパターン間隔が広い場合に対して、パターン上部は多く縮み、変化が大きくなると考えられる。そのため、例えば、ある特定の値よりパターン間隔が小さい場合は、輪郭線生成パラメータを設定する際、パターン上部に絞り、複数の輪郭線の閾値を設定することが考えられる。また、ホールパターンの径Kが小さい場合は、大きい場合に比べてパターン下部の変化が大きくなると考えられる。
【0083】
そのため、ある特定の閾値よりホールパターンの直径Kが小さい場合は輪郭線生成パラメータを設定する際、パターン下部に絞り、複数の輪郭線の閾値を設定することが考えられる。
【0084】
図17にパターンのラインエンド(端点)部のフォーカスによる変化を示す。これは上から見たものでフォーカスFAの形状とフォーカスFBの形状の変化の大きさが端点の中央の部分LCと端の部分Lで異なる。露光の光の回り込みにより、パターンの部位で光強度に違いがあるので、パターンの側壁の変化もコーナー部や直線部、ラインエンド(端点)部等の部位毎に異なると考えられる。そのため、様々なパターンで露光条件を求める際はSEM画像から部位毎に分けて複数の輪郭線を生成し、特徴量を求めて部位毎のモデルを作成することが考えられる。その場合は、部位毎に輪郭線生成パラメータを求めることになる。例えば、
図18に示すようなパターンを用いる場合、ラインエンド部の151c、152cの領域はラインエンド部として、151a、152a、154a、153aは直線部として、15bはコーナー部としてそれぞれ分けてモデルを作成し、モデルの評価も部位ごとに行って、それぞれの部位でモデルと輪郭線生成パラメータを求めることが考えられる。
【0085】
尚、ここでは輪郭線を用いて評価しているが、輪郭線という連続した点でなくても、同様にして求めた複数の点として用いることも考えられる。
【実施例2】
【0086】
以下に説明する実施例では、荷電粒子線の一態様である電子線を用いて撮影した画像から半導体パターンの露光条件を求めるパターン形状評価装置において、閉曲線を含むパターン画像から特徴量を求める特徴量抽出部と、前記特徴量抽出部で求めた特徴量を用いて、少なくとも垂直と水平の2方向の露光条件を推定する推定部を備えたパターン形状評価装置について説明する。
【0087】
また、電子線を用いて撮影した画像から半導体パターン形成時のフォーカス値を含む露光条件を求めるパターン形状評価装置において、閉曲線を含むパターン画像から方向別に特徴量を求める特徴量抽出部と、前記特徴量抽出部で求めた特徴量を用いて、少なくとも垂直と水平の2方向の露光条件を推定する推定部を備えることを特徴とする画像評価装置を提案する。
【0088】
また、前記特徴量抽出部では、ホワイトバンド又はパターンエッジ又は輪郭線の方向情報を求める方向検出部で得た方向情報により、少なくとも垂直と水平の2方向の特徴量を求める特徴量抽出部を備えることを特徴とするパターン形状評価装置を提案する。
【0089】
また、前記、特徴量抽出部では、ユーザが2方向以上の方向毎に指定した領域毎に分けて特徴量を求める特徴量抽出部を備えることを特徴とするパターン形状評価装置を提案する。
【0090】
さらに、前記推定部で推定する際に、前記特徴量抽出部で求めた方向毎の特徴量と露光条件の関係を示すモデル又はテーブルを用いて推定することを備えることを特徴とするパターン形状評価装置を提案する。
【0091】
また、前記方向検出部で得た方向情報から、少なくとも垂直と水平の2方向に分けるための割合を算出する方向別特徴算出部を備えることを特徴とするパターン形状評価装置を提案する。
【0092】
また、上記SEM像から水平、垂直の方向毎に特徴量と露光条件との関係を示すモデルを作成するための一態様として、以下に、電子線を用いて撮影した画像から半導体パターンの露光条件を求めるパターン形状評価装置において、閉曲線を含むパターン画像から、少なくとも垂直と水平の2方向の特徴量を求める特徴量抽出部と、前記特徴量抽出部で求めた方向毎の特徴量と、SEM画像に対応する露光条件を用いてモデルを作成するモデル作成部を備えることを特徴とするパターン形状評価装置を提案する。
【0093】
また、前記モデル作成部では少なくとも垂直と水平の2方向の方向毎に特徴量と露光量の関係を示すモデルを作成することを特徴とするパターン形状評価装置を提案する。
【0094】
また、上記画像評価装置のユーザーインターフェースの一態様として、以下に、ウエハマップ上に露光条件を方向毎に切り替えて表示することができる表示部を備えたことを特徴とするパターン形状評価装置を提案する。
【0095】
また、方向毎の特徴量を求める領域をユーザが指定できる指示部を備えたことを特徴とするパターン形状評価装置を提案する。
【0096】
更に他の態様として、電子線を用いて撮影した画像から半導体パターンの露光条件を求めるパターン形状評価装置において、閉曲線を含むパターン画像から、ホワイトバンド又はパターンエッジ又は輪郭線の方向情報を求める方向検出部と、前記方向検出部の方向情報により、少なくとも垂直と水平の2方向の特徴量を求める特徴量抽出部と、前記特徴量抽出部で求めた方向毎の特徴量と、方向毎の特徴量とフォーカス値の関係を示すモデル又はテーブルに基づいて、少なくとも垂直と水平の2方向のフォーカス値を推定する推定部を備えることを特徴とするパターン形状評価装置を提案する。
【0097】
また、電子線を用いて撮影した画像から半導体パターンの露光条件を求めるパターン形状評価装置において、閉曲線を含むパターン画像から、特徴量を求める特徴量抽出部と、画像のエッジの方向に基づいて前記特徴量を、少なくとも垂直と水平の2方向に分けるための寄与率を算出する寄与率算出部と、前記特徴量と前記寄与率及び方向毎の特徴量とフォーカス値の関係を示すモデル又はテーブルに基づいて、少なくとも垂直と水平の2方向のフォーカス値を推定する推定部を備えることを特徴とするパターン形状評価装置を提案する。
【0098】
また、上記SEM像から複数の輪郭線を生成して得た特徴量と露光条件との関係を示すモデルを作成するための一態様として、以下に、電子線を用いて撮影した画像から半導体パターンの露光条件を求めるパターン形状評価装置において、閉曲線を含むパターン画像から、少なくとも垂直と水平の2方向の特徴量を求める特徴量抽出部と、前記特徴量抽出部で求めた方向毎の特徴量と、SEM画像に対応する露光条件から方向毎の特徴量とフォーカス値の関係を示すモデルを作成するモデル作成部を備えることを特徴とするパターン形状評価装置を提案する。
【0099】
上記構成によれば、垂直線、水平線のパターンに限らず、ホール等の曲線パターンの画像から方向別の特徴量を検出し、それぞれの方向のフォーカス値を得ることが可能となる。
【0100】
以下に説明する実施例にて例示するパターン形状評価装置は、SEM撮影による曲線パターンの画像データから水平方向、垂直方向のフォーカスを含めた露光条件をモニタするためのパターン画像の評価手法、および装置に関するものである。また、その具体的な一例として、曲線パターンの画像データから輪郭線の2次元形状を用いて水平方向、垂直方向のフォーカスを含めた露光条件を検出する例を示す。
【0101】
また、曲線パターンの画像データからパターンの輪郭線の2次元形状を用いて水平方向、垂直方向のフォーカスを含めた露光条件を検出するためのモデル及び輪郭線の生成パラメータを求める例を示す。
【0102】
以下に、曲線パターンの輪郭線の2次元形状を用いて水平方向、垂直方向のフォーカスを含めた露光条件を検出する機能を備えた装置、測定検査システムについて、図面を用いて説明する。より具体的には、測定装置の一種であるCD−SEMを含む装置、システムについて説明する。
【0103】
図21(a)(b)は閉曲線を含むパターンの画像データから輪郭線の2次元形状を用いて水平方向、垂直方向のフォーカスを含めた露光条件を検出する画像処理装置2102の一例を説明する図である。予めショット(1回の露光単位)ごとに露光条件(フォーカス、露光量)を変えてパターンを焼き付けたFEM(Focus Exposure Matrix)ウエハをSEM撮影し、その撮影したウエハ上の位置により、撮影した画像と露光条件の対応がとれるので、この情報を露光条件情報7とする。
【0104】
図21(b)では、それら複数の異なる露光条件(フォーカス、露光量)情報7と撮影した測定対象となる対象パターンを含むSEM画像2105を用いる。また、パターンが崩れているようなSEM画像はモデルの作成に適さないため、予め除いておいてもよい。
【0105】
特徴量抽出部2124ではSEM画像2105と基準パターン2103を用いて、露光条件に対応して変化する特徴量を抽出する。そして、方向別露光条件モデル作成部2123では特徴量抽出部2124で求めた特徴量と、露光条件情報2107を用いて、特徴量と水平方向、垂直方向等の方向別の露光条件との関係を示す方向別モデル2104を作成する。
【0106】
露光条件情報2107では水平方向、垂直方向等の方向別のフォーカス値を含む露光条件を情報として与えても良い。また、フォーカス値が最適な場合の寸法値を与えても良い。また、一つの方向のフォーカス値を基準として、他方向のフォーカス値は比率や差分で示す値を与えても良い。
【0107】
図21(a)では、露光条件を評価するSEM画像2101と、基準パターン(参照パターン)を用いて、特徴量抽出部2121で特徴量を抽出し、(b)で得た方向別モデルと、特徴量抽出部2121で得た特徴量を用い、方向別露光条件推定部2122で方向別露光条件を推定する。推定した方向別露光条件情報を露光器にフィードバックして方向別に露光条件を補正することが可能となる。
【0108】
ここで、基準パターンは設計データを描画した画像データでもよいし、撮影した出来栄えのよいパターン画像から得た画像データでもよいし、複数の撮影したパターン画像から得た画像データでもよい。また、シミュレーション画像から得た画像データでもよい。
【0109】
図22に特徴量抽出部の一例を示す。特徴量抽出部2121ではSEM画像2101と基準パターン2103から、SEM画像2101の輪郭線と露光条件に対応して変化する特徴量を抽出する。
図21の(a),(b)の特徴量抽出部2121、2124は同じ構成でできる。輪郭線抽出部211でSEM画像2101の輪郭線を抽出し、位置合わせ部212で基準パターン2103の画像データと輪郭線抽出部211で得た輪郭線データとで位置合わせを行い、位置合わせを行った後のSEM画像2101の輪郭線の画素毎に、それに対応する基準パターンの画素位置との距離値を距離値計算部213で求める。この距離値計算部213で求めた距離値を特徴量とする。また、輪郭線の画素と基準パターンの画素の対応付けは、輪郭線の画素の方向に対して垂直線上にある画素を探して対応させても良いし、距離が最も近い画素を求めて対応させることもできる。
【0110】
図23に輪郭線抽出部の一例を示す。SEM画像1からエッジ検出部2111でラプラシアンフィルタ等のエッジを抽出するフィルタ処理でエッジ画像を求め、2値化部2112で任意の閾値で2値化し、細線化部2113で細線化することで輪郭線が得られる。また、ホワイトバンドを平滑化して2値化し、細線化して輪郭線を得ても良いし、それ以外の方法でもパターン形状が判る輪郭線が得られる方法であればよい。位置合わせ部212ではそれぞれ輪郭画素を膨張させて画像を重ねて位置をずらし、正規化相関の相関値が最も高くなる位置を求める方法や、それぞれ画像の重心位置を求めて重心位置を合わせることで2つの画像の位置合わせを行う等一般的な位置を合わせる方法で可能であり、説明は省く。
【0111】
図27に輪郭線の画像と基準パターンの画像の2つの画像の位置合わせを行い重ねた画像例を示す。基準パターンは円で、SEM画像1の輪郭線は楕円となるような形状が異なる画像での位置合わせ例である。輪郭線のA点画素と基準パターンのA’点画素が対応しており、A点画素とA’点画素の距離値やB点画素とB’点画素の距離値等、全ての画素について距離値、これを特徴量として求める。
【0112】
図24に方向別露光条件推定部の一例を示す。方向別露光条件推定部2422では、特徴量抽出部2121で得た画素毎の特徴量について、輪郭線データを用いて方向別特徴分離部2401で方向別の特徴量に分けて算出し、方向別モデルを用いて、水平方向推定部2402と垂直方向推定部2403でそれぞれの方向の露光条件を推定する。
【0113】
図25に方向別特徴分離部の一例を示す。方向別特徴分離部211では特徴量抽出部2121で得た画素毎の特徴量について、方向別に特徴量を分けて求める。特徴量抽出部2121で特徴量を得た対象の輪郭線画素周辺の輪郭線データを用いて方向検出部2211で対象の輪郭線画素の方向を求める。そして、方向検出部221で求めた方向を用いて、水平垂直割合決定部2212で特徴量の水平方向、垂直方向の露光条件の変化の割合を決定する。そして、水平割合乗算部2213と垂直割合乗算部2214で水平垂直割合決定部2212で求めたそれぞれの割合を画素毎の特徴量に掛けあわせて、水平方向、垂直方向の方向別に特徴量を求める。
【0114】
方向検出部2211では特徴量を得た対象の輪郭線画素周辺の輪郭線データを用いて輪郭画素の向きを求める。例えば
図6に示すような3画素×3画素のマトリクスの輪郭画素の並びでパターンマッチングし方向を検出してもよい。ここでは、黒画素が輪郭画素に相当し、(a)から(h)のパターンで一致するか見る。(a)から(h)で、それぞれ方向(角度θ)を0°、22.5°、45°、67.5°、90°、112.5°、135°、157.5°とする。さらに細かく方向を求める場合は参照する画素数を5画素×5画素マトリクス等にサイズを大きくして求める方向のパターンを増やすことで対応できる。
【0115】
水平垂直割合決定部2212では、方向検出部2211で求めた輪郭線の方向によって特徴量の水平方向、垂直方向のフォーカスに影響する割合を決定する。例えば、
図27に示すA点では輪郭線の方向は0°である。この場合、垂直方向のフォーカスに影響する特徴量の割合は1.0で、水平方向のフォーカスに影響する特徴の割合は0.0とする。またB点では、輪郭線の方向は90°であり、この場合、垂直方向のフォーカスに影響する特徴量の割合は0.0で、水平方向のフォーカスに影響する特徴の割合は1.0とする。C点では、輪郭線の方向は45°であり、この場合、垂直方向のフォーカスに影響する特徴量の割合は0.5で、水平方向のフォーカスに影響する特徴の割合は0.5とする。割合を求める式は、方向検出部2211で求めた方向の角度θ(°)を用いて、垂直方向のフォーカスに影響する特徴量の割合はcosθ/(sinθ+cosθ)で求め、水平方向のフォーカスに影響する特徴量の割合はsinθ/(sinθ+cosθ)で求めることが考えられる。
【0116】
輪郭線のラフネスが大きい場合は、対象となる輪郭画素の周辺の複数のサンプル画素を用いて近似直線を作り、方向を求めてもよい。また、SEM画像2101を充分に平滑化して輪郭線を抽出することも考えられる。
【0117】
方向別のそれぞれの特徴量の割合は水平割合乗算部2213と垂直割合乗算部2214に送られ、画素毎の特徴量に掛けあわせて、方向別に特徴量を出力する。水平割合乗算部2213と垂直割合乗算部2214は乗算機で実現できる。
図24の水平方向推定部2402には、水平割合乗算部2213で求めた特徴量が入り、垂直方向推定部2403には垂直割合乗算部2214で求めた特徴量が入る。
【0118】
図28に水平方向推定部及び垂直方向推定部の一例を示す。
図28(a)の水平方向推定部2402の統計量算出部2221では、水平割合乗算部2213で求めた全ての輪郭画素の特徴量の合計値を求め、その平均値や分散値等の統計量を求める。また、歪度や突度等を求めてもよい。そして、それら求めた複数の統計値と方向別モデルを用いて、モデル演算部2222で水平方向のフォーカス値と露光量を求める。モデル演算部2222では方向別モデルの水平方向の露光条件に対応したモデルを用いて演算する。モデルの演算は例えば、複数の統計量に対応した重みを掛け合わせて露光条件を求めることが考えられる。
図28(b)の垂直方向推定部2403でも同様にして垂直方向の露光条件を求めることができる。これら水平方向、垂直方向で求めた露光条件を方向別露光条件情報8として出力する。
【0119】
図21(b)の方向別露光条件モデル作成部2123の一例を、
図29を用いて説明する。方向別特徴分離部231は、
図21(a)の方向別露光条件推定部2122の方向別特徴分離部2401と同じであり、水平方向、垂直方向毎に特徴量を分けて出力する。水平方向モデル作成部232では露光条件情報2107と水平方向の特徴量を用いてモデルを作成する。垂直方向モデル作成部233では露光条件情報7と垂直方向の特徴量を用いてモデルを作成する。
【0120】
図30に水平方向モデル作成部と垂直方向モデル作成部の一例を示す。
図30(a)の水平方向推定部232の統計量算出部2321では、水平割合乗算部2313で求めた全ての輪郭画素の特徴量の合計値を求め、その平均値や分散値また、歪度や突度等の統計量を求めてもよい。そして、それら求めた複数の統計値と露光条件情報2107を用いて、モデル作成部2322で求めた統計量と水平方向の露光条件の関係を示すモデルを作成する。モデルは例えば、複数の統計値にそれぞれ係数を掛け合わせた線形和で露光条件を求める回帰式としてもよい。例えば回帰式では、複数の統計値A1、A2、・・・Anに、それぞれ重み係数X1、X2、・・・Xnの線形和で露光条件Yを表すことができる。
【0121】
Y=X1A1+X2A2+・・・XnAn+b
この場合、モデルは各統計値の重み係数X1、X2、・・・Xn、bの値となる。また、非線形の回帰で求めてもよいし、線形計画法を用いても良い。複数の統計値とその露光条件を用いて学習させて重みを求めてもよい。同様に
図10(b)の垂直方向推定部233の統計量算出部2331では、垂直割合乗算部2314で求めた全ての輪郭画素の特徴量の合計値を求め、その平均値や分散値等の統計量を求める。そして、それら求めた複数の統計値と露光条件情報7を用いて、モデル作成部2332で求めた統計量と水平方向の露光条件の関係を示すモデルを作成する。モデル作成部2322、2332で作成したそれぞれのモデルは方向別モデル2104として出力する。
【0122】
上記のように、複数の角度(方向)ごとの特徴量の統計量に重みを付け、その加算等によって、X方向、或いはY方向(特定方向)の露光条件を求めることによって、一方向だけではなく、複数方向の特徴量を参照して、その際の露光条件を求めることができる。特定方向の情報量が不十分であっても、複数方向の情報を参照できるため、その情報不足を補い、適正な露光条件を求めることができる。また、X、Y方向以外のパターンの出来栄えも参照して露光条件を決めることができる。更に、上記式では露光条件Yは複数方向の測定値の重み付け結果を加算したものとなっているが、統計値(平均値)であっても良い。
【0123】
なお、ここで言うところの露光条件とは、特定方向の露光条件の調整に要するパラメータであれば良く、例えばモニタ時の露光装置の露光条件、調整量(例えば理想条件−モニタ時の露光条件)等がある。また、GUI画面上の露光条件を調整するためのスケールバーの調整距離を上記回帰式やテーブル等によって求めるようにしても良い。
【0124】
また、
図25で説明した方向別特徴分離部2401は、曲線が少ないパターンを用いる場合、方向検出部2211及び水平垂直割合決定部2212を、例えば
図31に示すように縦線横線検出部2215に変えて水平の線(横線)及び垂直の線(縦線)の直線パターンを検出するようにし、横線と検出した画素の場合は、水平割合乗算部の割合は1.0とし、垂直割合乗算部の割合は0.0とし、横線と検出した画素の場合は、水平割合乗算部の割合は0.0とし、垂直割合乗算部の割合は1.0とすることが考えられる。この場合、横線及び縦線とも異なる場合は水平割合乗算部の割合は0.0とし、垂直割合乗算部の割合は0.0とすることが考えられる。ここでは輪郭線から方向を求めているが、
図25の方向検出部2211または、
図31の縦横線検出部2215に入れる輪郭線を基準パターンに変えて、基準パターンの方向を求めて、同様に水平方向、垂直方向の特徴量の割合を求めることも考えられる。また、
図25、
図31で構成を変えた場合は、
図21(b)の方向別露光条件モデル作成部も同様に変える必要がある。
【0125】
また、方向別にユーザが特徴量を求める領域を指定する場合の画像評価装置の一例を
図32に示す。
図21の画像評価装置に対して方向別領域指定部3209が加わる構成となる。方向領域指定部3209は、表示する手段と領域を指示する手段を設け、
図33に示すようにSEM像から得た輪郭線、若しくは基準パターンを表示した線Aについて、水平方向の特徴領域を表す矩形(1)と垂直方向の特徴領域(2)を表す矩形の指定をユーザが自由に指定できるGUIである。この方向別領域指定部9で指定された領域の情報は特徴量抽出部25に入る。
【0126】
図34に特徴量抽出部の一例を示す。SEM画像1から輪郭線抽出部211で輪郭線を抽出し基準パターンと位置合わせ部212で位置合わせを行う。ここまでは特徴量抽出部2121と同じである。そして、縦横方向領域判定部216で対象画素についてユーザが指定した水平方向の特徴領域に含まれる画素か、垂直方向の特徴領域に含まれる画素かを判定する。水平方向の特徴領域の画素であれば位置合わせ後の対象画素に対応する特徴量(対象輪郭画素と、それに対応する基準パターンの画素との距離値)は水平方向距離値計算部214の値(水平方向の特徴量)として出力する。また、垂直方向の特徴領域の画素であれば、その対象画素で得た特徴量は垂直方向距離値計算部215の値(垂直方向の特徴量)として出力する。水平方向の特徴領域でも垂直方向の特徴領域でもない場合は除外することが考えられる。ここで、縦横方向領域判定部216で判定する対象画素は、輪郭線画素でもよいし、対応する基準パターンの画素を対象画素としても良い。
【0127】
この水平方向距離値計算部214の値と垂直方向距離値計算部215の値は方向別露光条件推定部3226へ入る。
図35に方向別露光条件推定部の一例を示す。水平方向推定部261では水平方向距離値計算部214の値と方向別モデルを用いて水平方向の露光条件を推定する。垂直方向推定部262では水平方向距離値計算部215の値と方向別モデルを用いて水平方向の露光条件を推定する。水平方向推定部261、垂直方向推定部262は
図28で説明した水平方向推定部2402及び水平方向推定部2403と同じ構成で実現できる。
【0128】
図32(b)の特徴量抽出部3227は
図34と同じ構成で実現できる。方向別露光条件モデル作成部3228は
図36を用いて説明する。方向別露光条件推定部3227で得た水平方向の特徴量及び垂直方向の特徴量は、それぞれ水平方向モデル作成部281と垂直方向モデル作成部282に入り、露光条件情報7を用いて、水平方向モデル作成部281で水平方向の露光条件を求めるモデルを作成し、垂直方向モデル作成部282で垂直方向の露光条件を求めるモデルを作成する。
【0129】
水平方向モデル作成部281と垂直方向モデル作成部282は
図30を用いて説明した水平方向モデル作成部231と垂直方向モデル作成部232と同じ構成で実現できる。
【0130】
また、
図21及び
図32の特徴量抽出部2121に関して、特徴量はSEM画像から輪郭線を抽出し、基準パターンと比較して求めていたが、それに限らず、SEM像のホワイトバンドの幅の情報を特徴量として用いることが考えられる。その場合、
図37に示すように、SEM画像を2値化部291で任意の閾値で2値化し、SEM画像のパターン形状に沿った白い帯が白画素、それ以外が黒画素に2値化される。2値化した画像を細線化部293で細線化し輪郭線画像を得る。この2値画像及び輪郭線の画像は
図24の方向別露光条件推定部の方向別特徴分離部に入る。この場合の方向別特徴分離部の一例を
図38に示す。
図24の方向別露光条件推定部に対して、方向別幅検出部2216が加わる。そして、距離値計算部213の出力の特徴量に変わり、この方向別幅検出部2216の出力を特徴量とするものである。方向別特徴分離部で求めた輪郭線の対象画素の方向を用いて、その方向に対して垂直方向のホワイトバンドの幅を求める。
【0131】
例えば、
図39のようなホールパターンの2値画像でホワイトバンドの幅を求める場合、A点画素の輪郭線の方向が水平方向なので、その垂直方向のW1のホワイトバンド(白画素)の幅を求める。B点画素では輪郭線の方向が垂直なので水平方向の白画素の幅を求める。そして求めた白画素の幅を特徴量とすることも考えられる。また、それ以外にも2値化せずに、ホワイトバンドの微分値や特定の2つの閾値での傾き等を用いることが考えられる。それら様々な特徴量について、輪郭線または基準パターンを用い、上記の手法により、方向別に特徴量を分けて求めることが可能となる。また、それら、方向別の特徴を用いることで、方向別の露光条件を求めることができる。
【0132】
図40に入出力を表示するGUIの一例を示す。露光像件を方向別に切り替えて表示することが考えられる。例えばウエハマップ4004に露光条件を表示する際に、方向別の露光条件の表示を切り変える指示部4001を設けておき、例えば、水平方向の露光条件、垂直方向の露光条件をウエハマップ4004上に切り替えて表示することが考えられる。また、露光条件の最大値、最小値、平均値等を、方向別にまたは、全ての方向の中で求めて表示出来るように指示する指示部4002を設けることも考えられる。また、方向別に露光条件を推定するモデルの情報、例えば、特徴量に対応する係数等を指示して表示させる指示部4003を設けることも考えられる。
【0133】
また、上記は垂直方向と水平方向の露光条件を求めているが述べたが、それ以外にも斜め45°や30°等、全方位で同様に求めることも考えられる。その場合も、例えばユーザが方向別に領域を指示できるようにすることが考えられる。例えば、
図41に示すように基準パターン又はSEM画像の輪郭線を表示させる表示部4005を設けて、方向別に領域を指定する際に、水平領域を示す矩形b領域、垂直領域を示す矩形a領域のみでなく、斜め45°の領域を示す矩形c領域、60°の領域を示すd領域を指定することも考えられる。また、これらの領域と角度の指定を設定する設定部4102を設けることも考えられる。また、ユーザが全方位の領域を割り当てることもできる。上記の装置は、パソコンを用いてソフト処理で行うことも考えられる。また、LSI化することも考えられる。