(58)【調査した分野】(Int.Cl.,DB名)
上記エチレン−ビニルアルコール共重合体のエチレン単位含有量が3モル%以上70モル%以下、けん化度が80モル%以上である請求項1、請求項2又は請求項3に記載の多層構造体。
上記A層を構成するエチレン−ビニルアルコール共重合体と上記B層を構成するエチレン−ビニルアルコール共重合体とのエチレン単位含有量の差が3モル%以上50モル%以下である請求項1から請求項8のいずれか1項に記載の多層構造体。
上記多層構造体の最外層に位置する層の樹脂組成物に、アルカリ金属塩、アルカリ土類金属塩及び周期律表第4周期dブロック金属塩からなる群より選ばれる少なくとも1種の金属塩を含有し、
上記多層構造体の最外層と上記熱可塑性樹脂層とが接するように積層されている請求項13又は請求項14に記載の積層体。
【発明を実施するための形態】
【0034】
以下、本発明の実施形態を詳述する。
当該多層構造体は、エチレン−ビニルアルコール共重合体(以下、「EVOH」ともいう)を含む樹脂組成物からなる樹脂層が4層以上隣接して積層されている。
【0035】
以下、当該多層構造体の層構造、樹脂層、樹脂層間の関係及び製造方法に関し、この順に説明する。
【0036】
〈当該多層構造体の層構造〉
当該多層構造体は、EVOHを含む樹脂層を4層以上隣接して備えている。このようにEVOHを含む樹脂層が4層以上積層した構造により、ガスバリア性が向上する。EVOHを含む樹脂層を4層以上隣接して積層することによるガスバリア性向上の理由は必ずしも明らかではないが、4層以上積層することで、より大きな配向がかかること等が考えられる。また、4層以上の樹脂層を積層した構造により、ピンホール、割れ等の欠陥が連続して発生することが低減される結果、当該多層構造体はその構造自体により、非常に高いガスバリア性などを維持する耐久性等の特性を有している。かかる観点と製造上の観点から、樹脂層の合計の層数としては、6層以上が好ましく、10層以上がさらに好ましく、15層以上が特に好ましい。
【0037】
当該多層構造体の平均厚みの下限としては0.1μmが好ましく、1μmがより好ましく、5μmがさらに好ましい。一方、当該多層構造体の平均厚みの上限としては、1,000μmが好ましく、500μmがより好ましく、250μm以下がさらに好ましく、100μm以下がさらに好ましく、50μm以下が特に好ましい。当該多層構造体の平均厚みが上記下限より小さいと、強度が不足し、使用が困難になるおそれがある。逆に、当該多層構造体の平均厚みが上記上限を超えると、柔軟性、成形性等が低下し、製造コストの上昇を招来するおそれがある。ここで、多層構造体の厚みは、多層構造体の任意に選ばれた9点での断面の厚みの測定値を平均することにより得られる。
【0038】
樹脂層一層の平均厚みの下限としては、0.01μmが好ましく、0.05μmがより好ましく、0.1μmがさらに好ましい。一方、樹脂層一層の平均厚みの上限としては、10μmが好ましく、7μmがより好ましく、5μmがさらに好ましく、さらには、3μm、2μm、1μm、0.5μm、0.25μmが好ましい。樹脂層一層の平均厚みが上記下限より小さいと、均一な厚さで成形することが困難になり、場合によっては層の形成がうまく行かず、層の乱れや流れ斑が生じ、当該多層構造体のガスバリア性及びその耐久性が低下するおそれがある。逆に、樹脂層一層の平均厚みが上記上限を超えると、当該多層構造体全体の平均厚みが同じである場合、層数を多くすることが困難になり、上述の多層によるガスバリア性向上効果が期待できなくなるおそれがあり、また当該多層構造体の延伸性や熱成形性が低下するおそれがある。なお、樹脂層の一層の平均厚みとは、当該多層構造体の平均厚みを樹脂層の層数で除した値をいう。
【0039】
〈樹脂層〉
当該多層構造体を構成する4層以上の樹脂層は、EVOHを含む樹脂組成物からなる層である。樹脂層を構成する樹脂組成物がEVOHを含むことで、ガスバリア性に優れる多層構造体を得ることができる。
【0040】
(樹脂組成物)
上記樹脂組成物は、EVOHを含む。
【0041】
(EVOH)
樹脂層を構成する樹脂組成物に含まれるEVOHは、主構造単位として、エチレン単位及びビニルアルコール単位を有する。なお、このEVOHとしては、エチレン単位及びビニルアルコール単位以外に、他の構造単位を1種類又は複数種含んでいてもよい。
【0042】
このEVOHは、通常、エチレンとビニルエステルとを重合し、得られるエチレン−ビニルエステル共重合体をけん化して得られる。
【0043】
EVOHのエチレン単位含有量(すなわち、EVOH中の単量体単位の総数に対するエチレン単位の数の割合)の下限としては、3モル%が好ましく、10モル%がより好ましく、20モル%がさらに好ましく、25モル%が特に好ましい。一方、EVOHのエチレン単位含有量の上限としては、70モル%が好ましく、60モル%がより好ましく、55モル%がさらに好ましく、50モル%が特に好ましい。EVOHのエチレン単位含有量が上記下限より小さいと、多層構造体の耐水性、耐熱水性、及び高湿度下でのガスバリア性が低下するおそれや、多層構造体の溶融成形性が悪化するおそれがある。逆に、EVOHのエチレン単位含有量が上記上限を超えると、当該多層構造体のガスバリア性が低下するおそれがある。
【0044】
EVOHのけん化度(すなわち、EVOH中のビニルアルコール単位及びビニルエステル単位の総数に対するビニルアルコール単位の数の割合)の下限としては、80モル%が好ましく、95モル%がより好ましく、99モル%が特に好ましい。一方、EVOHのけん化度の上限としては99.99モル%が好ましい。EVOHのけん化度が上記下限より小さいと、溶融成形性が低下するおそれがあり、加えて当該多層構造体のガスバリア性が低下するおそれや、耐着色性や耐湿性が不満足なものとなるおそれがある。逆に、EVOHのけん化度が上記上限を超えると、EVOHの製造コストの増加に対するガスバリア性等の上昇もそれほど期待できない。かかるEVOHは単独で用いることも可能であるが、けん化度が99モル%を超えるEVOHとブレンドして用いる実施形態も好適である。
【0045】
EVOHの1,2−グリコール結合構造単位の含有量G(モル%)が下記式(2)を満たし、かつ固有粘度が0.05L/g以上0.2L/g以下が好ましい。下記式(2)中EはEVOH中のエチレン単位含有量(モル%)(但し、E≦64(モル%))である。
G≦1.58−0.0244×E ・・・(2)
【0046】
樹脂層を構成する樹脂組成物がこのような1,2−グリコール結合構造単位の含有量G及び固有粘度を有するEVOHを含むことによって、得られる多層構造体のガスバリア性の湿度依存性が小さくなるという特性が発揮されると共に、良好な透明性及び光沢を有しまた他の熱可塑性樹脂との積層も容易になる。従って、当該多層構造体の食品包装用等の材料としての適性を向上することができる。なお、1,2−グリコール結合構造単位の含有量Gは、S.Aniyaら(Analytical Science Vol.1,91(1985))に記載された方法に準じて、EVOH試料をジメチルスルホキシド溶液とし、温度90℃における核磁気共鳴法によって測定することができる。
【0047】
EVOHは、上記構造単位(I)及び(II)からなる群より選ばれる少なくとも1種を有することが好ましい。上記構造単位(I)又は(II)の全構造単位に対する含有量の下限としては0.5モル%が好ましく、1モル%がより好ましく、1.5モル%がさらに好ましい。一方上記構造単位(I)又は(II)の含有量の上限としては30モル%が好ましく、15モル%がより好ましく、10モル%がさらに好ましい。樹脂層の樹脂組成物が上記(I)又は(II)に示す構造単位を上記範囲の割合で有することによって、樹脂層を構成する樹脂組成物の柔軟性及び加工特性が向上する結果、当該多層構造体の延伸性及び熱成形性を向上することができる。
【0048】
上記構造単位(I)及び(II)において、上記炭素数1〜10の脂肪族炭化水素基としてはアルキル基、アルケニル基等が挙げられ、炭素数3〜10の脂環式炭化水素基としてはシクロアルキル基、シクロアルケニル基等が挙げられ、炭素数6〜10の芳香族炭化水素基としてはフェニル基等が挙げられる。
【0049】
上記構造単位(I)において、上記R
1、R
2及びR
3は、それぞれ独立に水素原子、メチル基、エチル基、水酸基、ヒドロキシメチル基又はヒドロキシエチル基であることが好ましく、これらの中でも、それぞれ独立に水素原子、メチル基、水酸基又はヒドロキシメチル基であることがさらに好ましい。そのようなR
1、R
2及びR
3であることによって、当該多層構造体の延伸性及び熱成形性をさらに向上させることができる。
【0050】
EVOH中に上記構造単位(I)を含有させる方法については、特に限定されないが、例えば、上記エチレンとビニルエステルとの重合において、構造単位(I)に誘導されるモノマーを共重合させる方法などが挙げられる。この構造単位(I)に誘導されるモノマーとしては、プロピレン、ブチレン、ペンテン、ヘキセンなどのアルケン;3−ヒドロキシ−1−プロペン、3−アシロキシ−1−プロペン、3−アシロキシ−1−ブテン、4−アシロキシ−1−ブテン、3,4−ジアシロキシ−1−ブテン、3−アシロキシ−4−ヒドロキシ−1−ブテン、4−アシロキシ−3−ヒドロキシ−1−ブテン、3−アシロキシ−4−メチル−1−ブテン、4−アシロキシ−2−メチル−1−ブテン、4−アシロキシ−3−メチル−1−ブテン、3,4−ジアシロキシ−2−メチル−1−ブテン、4−ヒドロキシ−1−ペンテン、5−ヒドロキシ−1−ペンテン、4,5−ジヒドロキシ−1−ペンテン、4−アシロキシ−1−ペンテン、5−アシロキシ−1−ペンテン、4,5−ジアシロキシ−1−ペンテン、4−ヒドロキシ−3−メチル−1−ペンテン、5−ヒドロキシ−3−メチル−1−ペンテン、4,5−ジヒドロキシ−3−メチル−1−ペンテン、5,6−ジヒドロキシ−1−ヘキセン、4−ヒドロキシ−1−ヘキセン、5−ヒドロキシ−1−ヘキセン、6−ヒドロキシ−1−ヘキセン、4−アシロキシ−1−ヘキセン、5−アシロキシ−1−ヘキセン、6−アシロキシ−1−ヘキセン、5,6−ジアシロキシ−1−ヘキセンなどの水酸基やエステル基を有するアルケンが挙げられる。その中で、共重合反応性、及び得られる多層構造体のガスバリア性の観点からは、プロピレン、3−アシロキシ−1−プロペン、3−アシロキシ−1−ブテン、4−アシロキシ−1−ブテン、3,4−ジアセトキシ−1−ブテンが好ましい。具体的には、その中でも、プロピレン、3−アセトキシ−1−プロペン、3−アセトキシ−1−ブテン、4−アセトキシ−1−ブテン、3,4−ジアセトキシ−1−ブテンが好ましく、その中でも、3,4−ジアセトキシ−1−ブテンが特に好ましい。エステルを有するアルケンの場合は、けん化反応の際に、上記構造単位(I)に誘導される。
【0051】
上記構造単位(II)において、R
4及びR
5は共に水素原子であることが好ましい。特に、R
4及びR
5が共に水素原子であり、上記R
6及びR
7のうちの一方が炭素数1〜10の脂肪族炭化水素基、他方が水素原子であることがより好ましい。この脂肪族炭化水素基は、アルキル基又はアルケニル基が好ましい。当該多層構造体のガスバリア性を特に重視する観点からは、R
6及びR
7のうちの一方がメチル基又はエチル基、他方が水素原子であることが特に好ましい。また、上記R
6及びR
7のうちの一方が(CH
2)
hOHで表される置換基(但し、hは1〜8の整数)であり、他方が水素原子であることも特に好ましい。この(CH
2)
hOHで表される置換基において、hは、1〜4の整数であることが好ましく、1又は2であることがより好ましく、1であることが特に好ましい。
【0052】
EVOH中に上記構造単位(II)を含有させる方法については、特に限定されないが、けん化反応によって得られたEVOHに一価エポキシ化合物を反応させることにより含有させる方法などが用いられる。一価エポキシ化合物としては、下記式(III)〜(IX)で示される化合物が好適に用いられる。
【0060】
上記式(III)〜(IX)中、R
8、R
9、R
10、R
11及びR
12は、それぞれ独立に水素原子、炭素数1〜10の脂肪族炭化水素基(アルキル基又はアルケニル基など)、炭素数3〜10の脂環式炭化水素基(シクロアルキル基又はシクロアルケニル基など)又は炭素数6〜10の脂肪族炭化水素基(フェニル基など)を表す。また、i、j、k、p及びqは、1〜8の整数を表す。
【0061】
上記式(III)で表される一価エポキシ化合物としては、例えばエポキシエタン(エチレンオキサイド)、エポキシプロパン、1,2−エポキシブタン、2,3−エポキシブタン、3−メチル−1,2−エポキシブタン、1,2−エポキシペンタン、2,3−エポキシペンタン、3−メチル−1,2−エポキシペンタン、4−メチル−1,2−エポキシペンタン、4−メチル−2,3−エポキシペンタン、3−エチル−1,2−エポキシペンタン、1,2−エポキシヘキサン、2,3−エポキシヘキサン、3,4−エポキシヘキサン、3−メチル−1,2−エポキシヘキサン、4−メチル−1,2−エポキシヘキサン、5−メチル−1,2−エポキシヘキサン、3−エチル−1,2−エポキシヘキサン、3−プロピル−1,2−エポキシヘキサン、4−エチル−1,2−エポキシヘキサン、5−メチル−1,2−エポキシヘキサン、4−メチル−2,3−エポキシヘキサン、4−エチル−2,3−エポキシヘキサン、2−メチル−3,4−エポキシヘキサン、2,5−ジメチル−3,4−エポキシヘキサン、3−メチル−1,2−エポキシヘプタン、4−メチル−1,2−エポキシヘプタン、5−メチル−1,2−エポキシヘプタン、6−メチル−1,2−エポキシヘプタン、3−エチル−1,2−エポキシヘプタン、3−プロピル−1,2−エポキシヘプタン、3−ブチル−1,2−エポキシヘプタン、4−エチル−1,2−エポキシヘプタン、4−プロピル−1,2−エポキシヘプタン、5−エチル−1,2−エポキシヘプタン、4−メチル−2,3−エポキシヘプタン、4−エチル−2,3−エポキシヘプタン、4−プロピル−2,3−エポキシヘプタン、2−メチル−3,4−エポキシヘプタン、5−メチル−3,4−エポキシヘプタン、5−エチル−3,4−エポキシヘプタン、2,5−ジメチル−3,4−エポキシヘプタン、2−メチル−5−エチル−3,4−エポキシヘプタン、1,2−エポキシヘプタン、2,3−エポキシヘプタン、3,4−エポキシヘプタン、1,2−エポキシオクタン、2,3−エポキシオクタン、3,4−エポキシオクタン、4,5−エポキシオクタン、1,2−エポキシノナン、2,3−エポキシノナン、3,4−エポキシノナン、4,5−エポキシノナン、1,2−エポキシデカン、2,3−エポキシデカン、3,4−エポキシデカン、4,5−エポキシデカン、5,6−エポキシデカン、1,2−エポキシウンデカン、2,3−エポキシウンデカン、3,4−エポキシウンデカン、4,5−エポキシウンデカン、5,6−エポキシウンデカン、1,2−エポキシドデカン、2,3−エポキシドデカン、3,4−エポキシドデカン、4,5−エポキシドデカン、5,6−エポキシドデカン、6,7−エポキシドデカン、エポキシエチルベンゼン、1−フェニル−1,2−プロパン、3−フェニル−1,2−エポキシプロパン、1−フェニル−1,2−エポキシブタン、3−フェニル−1,2−エポキシペンタン、4−フェニル−1,2−エポキシペンタン、5−フェニル−1,2−エポキシペンタン、1−フェニル−1,2−エポキシヘキサン、3−フェニル−1,2−エポキシヘキサン、4−フェニル−1,2−エポキシヘキサン、5−フェニル−1,2−エポキシヘキサン、6−フェニル−1,2−エポキシヘキサン等が挙げられる。
【0062】
上記式(IV)で表される一価エポキシ化合物としては、例えばメチルグリシジルエーテル、エチルグリシジルエーテル、n−プロピルグリシジルエーテル、イソプロピルグリシジルエーテル、n−ブチルグリシジルエーテル、イソブチルグリシジルエーテル、tert−ブチルグリシジルエーテル、1,2−エポキシ−3−ペンチルオキシプロパン、1,2−エポキシ−3−ヘキシルオキシプロパン、1,2−エポキシ−3−ヘプチルオキシプロパン、1,2−エポキシ−4−フェノキシブタン、1,2−エポキシ−4−ベンジルオキシブタン、1,2−エポキシ−5−メトキシペンタン、1,2−エポキシ−5−エトキシペンタン、1,2−エポキシ−5−プロポキシペンタン、1,2−エポキシ−5−ブトキシペンタン、1,2−エポキシ−5−ペンチルオキシペンタン、1,2−エポキシ−5−ヘキシルオキシペンタン、1,2−エポキシ−5−フェノキシペンタン、1,2−エポキシ−6−メトキシヘキサン、1,2−エポキシ−6−エトキシヘキサン、1,2−エポキシ−6−プロポキシヘキサン、1,2−エポキシ−6−ブトキシヘキサン、1,2−エポキシ−6−ヘプチルオキシヘキサン、1,2−エポキシ−7−メトキシヘプタン、1,2−エポキシ−7−エトキシヘプタン、1,2−エポキシ−7−プロポキシヘプタン、1,2−エポキシ−7−ブトキシヘプタン、1,2−エポキシ−8−メトキシオクタン、1,2−エポキシ−8−エトキシオクタン、1,2−エポキシ−8−ブトキシオクタン、グリシドール、3,4−エポキシ−1−ブタノール、4,5−エポキシ−1−ペンタノール、5,6−エポキシ−1−ヘキサノール、6,7−エポキシ−1−ヘプタノール、7,8−エポキシ−1−オクタノール、8,9−エポキシ−1−ノナノール、9,10−エポキシ−1−デカノール、10,11−エポキシ−1−ウンデカノール等が挙げられる。
【0063】
上記式(V)で表される一価エポキシ化合物としては、例えばエチレングリコールモノグリシジルエーテル、プロパンジオールモノグリシジルエーテル、ブタンジオールモノグリシジルエーテル、ペンタンジオールモノグリシジルエーテル、ヘキサンジオールモノグリシジルエーテル、ヘプタンジオールモノグリシジルエーテル、オクタンジオールモノグリシジルエーテル等が挙げられる。
【0064】
上記式(VI)で表される一価エポキシ化合物としては、例えば3−(2,3−エポキシ)プロポキシ−1−プロペン、4−(2,3−エポキシ)プロポキシ−1−ブテン、5−(2,3−エポキシ)プロポキシ−1−ペンテン、6−(2,3−エポキシ)プロポキシ−1−ヘキセン、7−(2,3−エポキシ)プロポキシ−1−ヘプテン、8−(2,3−エポキシ)プロポキシ−1−オクテン等が挙げられる。
【0065】
上記式(VII)で表される一価エポキシ化合物としては、例えば3,4−エポキシ−2−ブタノール、2,3−エポキシ−1−ブタノール、3,4−エポキシ−2−ペンタノール、2,3−エポキシ−1−ペンタノール、1,2−エポキシ−3−ペンタノール、2,3−エポキシ−4−メチル−1−ペンタノール、2,3−エポキシ−4,4−ジメチル−1−ペンタノール、2,3−エポキシ−1−ヘキサノール、3,4−エポキシ−2−ヘキサノール、4,5−エポキシ−3−ヘキサノール、1,2−エポキシ−3−ヘキサノール、2,3−エポキシ−4−メチル−1−ヘキサノール、2,3−エポキシ−4−エチル−1−ヘキサノール、2,3−エポキシ−4,4−ジメチル−1−ヘキサノール、2,3−エポキシ−4,4−ジエチル−1−ヘキサノール、2,3−エポキシ−4−メチル−4−エチル−1−ヘキサノール、3,4−エポキシ−5−メチル−2−ヘキサノール、3,4−エポキシ−5,5−ジメチル−2−ヘキサノール、3,4−エポキシ−2−ヘプタノール、2,3−エポキシ−1−ヘプタノール、4,5−エポキシ−3−ヘプタノール、2,3−エポキシ−4−ヘプタノール、1,2−エポキシ−3−ヘプタノール、2,3−エポキシ−1−オクタノール、3,4−エポキシ−2−オクタノール、4,5−エポキシ−3−オクタノール、5,6−エポキシ−4−オクタノール、2,3−エポキシ−4−オクタノール、1,2−エポキシ−3−オクタノール、2,3−エポキシ−1−ノナノール、3,4−エポキシ−2−ノナノール、4,5−エポキシ−3−ノナノール、5,6−エポキシ−4−ノナノール、3,4−エポキシ−5−ノナノール、2,3−エポキシ−4−ノナノール、1,2−エポキシ−3−ノナノール、2,3−エポキシ−1−デカノール、3,4−エポキシ−2−デカノール、4,5−エポキシ−3−デカノール、5,6−エポキシ−4−デカノール、6,7−エポキシ−5−デカノール、3,4−エポキシ−5−デカノール、2,3−エポキシ−4−デカノール、1,2−エポキシ−3−デカノール等が挙げられる。
【0066】
上記式(VIII)で表される一価エポキシ化合物としては、例えば1,2−エポキシシクロペンタン、1,2−エポキシシクロヘキサン、1,2−エポキシシクロヘプタン、1,2−エポキシシクロオクタン、1,2−エポキシシクロノナン、1,2−エポキシシクロデカン、1,2−エポキシシクロウンデカン、1,2−エポキシシクロドデカン等が挙げられる。
【0067】
上記式(IX)で表される一価エポキシ化合物としては、例えば3,4−エポキシシクロペンテン、3,4−エポキシシクロヘキセン、3,4−エポキシシクロヘプテン、3,4−エポキシシクロオクテン、3,4−エポキシシクロノネン、1,2−エポキシシクロデセン、1,2−エポキシシクロウンデセン、1,2−エポキシシクロドデセン等が挙げられる。
【0068】
上記一価エポキシ化合物の中では、炭素数が2〜8のエポキシ化合物が好ましい。特に化合物の取り扱いの容易さ、及びEVOHとの反応性の観点から、一価エポキシ化合物の炭素数としては、2〜6がより好ましく、2〜4がさらに好ましい。また一価エポキシ化合物は上記式のうち式(III)又は(IV)で表される化合物であることが特に好ましい。具体的にはEVOHとの反応性及び得られる多層構造体のガスバリア性の観点からは、1,2−エポキシブタン、2,3−エポキシブタン、エポキシプロパン、エポキシエタン及びグリシドールが好ましく、その中でもエポキシプロパン及びグリシドールが特に好ましい。食品包装用途、飲料包装用途、医薬品包装用途などの衛生性を要求される用途においては、エポキシ化合物として、1,2−エポキシブタン、2,3−エポキシブタン、エポキシプロパン、又はエポキシエタンを用いることが好ましく、エポキシプロパンを用いることが特に好ましい。
【0069】
次に、EVOHの製造方法を具体的に説明する。エチレンとビニルエステルとの共重合方法としては、特に限定されず、例えば溶液重合、懸濁重合、乳化重合、バルク重合のいずれであってもよい。また、連続式、回分式のいずれであってもよい。
【0070】
重合に用いられるビニルエステルとしては、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニルなどの脂肪酸ビニルなどを用いることができる。
【0071】
上記重合において、共重合成分として、上記成分以外にも共重合し得る単量体、例えば上記以外のアルケン;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸等の不飽和酸又はその無水物、塩、又はモノ若しくはジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル;アクリルアミド、メタクリルアミド等のアミド;ビニルスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸又はその塩;アルキルビニルエーテル類、ビニルケトン、N−ビニルピロリドン、塩化ビニル、塩化ビニリデンなどを少量共重合させることもできる。また、共重合成分として、ビニルシラン化合物を0.0002モル%以上0.2モル%以下含有することができる。ここで、ビニルシラン化合物としては、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β−メトキシ−エトキシ)シラン、γ−メタクリロイルオキシプロピルメトキシシランなどが挙げられる。この中でビニルトリメトキシシラン、ビニルトリエトキシシランが好適に用いられる。
【0072】
重合に用いられる溶媒としては、エチレン、ビニルエステル及びエチレン−ビニルエステル共重合体を溶解し得る有機溶剤であれば特に限定されない。そのような溶媒として、例えばメタノール、エタノール、プロパノール、n−ブタノール、tert−ブタノール等のアルコール;ジメチルスルホキシドなどを用いることができる。その中で、反応後の除去分離が容易である点で、メタノールが特に好ましい。
【0073】
重合に用いられる触媒としては、例えば2,2−アゾビスイソブチロニトリル、2,2−アゾビス−(2,4−ジメチルバレロニトリル)、2,2−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2−アゾビス−(2−シクロプロピルプロピオニトリル)等のアゾニトリル系開始剤;イソブチリルパーオキサイド、クミルパーオキシネオデカノエイト、ジイソプロピルパーオキシカーボネート、ジ−n−プロピルパーオキシジカーボネート、t−ブチルパーオキシネオデカノエイト、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルハイドロパーオキサイド等の有機過酸化物系開始剤などを用いることができる。
【0074】
重合温度としては、20〜90℃であり、好ましくは40〜70℃である。重合時間としては、2〜15時間であり、好ましくは3〜11時間である。重合率は、仕込みのビニルエステルに対して10〜90%であり、好ましくは30〜80%である。重合後の溶液中の樹脂分は、5〜85%であり、好ましくは20〜70%である。
【0075】
所定時間の重合後又は所定の重合率に達した後、必要に応じて重合禁止剤を添加し、未反応のエチレンガスを蒸発除去した後、未反応のビニルエステルを除去する。未反応のビニルエステルを除去する方法としては、例えば、ラシヒリングを充填した塔の上部から上記共重合体溶液を一定速度で連続的に供給し、塔下部よりメタノール等の有機溶剤蒸気を吹き込み、塔頂部よりメタノール等の有機溶剤と未反応ビニルエステルの混合蒸気を留出させ、塔底部より未反応のビニルエステルを除去した共重合体溶液を取り出す方法などが採用される。
【0076】
次に、上記共重合体溶液にアルカリ触媒を添加し、上記共重合体をけん化する。けん化方法は、連続式、回分式のいずれも可能である。このアルカリ触媒としては、例えば水酸化ナトリウム、水酸化カリウム、アルカリ金属アルコラートなどが用いられる。
【0077】
けん化の条件としては、例えば回分式の場合、共重合体溶液濃度が10〜50質量%、反応温度が30〜65℃、触媒使用量がビニルエステル構造単位1モル当たり0.02〜1.0モル、けん化時間が1〜6時間である。
【0078】
けん化反応後のEVOHは、アルカリ触媒、酢酸ナトリウムや酢酸カリウムなどの副生塩類、その他不純物を含有するため、これらを必要に応じて中和、洗浄することにより除去することが好ましい。ここで、けん化反応後のEVOHを、イオン交換水等の金属イオン、塩化物イオン等をほとんど含まない水で洗浄する際、酢酸ナトリウム、酢酸カリウム等を一部残存させてもよい。
【0079】
樹脂層を構成する樹脂組成物に、実施態様に応じて、リン酸化合物、カルボン酸及びホウ素化合物から選ばれる1種又は複数種の化合物を含有させるとよい。かかるリン酸化合物、カルボン酸又はホウ素化合物を樹脂層の樹脂組成物中に含有することによって、当該多層構造体の各種性能を向上させることができる。
【0080】
具体的には、EVOHを含む樹脂層の樹脂組成物中にリン酸化合物を含有することで、当該多層構造体の溶融成形時の熱安定性を改善することができる。リン酸化合物としては特に限定されず、例えばリン酸、亜リン酸等の各種の酸やその塩等が挙げられる。リン酸塩としては、例えば第1リン酸塩、第2リン酸塩、第3リン酸塩のいずれの形で含まれていてもよく、その対カチオン種としても特に限定されないが、アルカリ金属塩又はアルカリ土類金属塩が好ましい。特に、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素ナトリウム又はリン酸水素カリウムが、熱安定性改善効果が高い点で好ましい。
【0081】
リン酸化合物の含有量(樹脂層の乾燥樹脂組成物中のリン酸化合物のリン酸根換算含有量)の下限としては、1ppmが好ましく、10ppmがより好ましく、30ppmがさらに好ましい。一方、リン酸化合物の含有量の上限としては、10,000ppmが好ましく、1,000ppmがより好ましく、300ppmがさらに好ましい。リン酸化合物の含有量が上記下限より小さいと、溶融成形時の着色が激しくなるおそれがある。特に、熱履歴を重ねるときにその傾向が顕著であるために、上記樹脂組成物ペレットを成形して得られた成形物が回収性に乏しいものとなるおそれがある。逆に、リン酸化合物の含有量が上記上限を超えると、成形物のゲル・ブツが発生し易くなるおそれがある。
【0082】
また、EVOHを含む樹脂層の樹脂組成物中にカルボン酸を含有することで、樹脂組成物のpHを制御し、ゲル化を防止して熱安定性を改善する効果がある。カルボン酸としては、25℃におけるpKaが3.5以上であるものが好ましい。25℃におけるpKaが3.5未満であるシュウ酸、コハク酸、安息香酸、クエン酸などのようなカルボン酸を含有すると、EVOHを含む樹脂組成物のpHの制御が困難となり、耐着色性や層間接着性が不満足なものになるおそれがある。特に、カルボン酸としては、コストなどの観点から酢酸又は乳酸が好ましい。
【0083】
カルボン酸の含有量(樹脂層の乾燥樹脂組成物中のカルボン酸の含有量)の下限としては、1ppmが好ましく、10ppmがより好ましく、50ppmがさらに好ましい。一方、カルボン酸の含有量の上限としては、10,000ppmが好ましく、1,000ppmがより好ましく、500ppmがさらに好ましい。このカルボン酸の含有量が上記下限より小さいと、溶融成形時に着色が発生するおそれがある。逆に、カルボン酸の含有量が上記上限を超えると、層間接着性が不充分となるおそれがある。
【0084】
さらに、EVOHを含む樹脂層の樹脂組成物中にホウ素化合物を含有することで、熱安定性向上の効果がある。詳細には、EVOHからなる樹脂組成物にホウ素化合物を添加した場合、EVOHとホウ素化合物との間にキレート化合物が生成すると考えられ、かかるEVOHを用いることによって、通常のEVOHよりも熱安定性の改善、機械的性質を向上させることが可能である。ホウ素化合物としては、特に限定されるものではなく、例えばホウ酸類、ホウ酸エステル、ホウ酸塩、水素化ホウ素類等が挙げられる。具体的には、ホウ酸類としては、例えばオルトホウ酸(H
3BO
3)、メタホウ酸、四ホウ酸等が挙げられ、ホウ酸エステルとしては、例えばホウ酸トリエチル、ホウ酸トリメチルなどが挙げられ、ホウ酸塩としては、上記各種ホウ酸類のアルカリ金属塩、アルカリ土類金属塩、ホウ砂などが挙げられる。これらの中でもオルトホウ酸が好ましい。
【0085】
ホウ素化合物の含有量(樹脂層の乾燥樹脂組成物中のホウ素化合物のホウ素換算含有量)の下限としては、1ppmが好ましく、10ppmがより好ましく、50ppmがさらに好ましい。一方、ホウ素化合物の含有量の上限としては、10,000ppmが好ましく、2,000ppmがより好ましく、1,000ppmがさらに好ましい。ホウ素化合物の含有量が上記下限より小さいと、ホウ素化合物を添加することによる熱安定性の改善効果が得られないおそれがある。逆に、ホウ素化合物の含有量が上記上限を超えると、ゲル化しやすく、成形不良となるおそれがある。
【0086】
上記リン酸化合物、カルボン酸又はホウ素化合物をEVOHを含む樹脂組成物に含有させる方法は、特に限定されるものではなく、例えばEVOHを含む樹脂組成物のペレット等を調製する際に樹脂組成物に添加して混練する方法が好適に採用される。この樹脂組成物に添加する方法も、特に限定されないが、乾燥粉末として添加する方法、溶媒を含浸させたペースト状で添加する方法、液体に懸濁させた状態で添加する方法、溶媒に溶解させて溶液として添加する方法等が例示される。これらの中で、均質に分散させる観点から、溶媒に溶解させて溶液として添加する方法が好ましい。これらの方法に用いられる溶媒は特に限定されないが、添加剤の溶解性、コスト的メリット、取り扱いの容易性、作業環境の安全性等の観点から水が好適に用いられる。これらの添加の際、後述の金属塩、EVOH以外の樹脂やその他の添加剤などを同時に添加することができる。
【0087】
また、リン酸化合物、カルボン酸、ホウ素化合物を含有させる方法として、それらの物質が溶解した溶液に、上記けん化の後押出機等により得られたペレット又はストランドを浸漬させる方法も、均質に分散させることができる点で好ましい。この方法においても、溶媒としては、上記と同様の理由で、水が好適に用いられる。この溶液に後述する金属塩を溶解させることで、リン酸化合物等と同時に金属塩を含有させることができる。
【0088】
樹脂層を構成する樹脂組成物は、分子量1,000以下の共役二重結合を有する化合物を含有することが好ましい。このような化合物を含有することによって、樹脂層の樹脂組成物の色相が改善されるので、外観の良好な多層構造体とすることができる。このような化合物としては、例えば少なくとも2個の炭素−炭素二重結合と1個の炭素−炭素単結合とが交互に繋がってなる構造の共役ジエン化合物、3個の炭素−炭素二重結合と2個の炭素−炭素単結合とが交互に繋がってなる構造のトリエン化合物、それ以上の数の炭素−炭素二重結合と炭素−炭素単結合とが交互に繋がってなる構造の共役ポリエン化合物、2,4,6−オクタトリエンのような共役トリエン化合物等が挙げられる。また、この共役二重結合を有する化合物には、共役二重結合が1分子中に独立して複数組あってもよく、例えば桐油のように共役トリエンが同一分子内に3個ある化合物も含まれる。
【0089】
上記共役二重結合を有する化合物は、例えばカルボキシル基及びその塩、水酸基、エステル基、カルボニル基、エーテル基、アミノ基、イミノ基、アミド基、シアノ基、ジアゾ基、ニトロ基、スルホン基、スルホキシド基、スルフィド基、チオール基、スルホン酸基及びその塩、リン酸基及びその塩、フェニル基、ハロゲン原子、二重結合、三重結合等の他の各種官能基を有していてもよい。かかる官能基は、共役二重結合中の炭素原子に直接結合されていてもよく、共役二重結合から離れた位置に結合されていてもよい。官能基中の多重結合は上記共役二重結合と共役可能な位置にあってもよく、例えばフェニル基を有する1−フェニルブタジエンやカルボキシル基を有するソルビン酸などもここでいう共役二重結合を有する化合物に含まれる。この化合物の具体例としては、例えば2,4−ジフェニル−4−メチル−1−ペンテン、1,3−ジフェニル−1−ブテン、2,3−ジメチル−1,3−ブタジエン、4−メチル−1,3−ペンタジエン、1−フェニル−1,3−ブタジエン、ソルビン酸、ミルセン等を挙げることができる。
【0090】
この共役二重結合を有する化合物における共役二重結合とは、2,3−ジメチル−1,3−ブタジエン、ソルビン酸のような脂肪族同士の共役二重結合のみならず、2,4−ジフェニル−4−メチル−1−ペンテン、1,3−ジフェニル−1−ブテンのような脂肪族と芳香族との共役二重結合も含まれる。但し、外観がより優れた多層構造体を得る観点からは、上記脂肪族同士の共役二重結合を含む化合物が好ましく、またカルボキシル基及びその塩、水酸基等の極性基を有する共役二重結合を含む化合物も好ましい。さらに極性基を有しかつ脂肪族同士の共役二重結合を含む化合物が特に好ましい。
【0091】
この共役二重結合を有する化合物の分子量としては、1,000以下が好ましい。分子量が1,000を超えると、多層構造体の表面平滑性、押出安定性等が悪化するおそれがある。
【0092】
この分子量が1,000以下の共役二重結合を有する化合物の含有量の下限としては、奏される効果の点から、0.1ppmが好ましく、1ppmがより好ましく、3ppmがさらに好ましく、5ppm以上が特に好ましい。一方、この化合物の含有量の上限としては、奏される効果の点から、3,000ppmが好ましく、2,000ppmがより好ましく、1,500ppmがさらに好ましく、1,000ppmが特に好ましい。上記共役二重結合を有する化合物の添加方法としては、上述のように重合した後、かつ上記けん化の前に添加するのが、表面平滑性と押出安定性を改善する点で好ましい。この理由については必ずしも明らかではないが、共役二重結合を有する化合物が、けん化の前及び/又はけん化反応中のEVOHの変質を防止する作用を有することに基づくものと考えられる。
【0093】
(金属塩)
当該多層構造体は、樹脂層を構成する樹脂組成物中に、金属塩を含んでいてもよい。このように樹脂組成物が金属塩を含むことによって、当該多層構造体の熱安定性が向上すると共に、溶融成形性が向上する。また、樹脂層間の層間接着性が向上する。そして、樹脂層間の層間接着性が向上することにより、当該多層構造体の耐久性がさらに向上する。かかる金属塩が層間接着性を向上させる理由は、必ずしも明らかではないが、樹脂層間においてEVOHの水酸基同士の親和性が金属塩の存在によってより高くなることが考えられる。また、隣接する樹脂層の一方が、EVOHの水酸基と反応し得る官能基を分子内に有する場合等には、この結合生成反応が、金属塩の存在によって加速されることなども考えられる。なお、金属塩は隣接する樹脂層の樹脂組成物の両方に含有されていてもよく、どちらか一方の樹脂組成物に含有されていてもよい。金属塩は、隣接する樹脂層の少なくとも一方に含まれることで、上述の層間接着性を向上させることができる。
【0094】
金属塩としては、特に限定されるものではないが、アルカリ金属塩、アルカリ土類金属塩又は周期律表の第4周期に記載されるdブロック金属塩が層間接着性をより高める点で好ましい。この中でも、アルカリ金属塩又はアルカリ土類金属塩がさらに好ましく、特にアルカリ金属塩が好ましい。
【0095】
アルカリ金属塩としては、特に限定されないが、例えばリチウム、ナトリウム、カリウム等の脂肪族カルボン酸塩、芳香族カルボン酸塩、リン酸塩、金属錯体等が挙げられる。このアルカリ金属塩としては、具体的には、酢酸ナトリウム、酢酸カリウム、リン酸ナトリウム、リン酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、エチレンジアミン四酢酸のナトリウム塩等が挙げられる。この中でも、酢酸ナトリウム、酢酸カリウム、リン酸ナトリウムが、入手容易である点から特に好ましい。
【0096】
アルカリ土類金属塩としては、特に限定されないが、例えば、マグネシウム、カルシウム、バリウム、ベリリウムなどの酢酸塩又はリン酸塩が挙げられる。この中でも、マグネシウム又はカルシウムの酢酸塩又はリン酸塩が、入手容易である点から特に好ましい。かかるアルカリ土類金属塩を含有させると、溶融成形時における熱劣化した樹脂の成形機のダイ付着量を低減できるという利点もある。
【0097】
周期律表の第4周期に記載されるdブロック金属の金属塩としては、特に限定されないが、例えばチタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛などのカルボン酸塩、リン酸塩、アセチルアセトナート塩等が挙げられる。
【0098】
金属塩の含有量(当該多層構造体全体を基準とする金属元素換算の含有量)の下限としては、1ppmとされており、5ppmがより好ましく、10ppmがさらに好ましく、20ppmが特に好ましい。一方、この金属塩の含有量の上限としては、10,000ppmとされており、5,000ppmがより好ましく、1,000ppmがさらに好ましく、500ppmが特に好ましい。金属塩の含有量が上記下限より小さいと、層間接着性が低くなり、当該多層構造体の耐久性が低くなるおそれがある。逆に、金属塩の含有量が上記上限を超えると、樹脂組成物の着色が激しくなり、多層構造体の外観が悪化するおそれがある。
【0099】
この金属塩を樹脂組成物に含有する方法は、特に限定されるものではなく、上述のような樹脂層の樹脂組成物中にリン酸化合物等を含有する方法と同様の方法が採用される。
【0100】
樹脂層を構成する樹脂組成物は、上記金属塩等以外にも、EVOH以外の種々の成分を含有することができる。そのようなEVOH以外の成分としては、例えば、酸素掃去剤、乾燥剤などが挙げられる。
【0101】
酸素掃去剤は、酸素掃去能(酸素吸収機能)を有する物質である。酸素掃去能とは、与えられた環境から酸素を吸収・消費し、又はその量を減少させる機能をいう。樹脂層を構成する樹脂組成物に含有することができる酸素掃去剤は、そのような性質を有するものであればよく、特に限定されない。樹脂層の樹脂組成物がEVOHを含む上に、酸素掃去剤を含有することによって、酸素掃去能が付加される結果、当該多層構造体のガスバリア性をさらに向上させることができる。酸素掃去剤としては種々のものを用いることができ、例えば、酸素掃去能を有する熱可塑性樹脂、アスコルビン酸等の有機系酸素掃去剤;鉄、亜硫酸塩等の無機系酸素掃去剤などが挙げられる。この中で、酸素掃去性が高く、また当該多層構造体の樹脂組成物に含有させることが容易である観点から、酸素掃去能を有する熱可塑性樹脂が好ましい。
【0102】
(酸素掃去能を有する熱可塑性樹脂)
酸素掃去能を有する熱可塑性樹脂としては、酸素を掃去することができる熱可塑性樹脂であれば特に限定されないが、例えば、炭素−炭素二重結合を有するエチレン系不飽和炭化水素のポリマー又はポリマーのブレンド(分子量1,000以下かつ共役二重結合を有するものを除く)(以下、単に「不飽和炭化水素ポリマー」ともいう。)などが挙げられる。
【0103】
(不飽和炭化水素ポリマー)
不飽和炭化水素ポリマーは、置換基を有していてもよく、非置換であってもよい。非置換の不飽和炭化水素ポリマーは少なくとも1つの脂肪族炭素−炭素二重結合を有しかつ100質量%の炭素及び水素からなる任意の化合物と定義される。また、置換された不飽和炭化水素ポリマーは、少なくとも1つの脂肪族炭素−炭素二重結合を有しそして約50〜99質量%の炭素及び水素からなるエチレン系不飽和炭化水素として定義される。好ましい非置換又は置換の不飽和炭化水素ポリマーは1分子あたり2以上のエチレン系不飽和基を有するものである。より好ましくは、それは2以上のエチレン系不飽和基を有し、かつ1,000に等しいか、あるいはそれより大きい質量平均分子量を有するポリマー化合物である。エチレン系不飽和炭化水素のポリマーのブレンドは、2種またはそれ以上の置換または非置換のエチレン系不飽和炭化水素の混合物からなることができる。
【0104】
非置換の不飽和炭化水素ポリマーの好ましい例は次のものを包含するが、これらに限定されない。ポリイソプレン(例えば、トランス−ポリイソプレン)、ポリブタジエン(例えば1,2−ポリブタジエン)及びそれらのコポリマー(例えば、スチレン−ブタジエン共重合体)等のジエンポリマー;ポリペンテナマー、ポリオクテナマー及びオレフィンの複分解により製造された他のポリマー;スクアレン等のジエンオリゴマー;ジシクロペンタジエン、ノルボルナジエン、5−エチリデン−2−ノルボルネン、その他2以上の炭素−炭素二重結合(共役または非共役)を含有する他のモノマーから誘導されたポリマーまたはコポリマー;β−カロテン等のカロテノイド等。
【0105】
好ましい置換された不飽和炭化水素ポリマーは、酸素含有部分をもつもの、例えば、エステル、カルボン酸、アルデヒド、エーテル、ケトン、アルコール、パーオキシド、及び/又はヒドロパーオキシドを包含するが、これらに限定されない。このような炭化水素の特定の例は、縮合ポリマー、例えば、炭素−炭素二重結合を含有するモノマーから誘導されたポリエステル;不飽和脂肪酸、例えば、オレイン酸、リシノール酸、脱水リシノール酸、並びにリノール酸及びそれらの誘導体、例えば、エステルを包含するが、これらに限定されない。このような炭化水素は(メタ)アリル(メタ)アクリレートを包含する。
【0106】
上記不飽和炭化水素ポリマーにおいては、炭素−炭素二重結合の含有量が、ポリマー100gあたり、0.01〜1.0当量であることが好ましい。ポリマーの二重結合の含量をこのような範囲に制限することによって、当該多層構造体の酸素掃去性及び物理的性質の両方を高く保持することができる。
【0107】
このように二重結合が減少したポリマーは、ホモポリマー、コポリマー、及び/又はポリマーのブレンドであることができる。ポリマーのブレンドはことに望ましい。なぜなら不連続相における物理的性質の変化は、連続相が優位を占めるであろうブレンドの全体の物理的性質へ与える影響が比較的少ないので、不連続相の中に存在する二重結合の大部分を有することが望ましいことがあるからである。
【0108】
ホモポリマーの適当な例は、100g当たり0.91当量の二重結合を有するポリ(オクテナマー)、及び100g当たり0.93当量の二重結合を有するポリ(4−ビニルシクロヘキセン)である。コポリマーの適当な例は、C
1−C
4アルキルアクリレート及びメタクリレートを包含する。他の例は、1,3−ブタジエン、イソプレン、5−エチリデン−2−ノルボルネン、4−ビニルシクロヘキセン、1,4−ヘキサジエン、1,6−オクタジエン等と、1種または2種以上のビニルモノマー、例えばエチレン、プロピレン、スチレン、酢酸ビニル、及び/又はα−オレフィンとから誘導されたコポリマーを包含する。特定の例は、エチレン、プロピレン及び5−エチリデン−2−ノルボルネンのターポリマーである。このようなEPDMエラストマーは典型的には3〜14質量%の5−エチリデン−2−ノルボルネンを含有する。このようなポリマーは、ポリマーの100g当たり0.01〜1.0当量の二重結合の要件の範囲内である。また、水素化された二重結合の少なくとも約50%をもつ、部分的に水素化されたエチレン系不飽和のポリマー(例えば、ポリブタジエン)は適当である。ポリマーのブレンドの例は多数である。EPDM及び20〜40%のポリブタジエン、EPDM及び20〜40%のポリ(オクテナマー)のブレンド、並びにポリブタジエン及び飽和ポリオレフィンの50/50ブレンドはことに好ましい。
【0109】
(実質的に主鎖のみに炭素−炭素二重結合を有する熱可塑性樹脂)
このような不飽和炭化水素ポリマーの中でも、酸素掃去性が非常に高く、また、当該多層構造体の樹脂組成物に非常に容易に含有させることができる観点から、実質的に主鎖のみに炭素−炭素二重結合を有する熱可塑性樹脂(D)(以下、単に「熱可塑性樹脂(D)」ともいう。)(分子量1,000以下かつ共役二重結合を有するものを除く)が特に好ましい。ここで、当該熱可塑性樹脂(D)が「実質的に主鎖のみに炭素−炭素二重結合を有する」とは、当該熱可塑性樹脂(D)の主鎖に存在する炭素−炭素二重結合が分子内の主鎖又は側鎖に含まれる全炭素−炭素二重結合の90%以上であることをいう。主鎖に存在する炭素−炭素二重結合は、好ましくは93%以上、さらに好ましくは95%以上である。
【0110】
上記熱可塑性樹脂(D)は、その分子内に炭素−炭素二重結合を有するため、酸素と効率よく反応することが可能であり、高い酸素掃去能が得られる。このような熱可塑性樹脂(D)を、樹脂層を構成する樹脂組成物に含有させることによって、当該多層構造体のガスバリア性を格段に向上させることができる。上記炭素−炭素二重結合とは、共役二重結合を包含するが、芳香環に含まれる多重結合は包含しない。
【0111】
熱可塑性樹脂(D)に含まれる炭素−炭素二重結合の含有量の下限としては、0.001当量/gが好ましく、0.005当量/gがより好ましく、0.01当量/gがさらに好ましい。一方、炭素−炭素二重結合の含有量の上限としては、0.04当量/gが好ましく、0.03当量/gがより好ましく、0.02当量/gがさらに好ましい。炭素−炭素二重結合の含有量が上記下限より小さいと、得られる多層構造体の酸素掃去機能が不十分となるおそれがある。逆に、炭素−炭素二重結合の含有量が上記上限を超えると、当該樹脂組成物の着色が激しくなり、得られる多層構造体の外観が悪化するおそれがある。
【0112】
上記のように、上記熱可塑性樹脂(D)は実質的に主鎖のみに炭素−炭素二重結合を有するため、酸素との反応により、側鎖の二重結合の開裂に伴う低分子量分解物の発生が極めて少ない。低分子量の分解物の一部は不快臭気物質であるが、このような分解物を生じにくいため不快臭を発生することが少ない。従って、そのような熱可塑性樹脂(D)を樹脂層を構成する樹脂組成物に含有させることによって、高いガスバリア性と耐久性を有するとともに、酸素掃去により不快な臭気を発生しない多層構造体とすることができる。これに対して、炭素−炭素二重結合が側鎖に多い熱可塑性樹脂を使用した場合、酸素掃去性の点では問題とならないが、上述のように側鎖の二重結合の開裂によって分解物が生成する。そのため、不快な臭気が発生し、周囲の環境を著しく損ねるおそれがある。
【0113】
上記熱可塑性樹脂(D)において、主鎖中の炭素−炭素二重結合が酸素と反応した際には、アリル炭素(二重結合に隣接する炭素)の部位で酸化を受けるため、アリル炭素は4級炭素でないことが好ましい。さらに、主鎖の開裂によっても低分子量の分解物が生成する可能性は否定できないので、これを抑制するためにも、上記アリル炭素は、置換されていない炭素、すなわち、メチレン炭素であることが好ましい。以上の点から、熱可塑性樹脂(D)は、下記式(X)及び(XI)で示される単位のうちの少なくとも1種を有することが好ましい。
【0116】
上記式(X)及び(XI)中、R
13、R
14、R
15及びR
16はそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルアリール基、−COOR
17、−OCOR
18、シアノ基又はハロゲン原子を表す。R
15とR
16とはメチレン基又はオキシメチレン基によって環を形成していてもよい(但し、R
15とR
16とが共に水素原子の場合を除く)。R
17及びR
18は置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換基を有していてもよいアルキルアリール基を表す。
【0117】
上記R
13、R
14、R
15及びR
16がアルキル基である場合の炭素原子数は、好ましくは1〜5であり、アリール基である場合の炭素原子数は好ましくは6〜10であり、アルキルアリール基である場合の炭素原子数は好ましくは7〜11である。そのようなアルキル基の具体例としてはメチル基、エチル基、プロピル基、ブチル基が、アリール基の具体例としてはフェニル基が、アルキルアリール基の例としてはトリル基が、ハロゲン原子の例としては塩素原子が、それぞれ挙げられる。
【0118】
また熱可塑性樹脂(D)に含まれていてもよい置換基としては、各種親水性基が挙げられる。ここでいう親水性基としては水酸基、炭素数1〜10のアルコキシ基、アミノ基、アルデヒド基、カルボキシル基、金属カルボキシレート基、エポキシ基、エステル基、カルボン酸無水物基、ボロン酸基、水の存在下でボロン酸基に転化し得るホウ素含有基(例えば、ボロン酸エステル基、ボロン酸無水物基、ボロン酸塩基等)等が挙げられる。これらの親水性基の中で、アルデヒド基、カルボキシル基、金属カルボキシレート基、エポキシ基、エステル基、カルボン酸無水物基、ボロン酸基、水の存在下でボロン酸基に転化し得るホウ素含有基が、EVOHの水酸基と反応し得る点で好ましい。上記熱可塑性樹脂(D)がこれらの親水性基を含有することによって、当該熱可塑性樹脂(D)が樹脂層のEVOHを含む樹脂組成物中の分散性が高くなって、得られる多層構造体の酸素掃去機能が向上する。また、それとともに、当該親水性基が隣接する樹脂層のEVOHの水酸基と反応して化学的な結合を形成することによって、樹脂層間の層間接着性が向上し、得られる多層構造体のガスバリア性等の特性及び耐久性がさらに向上する。
【0119】
また、上記熱可塑性樹脂(D)のうちでも、当該樹脂の上記式(X)及び(XI)の各単位において、R
13、R
14、R
15及びR
16のすべてが水素原子である化合物が、臭気を防止する観点からは特に好ましい。この理由については必ずしも明らかではないが、R
13、R
14、R
15及びR
16が水素原子以外である場合には、熱可塑性樹脂(D)が酸素と反応する際にこれらの基が、酸化、切断されて臭気物質に変化する場合があるためと推定される。
【0120】
上記熱可塑性樹脂(D)において、上記式(X)及び(XI)の単位の中でも、ジエン化合物由来の単位であることが好ましい。ジエン化合物由来の単位であることによって、そのような構造単位を有する熱可塑性樹脂(D)を容易に製造することができる。このようなジエン化合物としては、イソプレン、ブタジエン、2−エチルブタジエン、2−ブチルブタジエン、クロロプレンなどが挙げられる。これらの1種のみを使用してもよく、複数種を併用してもよい。これらジエン化合物由来の単位を含む熱可塑性樹脂(D)の例としては、ポリブタジエン、ポリイソプレン、ポリクロロプレン、ポリオクテニレンなどが挙げられる。これらの中でも、酸素掃去機能が特に高い点で、ポリブタジエン、ポリオクテニレンが特に好ましい。また、熱可塑性樹脂(D)として、上記構造単位以外の構造単位を共重合成分として含有する共重合体も使用可能である。そのような共重合成分としてはスチレン、アクリロニトリル、プロピレンなどが挙げられる。熱可塑性樹脂(D)がこのような共重合体である場合、上記式(X)及び(XI)で示される単位の含有量は、当該熱可塑性樹脂(D)の全構造単位に対するその合計の単位数が50モル%以上が好ましく、70モル%以上がより好ましい。
【0121】
当該熱可塑性樹脂(D)の数平均分子量の下限としては、1,000が好ましく、5,000がより好ましく、10,000がさらに好ましく、40,000が特に好ましい。一方、この数平均分子量の上限としては、500,000が好ましく、300,000がより好ましく、250,000がさらに好ましく、200,000が特に好ましい。熱可塑性樹脂(D)の分子量が1,000未満の場合又は500,000を超える場合には、得られる多層構造体の成形加工性、及びハンドリング性に劣り、また多層構造体の強度や伸度などの機械的性質が低下するおそれがある。また、樹脂層を構成する樹脂組成物中における分散性が低下し、その結果、多層構造体のガスバリア性及び酸素掃去性能が低下するおそれがある。熱可塑性樹脂(D)は1種類又は複数種を用いることができる。
【0122】
上記のような実質的に主鎖のみに炭素−炭素二重結合を有する熱可塑性樹脂(D)を製造する方法としては、熱可塑性樹脂(D)の種類によっても異なるが、例えば、ポリブタジエン(cis−1,4−ポリブタジエン)の場合、触媒としてコバルト系や、ニッケル系触媒を使用することにより合成することができる。触媒の具体例としては、例えば、CoCl
2・2C
5H
5N錯体とジエチルアルミニウムクロライドの組み合わせなどが挙げられる。使用可能な溶媒としては、不活性な有機溶媒が挙げられ、中でも、炭素原子数が6〜12の炭化水素、例えばヘキサン、ヘプタン、オクタン、デカンなどの脂環式炭化水素類、またはトルエン、ベンゼン、キシレンなどの芳香族炭化水素類が好適である。重合は通常、−78℃〜70℃の温度範囲で、1〜50時間の時間の範囲で行われる。
【0123】
なお、重合後に存在する炭素−炭素二重結合は、多層構造体の機械的性質やガスバリア性や酸素掃去性能等の効果を阻害しない範囲で、その一部が水素により還元されていても構わない。このとき、特に側鎖に残存する炭素−炭素二重結合を選択的に水素によって還元することが好ましい。
【0124】
上記酸素掃去能を有する熱可塑性樹脂の樹脂組成物中の含有量としては特に限定されないが、0.1質量%以上30質量%以下が好ましく、2質量%以上20質量%以下がさらに好ましい。この含有量が上記下限未満の場合は、酸素掃去能を十分に発揮することができない場合がある。逆に、この含有量が上記上限を超える場合は、EVOHが備える性能を十分に発揮できない場合がある。
【0125】
また、上記酸素掃去能を有する熱可塑性樹脂は、樹脂組成物(樹脂層)中において、粒子状に分散して含有されていることが好ましい。このような状態で含有されることで、EVOHの性能を維持しつつ、酸素掃去能をより効果的に発揮することができる。なお、この際の粒子径としては、酸素掃去能をより効果的に発揮させる点から、10μm以下が好ましく、5μm以下がより好ましく、1μm以下がさらに好ましい。
【0126】
樹脂層を構成する樹脂組成物は、上記不飽和炭化水素ポリマー(熱可塑性樹脂(D)を含む)とともに、さらに遷移金属塩(E)(上記金属塩を除く)を含むことが好ましい。このような遷移金属塩(E)を、上記不飽和炭化水素ポリマーとともに含有することによって、得られる多層構造体の酸素掃去機能がさらに向上する結果、ガスバリア性がさらに高くなる。この理由としては、当該遷移金属塩(E)が、上記不飽和炭化水素ポリマーと多層構造体の内部に存在する酸素又は当該多層構造体中を透過しようとする酸素との反応を促進するためであることなどが考えられる。
【0127】
遷移金属塩(E)を構成する遷移金属イオンとしては、鉄、ニッケル、銅、マンガン、コバルト、ロジウム、チタン、クロム、バナジウム又はルテニウム等の各イオンが挙げられるが、これらに限定されない。これらの中でも、鉄、ニッケル、銅、マンガン又はコバルトの各イオンが好ましく、マンガン又はコバルトの各イオンがより好ましく、コバルトイオンが特に好ましい。
【0128】
遷移金属塩(E)を構成する遷移金属イオンの対アニオンとしては、カルボン酸イオン又はハロゲンアニオンなどが挙げられる。対アニオンの具体例としては、例えば、酢酸、ステアリン酸、アセチルアセトン、ジメチルジチオカルバミン酸、パルミチン酸、2−エチルへキサン酸、ネオデカン酸、リノール酸、トール酸、オレイン酸、樹脂酸、カプリン酸、ナフテン酸などから水素イオンが電離して生成するアニオン、塩化物イオン又はアセチルアセトネートイオンなどが挙げられるが、これらに限定されない。特に好ましい遷移金属塩の具体例としては、2−エチルへキサン酸コバルト、ネオデカン酸コバルト又はステアリン酸コバルトが挙げられる。また、遷移金属塩(E)は重合体性の対アニオンを有する、いわゆるアイオノマーであってもよい。
【0129】
上記遷移金属塩(E)の含有量の下限値としては、樹脂層を構成する樹脂組成物に対して、金属元素換算で1ppmが好ましく、5ppmがより好ましく、10ppmがさらに好ましい。一方、この遷移金属塩(E)の含有量の上限値は、50000ppmが好ましく、10000ppmがより好ましく、5000ppmがさらに好ましい。遷移金属塩(E)の含有量が上記下限より小さいと、得られる多層構造体の酸素掃去効果が不十分となるおそれがある。一方、遷移金属塩(E)の含有量が上記上限を超えると、樹脂層を構成する樹脂組成物の熱安定性が低下し、分解ガスの発生や、ゲル・ブツの発生が著しくなるおそれがある。
【0130】
(乾燥剤)
上記乾燥剤は、水分を吸収し、与えられた環境から除去することができる物質である。当該多層構造体の樹脂組成物に含有することができる乾燥剤は、そのような性質を有するものである限り、特に限定されない。樹脂層の樹脂組成物がこのような乾燥剤を含有することによって乾燥状態に保たれるため、EVOHを含む樹脂層のガスバリア性を高度に保つことができる。
【0131】
このような乾燥剤としては、例えば、水和物形成性の塩類、すなわち結晶水として水分を吸収する塩類、とりわけリン酸塩(上記リン酸塩を除く)、特にその無水物がその効果において最も適しているが、その他の水和物形成性の塩類、例えばホウ酸ナトリウム、硫酸ナトリウム等の塩類、特にその無水物も適しており、またその他の吸湿性化合物、例えば塩化ナトリウム、硝酸ナトリウム、砂糖、シリカゲル、ベントナイト、モレキュラーシーブ、高級水性樹脂等も使用可能である。これらは単独で又は複数種を使用することもできる。
【0132】
上記乾燥剤はEVOHを含む樹脂層のマトリックス中に微細な粒子として分散されていることが好ましく、とりわけ乾燥剤粒子が長径10μm以上の粒子の体面積平均径が30μm以下、好適には25μm、最適には20μm以下であると効果的であり、かかる微細な分散状態を形成せしめると従来達せられたことのない高度なガスバリア性の多層構造体を得ることができる。このような微細な分散状態を有する組成物は目的にあった特殊な加工方法を注意深く組合せることによりはじめて達成することができる。樹脂層を構成する樹脂組成物中の乾燥剤粒子のうち長径10μm以上の粒子の体面積平均径がこの樹脂組成物を層として含む多層構造体のガスバリア性に大きい影響を与える。この理由は必ずしも明らかではないが、粒径が大きい粒子は吸湿効果あるいはEVOHのガスバリア性に特に不都合な効果を有するものと推定される。
【0133】
樹脂層を構成するEVOHと乾燥剤の使用比率は特に制限はないが、質量比で97:3〜50:50とりわけ95:5〜70:30の範囲の比率が好ましい。
【0134】
上記乾燥剤の中でも、水和物を形成可能なリン酸塩(上記リン酸塩を除く)が特に好ましい。多くのリン酸塩は複数の水分子を結晶水として含む水和物を形成するので、単位質量あたりの吸収する水の質量が多く、当該多層構造体のガスバリア性の向上への寄与が大きい。また、リン酸塩を含むことの可能な結晶水の分子数は、湿度の上昇に従って段階的に増加することが多いので、湿度環境の変化に伴って、徐々に水分を吸収することができる。
【0135】
このようなリン酸塩としてはリン酸ナトリウム(Na
3PO
4)、リン酸三リチウム(Li
3PO
4)、リン酸水素二ナトリウム(Na
2HPO
4)、リン酸二水素ナトリウム(NaH
2PO
4)、ポリリン酸ナトリウム、リン酸リチウム、リン酸水素二リチウム、リン酸二水素リチウム、ポリリン酸リチウム、リン酸カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸一水素ナトリウム、ポリリン酸カリウム、リン酸カルシウム(Ca
3(PO
4)
2)、リン酸水素カルシウム(CaHPO
4)、リン酸二水素カルシウム(Ca(H
2PO
4)
2)、ポリリン酸カルシウム、リン酸アンモニウム、リン酸水素二アンモニウム、リン酸二水素アンモニウム、ポリリン酸アンモニウムなどが例示される。ここで、ポリリン酸塩は、二リン酸塩(ピロリン酸塩)、三リン酸塩(トリポリリン酸塩)などを含むものである。これらのリン酸塩のうち、結晶水を含まない無水物が好適である。また、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウムが好適である。
【0136】
上記リン酸塩は、通常粉体である。通常市販されているリン酸塩の粉体は、平均粒径が15〜25μmで、含まれる最大粒子の寸法が40〜100μmである。このような大きい粒子を含有する粉体を用いたのでは、当該多層構造体の樹脂層のガスバリア性が不十分になるおそれがある。当該多層構造体の樹脂層の厚さよりも大きい粒子を含有すると、ガスバリア性が大きく低下するおそれがある。従って、リン酸塩の粉体の粒径は、当該多層構造体の樹脂層の厚さ程度以下とすることが好ましい。
【0137】
すなわち、リン酸塩の粉体は、その平均粒径が10μm以下であることが好ましい。平均粒径は、より好適には1μm以下である。このような平均粒径は例えば、光散乱法などによって粒度分析計を用いて測定することができる。
【0138】
乾燥剤としてリン酸塩を用いる場合は、分散剤と共に配合するのが好ましい。このような分散剤を配合することによって、EVOHを含む樹脂組成物中に乾燥剤であるリン酸塩を良好に分散させることができる。このような分散剤としては、例えば、脂肪酸塩、グリセリン脂肪酸エステル及び脂肪酸アミドなどが挙げられる。なお、芳香族カルボン酸のグリセリンエステルは、一般的に室温において液体であり、リン酸塩とドライブレンドするのに適していない。
【0139】
上記脂肪酸塩としては、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等が挙げられる。上記グリセリン脂肪酸エステルとしては、グリセリンモノステアリン酸エステル、モノデカノイルオクタノイルグリセリド等が挙げられる。上記脂肪酸アミドとしては、エチレンビスステアリン酸アミド等が挙げられる。
【0140】
これらの分散剤のうちでも、リン酸塩粉体の滑り性改善や、溶融混練時の押出機のスクリーン閉塞防止の観点からは脂肪酸塩が好適に用いられる。中でも、カルシウム塩、亜鉛塩等が好適である。また、特に良好な分散性を得る観点からはグリセリン脂肪酸エステルが好適に用いられる。中でも、グリセリンのモノ又はジ脂肪酸エステルが好ましく、グリセリンモノ脂肪酸エステルがより好ましく、グリセリンモノステアリン酸エステルが特に好ましい。
【0141】
また、これらの分散剤は、炭素数8〜40の化合物からなることが好ましい。このような範囲の炭素数を有することによって良好な分散性が得られる。より好適な炭素数の下限値は12であり、より好適な炭素数の上限値は30である。
【0142】
分散剤の配合量はリン酸塩100質量部に対して1〜20質量部が好ましい。分散剤の含有量がリン酸塩100質量部に対して1質量部未満である場合、リン酸塩の凝集物の発生を抑制することができない。分散剤の含有量は、好適には2質量部以上であり、より好適には3質量部以上である。一方、分散剤の含有量がリン酸塩100質量部に対して20質量部を超える場合、樹脂組成物のペレットの滑りが大きくなりすぎて押出機へのフィードが困難になるとともに、多層構造体を製造する際の層間接着力が低下する。分散剤の含有量は、好適には15質量部以下であり、より好適には10質量部以下である。
【0143】
樹脂層を構成する樹脂組成物は、本発明の目的を損なわない範囲で、上記以外に、EVOH以外の他の樹脂、又は熱安定剤、紫外線吸収剤、酸化防止剤、着色剤、フィラーなど種々の添加剤を含んでいてもよい。樹脂層を構成する樹脂組成物が上記以外の添加剤を含む場合、その量は樹脂組成物の総量に対して50質量%以下であることが好ましく、30質量%以下であることがよりこのましく、10質量%以下であることが特に好ましい。
【0144】
樹脂層の樹脂組成物における温度210℃、剪断速度10/秒での溶融粘度(η
1)が1×10
2Pa・s以上1×10
4Pa・s以下、温度210℃、剪断速度1,000/秒での溶融粘度(η
2)が1×10
1Pa・s以上1×10
3Pa・s以下であり、かつこれらの溶融粘度比(η
2/η
1)が下記式(1)を満たすことが好ましい。
−0.8≦(1/2)log
10(η
2/η
1)≦−0.1 ・・・(1)
【0145】
溶融粘度(η
1)が1×10
2Pa・sより小さいと、溶融共押出しラミネートや溶融押出しなどによる押出し製膜時に樹脂の流れ斑が生じ、均一で良好な外観を有する多層構造体を得ることが困難になるおそれがある。また、ネックインや膜揺れが著しくなり、得られる多層構造体や積層前の樹脂層の厚み斑や幅の縮小が大きくなって、均質で目的寸法どおりの多層構造体を得ることができなくなるおそれがある。逆に、溶融粘度(η
1)が1×10
4Pa・sを超える場合も、溶融共押出しラミネートや溶融押出しなどによる押出し製膜時に樹脂の流れ斑が大きくなり、均一で良好な外観を有する多層構造体を得ることが困難になるおそれがある。また、100m/分を超えるような高速引き取り条件下で溶融共押出しラミネートや溶融押出成形を行う場合に膜切れが起こり易くなり、高速成膜性が顕著に損なわれ、またダイスウエルが起こり易くなって薄肉の多層構造体や積層前の樹脂層を得るのが困難になるおそれがある。
【0146】
また、溶融粘度(η
2)が、1×10
1Pa・sより小さいと、溶融共押出しラミネートや溶融押出などによる押出し成膜時に樹脂の押出し斑が生じ、均一で良好な外観を有する多層構造体を得ることが困難になるおそれがある。また、ネックインや膜揺れが著しくなって、得られる多層構造体や積層する前の樹脂層の厚み斑や幅の縮小が大きくなるおそれがある。逆に、溶融粘度(η
2)が1×10
3Pa・sを超えると、押出機に加わるトルクが高くなりすぎ押出し斑やウエルドラインが発生し易くなるおそれがある。
【0147】
さらに、上記溶融粘度比(η
2/η
1)から算出される(1/2)log
10(η
2/η
1)の値が−0.8より小さいと、溶融共押出しラミネートや溶融押出などによる押出し成膜時に膜切れを生じ易くなって高速成膜性が損なわれるおそれがある。一方、(1/2)log
10(η
2/η
1)の値が−0.1を超えると、溶融共押出しラミネートや溶融押出による押出し成膜時にネックインや膜揺れが起こって、得られる多層構造体や積層前の樹脂層に厚み斑や幅の縮小などを生じるおそれがある。かかる観点から、この(1/2)log
10(η
2/η
1)の値は、−0.6以上であることがより好ましく、−0.2以下であることがより好ましい。なお、上記式における(1/2)log
10(η
2/η
1)の値は、溶融粘度を縦軸とし、剪断速度を横軸とする両自然対数グラフにおける溶融粘度(η
1)及び溶融粘度(η
2)の2点を結ぶ直線の傾きとして求められる。また、本明細書でいう溶融粘度(η
1)及び溶融粘度(η
2)の値は、下記実施例欄に記載した方法で測定したときの値をいう。
【0148】
樹脂層の樹脂組成物は、その融点より10〜80℃高い温度の少なくとも1点における溶融混練時間とトルクの関係において、粘度挙動安定性(M
100/M
20、但し、M
20は混練開始20分後のトルク、M
100は混練開始から100分後のトルクを表す)の値が0.5〜1.5の範囲であることが好ましい。粘度挙動安定性の値は1に近いほど粘度変化が少なく、熱安定性(ロングラン性)に優れていることを示す。
【0149】
〈樹脂層間の関係〉
当該多層構造体において、EVOHを含む樹脂組成物からなる樹脂層は、EVOHを含むものである限り、特に限定されるものではない。当該多層構造体は、例えば、同一の樹脂組成物からなる樹脂層で構成されていてもよく、組成、配合比及びEVOHの構造からなる群より選ばれる少なくとも1種が互いに異なる樹脂組成物からなる樹脂層を含んでいてもよい。同一の樹脂組成物とは、組成、配合比及びEVOHの構造が実質的に同一である樹脂組成物をいう。当該多層構造体は、隣接する4層以上の樹脂層が同一の樹脂組成物から形成されていると、層間接着性が向上し、非常に高いガスバリア性等の特性を維持する耐久性がさらに向上するため好ましい。また、多層構造体の原料となる樹脂組成物の種類を低減することができ、このような非常にガスバリア性に優れかつ耐久性の高い多層構造体を簡便に製造することができる。当該多層構造体の全ての樹脂層が同一の樹脂組成物で形成されているとさらに好ましい。
【0150】
上述の組成、配合比及びEVOHの構造からなる群より選ばれる少なくとも1種が異なる樹脂組成物とは、異なる構造のEVOHを含むか、EVOH以外の成分の種類や含有量が異なるか、又はその両方である樹脂組成物であることをいう。EVOHの構造が異なる点として具体的には、エチレン単位含有量、けん化度、重合度、エチレン単位及びビニルアルコール単位以外の構造単位の種類もしくはその含有量、又はEVOHが有する官能基の種類もしくはその含有量などが挙げられる。また、上記EVOH以外の成分の種類としては特に限定されないが、例えば、金属塩、酸素掃去剤、乾燥剤、EVOH以外の樹脂、熱安定剤、紫外線吸収剤、酸化防止剤、着色剤、フィラーなどが挙げられる。ここで、EVOH以外の成分の含有量が互いに異なるとは、一方の層の樹脂組成物がその成分を含有しない場合も含まれる。
【0151】
このように、当該多層構造体が、組成、配合比及びEVOHの構造からなる群より選ばれる少なくとも1種が互いに異なる樹脂組成物からなる樹脂層を2種有する場合、これらの樹脂層をそれぞれA層、B層とする。このようなA層及びB層を有することによって、A・B各層におけるEVOHの構造やEVOH以外の成分の種類や含有量を互いに相違させつつ選択することにより、当該多層構造体のガスバリア性等の特性を調整することができる。また、それら特性以外の種々の特性をさらに併せ持つ多層構造体とすることもできる。
【0152】
当該多層構造体におけるA層及びB層の積層順としては、特に限定されるものではなくA層及びB層の各機能の相補的関係に基づく相乗効果や、両層間の層間接着性等を効果的に発現させるためには、少なくともA層及びB層が隣接する個所を有する構造であることが好ましく、例えば、
(1)A,B,A,B・・・A,B(つまり、(AB)
n)
(2)A,B,A,B・・・・・A(つまり、(AB)
nA)
(3)B,A,B,A・・・・・B(つまり、(BA)
nB)
(4)A,A,B,B・・・B,B(つまり、(AABB)
n)
などの積層順を採用することができる。また、A層及びB層に加えて、EVOHを含み、組成、配合比及びEVOHの構造からなる群から選ばれる少なくとも1種がA層及びB層とは異なる樹脂組成物からなるC層を有する場合には、例えば、
(5)A,B,C・・・A,B,C(つまり、(ABC)
n)
などの積層順を採用することができる。
【0153】
特に、A層及びB層の積層順としては、上記(1)、(2)又は(3)のように、A層とB層とが交互に積層されていることが好ましい。このように交互に積層されていることによって、A層及びB層による相乗効果を全層間で発揮させることができ、相乗効果で得られる特性を有効に発現させることができる。また、層間接着力を全層間で発揮させることができ、層間剥離等の欠陥の発生が低減され、その結果、当該多層構造体のガスバリア性等の特性及びその特性の耐久性を高めることができる。
【0154】
このようにEVOH含有樹脂組成物からなるA層及びB層の2種の層を合計4層以上積層させることによって、非常に高いガスバリア性、延伸性及び熱成形性を併せ持つ多層構造体とすることができる。また、当該多層構造体は、A層及びB層の積層構造により、延伸や屈曲等の変形を繰り返して使用してもガスバリア性を保持できる多層構造体とすることができる。当該多層構造体はA層及びB層の2種に加え、EVOHを含み、組成、配合比及びEVOHの構造からなる群から選ばれる少なくとも1種がA層及びB層とは異なる樹脂組成物からなるC層等を有することも可能である。
【0155】
A層及びB層を構成するEVOHの構造が互いに異なることによって、得られる多層構造体のガスバリア性、延伸性及び熱成形性を調整又は向上することができる。例えば、A層を構成するEVOHとB層を構成するEVOHとのエチレン単位含有量を異なるものにすることによって、当該多層構造体の延伸性及び熱成形性を向上させることができ、種々の用途に使用し易い多層構造体とすることができる。このようなA層及びB層のEVOHのエチレン単位含有量の差の下限としては、3モル%が好ましく、5モル%がより好ましく、7モル%がさらに好ましい。一方このA層及びB層のEVOHのエチレン含有量の差の上限としては、70モル%が好ましく、50モル%がより好ましく、30モル%がさらに好ましい。エチレン含有量の差が上記下限より小さいと、当該多層構造体の延伸性及び熱成形性の向上度合いが小さくなるおそれがある。逆に、エチレン単位含有量の差が上記上限を超えると、当該多層構造体の延伸性がかえって悪化する傾向がある。
【0156】
上記A層及びB層を有する当該多層構造体においては、EVOH以外の成分を、A層及びB層のうち一方の樹脂組成物にのみ含有させることもできる。このようにEVOH以外の成分をA層及びB層の一方にのみに含有させることによって、そのような成分が当該多層構造体の特性を低下させるおそれのある場合であっても、その不都合を最小限に抑制することができる。また、EVOH以外の成分の含有層と非含有層とが相補的に関連し合って、相乗効果により高度な機能を発揮することも可能になる。
【0157】
例えば、A層及びB層の一方にのみ、酸素掃去能を有する熱可塑性樹脂、好ましくは不飽和炭化水素ポリマー、さらに好ましくは熱可塑性樹脂(D)を含有することで、一方の熱可塑性樹脂含有層において酸素掃去により発生した臭気成分が、他方の非含有層のガスバリア性によってその拡散が抑制されるので、当該多層構造体からの臭気の発生を抑制することができる。このように、当該多層構造体の非常に高いガスバリア性をさらに高めるために含有させる酸素掃去剤の不都合な点を解消しつつ、より高いガスバリア性を発揮することを可能にする。
【0158】
また、A層及びB層の一方にのみ、乾燥剤を含有することで、一方の乾燥剤含有層において乾燥剤の存在によりガスバリア性が低下するおそれがあるものの、ガスバリア性の低下をこの乾燥剤含有層のみに留めることができ、他方の非含有層には、乾燥剤による湿度低減効果が及ぶため、多層構造体全体としてはガスバリア性を向上させることができる。
【0159】
このようなA層及びB層の相補的関係による相乗効果は、A層及びB層が隣接していることによって効果的に発揮され、A層及びB層が交互に積層されていることによって、さらに効果的に発揮される。
【0160】
A層及びB層を構成する各樹脂組成物の粘度の関係に関し、温度210℃、剪断速度1,000/秒でのA層の樹脂組成物の溶融粘度(η
2A)とB層の樹脂組成物の溶融粘度(η
2B)との比(η
2B/η
2A)の下限としては、0.1が好ましく、0.25がより好ましく、0.5がさらに好ましい。一方、A層及びB層の溶融粘度の当該比(η
2B/η
2A)の上限としては、10が好ましく、4がより好ましく、2がさらに好ましい。当該粘度比(η
2B/η
2A)を上記範囲とすることによって、当該多層構造体の多層共押出法による成形において、均一で流れ斑のない層状態が得られ、外観が良好となり、またA層とB層間の接着が良好となって当該多層構造体の耐久性を向上することができる。
【0161】
〈当該多層構造体の製造方法〉
当該多層構造体の製造方法は、EVOHを含む樹脂層が良好に積層・接着される方法であれば特に限定されるものではなく、例えば共押出し、はり合わせ、コーティング、ボンディング、付着などの公知の方法を採用することができる。当該多層構造体の製造方法としては、具体的には、(1)EVOHを含む樹脂組成物を用い、多層共押出法により多層構造体を製造する方法や、(2)EVOHを含む樹脂組成物を用い、まず共押出法によりEVOHを含む樹脂層を有する積層体を製造し、接着剤を介して複数の積層体を重ね合わせ、延伸することでEVOHを含む樹脂層を有する多層構造体を製造する方法などが例示される。この中でも、生産性が高く、層間接着性に優れる観点から、(1)のEVOHを含む2種の樹脂組成物を用いた多層共押出法により成形する方法が好ましい。
【0162】
多層共押出法においては、EVOHを含む樹脂組成物は加熱溶融され、異なる押出機やポンプからそれぞれの流路を通って押出ダイに供給され、押出ダイから多層に押し出された後に積層接着することで、当該多層構造体が形成される。この押出ダイとしては、例えばマルチマニホールドダイ、フィールドブロック、スタティックミキサーなどを用いることができる。
【0163】
当該多層構造体は、上述のように非常に高いガスバリア性を有し、延伸性、熱成形性、耐久性、及び層間接着性にも優れている。そのため、当該多層構造体は、内容物を外部環境から高度に保護する必要のある食品用及び医療用包装材料等の用途に使用することができ、その中でも、特に高いガスバリア性、延伸性、耐久性、透明性等が要求される食品包装材に好適に使用される。
【0164】
〈積層体〉
本発明の積層体は、上記多層構造体にさらにEVOH以外の熱可塑性樹脂層が積層されてなる。以下、当該積層体の層構造、熱可塑性樹脂層、多層構造体と熱可塑性樹脂層と間の関係及び製造方法に関し、この順に説明する。
【0165】
〈当該積層体の層構造〉
当該積層体は上記多層構造体とEVOH以外の熱可塑性樹脂層が積層されていることにより、当該多層構造体による高いガスバリア性、耐屈曲性、耐ピンホール性等の特性と、熱可塑性樹脂層によるヒートシール性や剥離性等の諸機能を併せ持つことができる特徴を有している。熱可塑性樹脂層は、上記多層構造体の両面に積層されていても、片面に積層されていてもよく、2以上の熱可塑性樹脂層が積層されていてもよい。また、当該積層体は2以上の当該多層構造体を有していてもよい。
【0166】
当該積層体の平均厚みの下限としては、1μmが好ましく、10μmがより好ましく、50μmがさらに好ましい。一方、当該積層体の平均厚みの上限としては、5,000μmが好ましく、3000μmがより好ましく、2000μmがさらに好ましい。当該積層体の平均厚みが上記下限より小さいと、当該積層体の強度が低くなるおそれがある。逆に、当該積層体の平均厚みが上記上限を超えると、当該積層体の柔軟性、成形性等が不足し、耐久性が低くなるおそれがある。
【0167】
〈熱可塑性樹脂層〉
当該積層体を構成する熱可塑性樹脂層はEVOH以外の熱可塑性樹脂を含む層である。上記熱可塑性樹脂としては、各種ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ1−ブテン、ポリ4−メチル−1−ペンテン、エチレン−プロピレン共重合体、エチレンと炭素数4以上のα−オレフィンとの共重合体、ポリオレフィンと無水マレイン酸との共重合体、エチレン−ビニルエステル共重合体、エチレン−アクリル酸エステル共重合体、又はこれらを不飽和カルボン酸若しくはその誘導体でグラフト変性した変性ポリオレフィンなど)、各種ナイロン(ナイロン−6、ナイロン−6,6、ナイロン−6/6,6共重合体など)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエステル、ポリスチレン、ポリアクリロニトリル、ポリウレタン、ポリアセタール及び変性ポリビニルアルコール樹脂などが挙げられる。
【0168】
〈多層構造体と熱可塑性樹脂層との関係〉
上記多層構造体の最外層と接する熱可塑性樹脂層は、当該最外層である樹脂層との間の接着性が高いものが好ましく、樹脂層中のEVOHの有する水酸基や、樹脂層中に含まれる他の成分が有する官能基と反応して結合を生成する官能基を有する分子鎖を有しているものが特に好ましい。このような樹脂層を形成するために、上記熱可塑性樹脂の中でも、接着性樹脂が好適に用いられる。このような接着性樹脂としては、例えば、不飽和カルボン酸又はその無水物(無水マレイン酸等)、ボロン酸基、水の存在下でボロン酸基に転化し得るホウ素含有基をオレフィン系重合体又は共重合体(ポリエチレン(低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸エステル(メチルエステル又はエチルエステル)共重合体)にグラフトしたものが挙げられる。
【0169】
当該多層構造体の最外層に位置する層の樹脂組成物に、上述のアルカリ金属塩、アルカリ土類金属塩及び周期律表第4周期dブロック金属塩からなる群より選ばれる少なくとも1種の金属塩を含有させることが好ましい。このように最外層の樹脂組成物に金属塩を含有させることによって多層構造体の最外層と熱可塑性樹脂層との接着性が向上し、強度に優れる積層体とすることができる。
【0170】
また、上述のように樹脂層が上記A層及びB層を有する場合においては、A層及びB層のうち最外層に位置する層の樹脂組成物にのみ、上記金属塩を含有させるとよい。このような金属塩の含有は、層間接着性を向上させる一方、EVOHを含む樹脂組成物の熱安定性に影響する。当該積層体によれば、多層構造体の最外層となる一方の層のみに、金属塩を含有し、他方の層に金属塩を含まないため、当該積層体における上記多層構造体の熱安定性を向上させることができる。このようにA層及びB層のうち最外層に位置する層の樹脂組成物にのみ金属塩を含有させることによって、多層構造体の最外層と隣接する熱可塑性樹脂層との接着性を向上させつつ、多層構造体の熱安定性を向上させることができるので、熱安定性に優れ、かつ強度に優れる積層体とすることができる。
【0171】
〈当該積層体の製造方法〉
当該積層体の製造方法としては、特に限定されず、上記多層構造体を製造する際に熱可塑性樹脂層を同時に多層共押出法により積層する方法や、上記多層構造体に接着剤による接着や押出ラミネートなどにより熱可塑性樹脂層を積層する方法が採用される。中でも多層共押出法が好ましい。
【0172】
また、本発明の積層体の両面又は片面に、さらに支持層が積層されてもよい。この支持層としては、特に限定されず、樹脂層でなくてもよく、例えば、一般的な合成樹脂層、合成フィルム等も用いられる。また、支持層の積層手段としては、特に限定されず、接着剤による接着や押出ラミネートなどが採用される。
【0173】
当該積層体は、上述のように非常に高いガスバリア性、耐屈曲性及び耐ピンホール性を有すると共に、ヒートシール性や剥離性などの諸機能を併せ持つことができる特徴を有する。そのため、当該積層体は、内容物を外部環境から高度に保護する必要があり、かつ包装の簡便性をも求められる食品用及び医療用包装材料等の用途に使用することができ、その中でも、特に高いガスバリア性、延伸性、耐久性、透明性等が要求される食品包装材に好適に用いられる。
【実施例】
【0174】
以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。本実施例においては、上記4層以上の樹脂層を構成する樹脂組成物が同一である多層構造体である場合にも、便宜上、第1の層をA層と称し、第2の層をB層と称することがある。なお、以下の製造例において各成分の含有量は下記の方法にて定量した。
【0175】
(1)酢酸
乾燥EVOHペレット20gをイオン交換水100mLに投入し、95℃で6時間加熱抽出した。抽出液をフェノールフタレインを指示薬として、1/50規定のNaOHで中和滴定し、酢酸の含有量を定量した。
【0176】
(2)金属イオン
乾燥EVOHペレットを凍結粉砕により粉砕した。得られたEVOH粉末10gとイオン交換水50mLを100mL共栓付き三角フラスコに投入し、冷却コンデンサーを付けて、95℃で10時間撹拌、加熱抽出した。得られた抽出液2mLを、イオン交換水8mLで希釈した。上記の希釈された抽出液を、株式会社パーキンエルマージャパン社製ICP発光分光分析装置「Optima 4300 DV」を用いて、各金属イオンの量をそれぞれ定量した。
【0177】
(3)リン酸化合物
乾燥EVOHペレットを凍結粉砕により粉砕した。得られたEVOH粉末1.0gと濃硝酸15mL及び濃硫酸4mLを共栓付き100mL三角フラスコに投入し、冷却コンデンサーを付け、200〜230℃で加熱分解した。得られた溶液をイオン交換水で50mLメスフラスコにメスアップした。上記の溶液を、株式会社パーキンエルマージャパン社製ICP発光分光分析装置「Optima 4300 DV」を用いて、観測波長214.914nmで定量分析することで、リン元素の量を定量し、リン酸化合物の量をリン酸根換算値で算出した。
【0178】
(4)ホウ素化合物
試料とする乾燥EVOHペレット50mgを酸素フラスコ燃焼法により完全燃焼させ、得られた燃焼灰分を1mol/L硝酸水溶液10mLに溶解させた。上記溶液を、株式会社パーキンエルマージャパン社製ICP発光分光分析装置「Optima 4300 DV」を用いて、観測波長249.667nmで定量分析することで、ホウ素化合物の含有量をホウ素元素換算値で得た。
【0179】
(合成例)ポリオクテニレンの合成
攪拌機および温度計を装着した容量5Lのガラス製3つ口フラスコを乾燥した窒素で置換した後、これにcis−シクロオクテン110質量部およびcis−4−オクテン187質量部を溶解させたヘプタン624質量部を仕込んだ。
【0180】
次いで[1,3−ビス−(2,4,6−トリメチルフェニル)−2−イミダゾリジニリデン]ジクロロ(フェニルメチレン)(トリシクロヘキシルホスフィン)ルテニウム0.0424質量部を、トルエン3.00質量部に溶解させた触媒液を調製し、これをすばやく上記のヘプタン溶液に加えて、55℃で開環メタセシス重合(ROMP)を行った。1時間後、ガスクロマトグラフィー(島津製作所製、GC−14B;カラム:化学品検査協会製、G−100)により分析したところ、cis−シクロオクテンの消失を確認した。その後、エチルビニルエーテル1.08質量部を添加し、更に10分間攪拌した。
【0181】
得られた反応液にメタノール600質量部を添加し、55℃で30分間攪拌した後、40℃で1時間静置して分液後、下層(メタノールの層)を除去した。これに、再びメタノール600質量部を添加し、55℃で30分間攪拌した後、40℃で1時間静置して分液後、下層(メタノールの層)を除去した。ヘプタン層(上層)からヘプタンを減圧で留去し、更に、真空乾燥機にて、1Pa、100℃にて6時間乾燥し、重量平均分子量(Mw)が168,000、数平均分子量(Mn)が37,000のポリマー93.7質量部(収率88%)を得た。この重合体(ポリオクテニレン)の、側鎖中の炭素−炭素二重結合の、全炭素−炭素二重結合に対する比率は0%であった。
【0182】
(製造例1[ペレット(A−1)の製造])
冷却装置及び攪拌機を有する重合槽に酢酸ビニル20000質量部、メタノール2000質量部、重合開始剤として2,2’−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)10質量部を仕込み、攪拌しながら窒素置換後、エチレンを導入、内温60℃、エチレン圧力45Kg/cm
2に調節し、4時間、その温度及び圧力を保持、攪拌し重合させた。次いで、ソルビン酸(SA)10質量部(仕込み酢酸ビニルに対して0.05質量%)をメタノールに溶解し、1.5質量%溶液にして添加した。重合率は、仕込み酢酸ビニルに対して45%であった。該共重合反応液を追出に供給し、塔下部からのメタノール蒸気の導入により未反応酢酸ビニルを塔頂より除去した後、該共重合体の40%のメタノール溶液を得た。該共重合体はエチレン単位含有量32.5モル%、酢酸ビニル単位含有量67.5モル%であった。
【0183】
該共重合体のメタノール溶液をけん化反応器に導入し、次いで水酸化ナトリウム/メタノール溶液(85g/L)を共重合体中の酢酸ビニル成分に対して0.5当量となるように添加し、更にメタノールを添加して共重合体濃度が15質量%になるように調整した。反応器内温度を60℃に昇温し、反応器内に窒素ガスを吹き込みながら5時間反応させた。その後、酢酸で中和し反応を停止させ内容物を反応器より取り出し、常温に放置し粒子状に析出した。析出後の粒子を遠心分離機で脱液しさらに大量の水を加え脱液する操作を繰り返し、けん化度99.5モル%のEVOH(A−1)を得た。
【0184】
得られたEVOH(A−1)を酢酸、酢酸ナトリウム、リン酸水素ナトリウム及びオルトホウ酸(OBA)を含む水溶液(水溶液1L中、酢酸0.3g、酢酸ナトリウム0.2g、リン酸水素ナトリウム0.05g、オルトホウ酸0.35g溶解)を用い、浴比20で処理し、乾燥後、押出機にてペレット化し、ペレット(A−1)を得た。ペレット(A−1)のMFRは3.8g/10分(210℃、2160g荷重下)であった。また、ペレット(A−1)の酢酸含有量は150ppm、ナトリウムイオン含有量は140ppm、リン酸化合物含有量はリン酸根換算で45ppm、ホウ素化合物の含有量はホウ素換算値で260ppmであった。
【0185】
(製造例2[ペレット(A−2)の製造])
冷却装置及び攪拌機を有する重合槽に酢酸ビニル20000質量部、メタノール1020質量部、重合開始剤として2,2’−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)3.5質量部を仕込み、攪拌しながら窒素置換後、エチレンを導入、内温60℃、エチレン圧力59Kg/cm
2に調節し、4時間、その温度及び圧力を保持、攪拌し重合させた。次いで、ソルビン酸(SA)10質量部(仕込み酢酸ビニルに対して0.05質量%)をメタノールに溶解し、1.5質量%溶液にして添加した。重合率は、仕込み酢酸ビニルに対して30%であった。該共重合反応液を追出に供給し、塔下部からのメタノール蒸気の導入により未反応酢酸ビニルを塔頂より除去した後、該共重合体の40質量%のメタノール溶液を得た。該共重合体はエチレン単位含有量44.5モル%、酢酸ビニル単位含有量55.5モル%であった。
【0186】
該共重合体のメタノール溶液をけん化反応器に導入し、次いで水酸化ナトリウム/メタノール溶液(85g/L)を共重合体中の酢酸ビニル成分に対して0.5当量となるように添加し、更にメタノールを添加して共重合体濃度が15質量%になるように調整した。応器内温度を60℃に昇温し、反応器内に窒素ガスを吹き込みながら5時間反応させた。その後、酢酸で中和し反応を停止させ内容物を反応器より取り出し、常温に放置し粒子状に析出した。析出後の粒子は遠心分離機で脱液しさらに大量の水を加え脱液する操作を繰り返し、けん化度99.5%のEVOH(A−2)を得た。
【0187】
得られたEVOH(A−2)を、酢酸、酢酸ナトリウム、およびリン酸水素ナトリウムを含む水溶液(水溶液1L中、酢酸0.3g、酢酸ナトリウム0.2g、リン酸水素ナトリウム0.05g、オルトホウ酸0.03g溶解)を用い、浴比20で処理し、乾燥後、押出機にてペレット化し、ペレット(A−2)を得た。ペレット(A−2)のMFRは11.5g/10分(210℃、2160g荷重下)であった。また、ペレット(A−2)の酢酸含有量は135ppm、ナトリウムイオン含有量は140ppm、リン酸化合物含有量はリン酸根換算で40ppm、ホウ素化合物の含有量はホウ素換算で10ppmであった。
【0188】
(製造例3[ペレット(A−3)の製造])
冷却装置及び攪拌機を有する重合槽に酢酸ビニル20000質量部、メタノール2000質量部、重合開始剤として2,2’−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)10質量部を仕込み、攪拌しながら窒素置換後、エチレンを導入、内温60℃、エチレン圧力38Kg/cm
2に調節し、3.5時間、その温度及び圧力を保持、攪拌し重合させた。次いで、ソルビン酸(SA)10質量部(仕込み酢酸ビニルに対して0.05質量%)をメタノールに溶解し、1.5質量%溶液にして添加した。重合率は、仕込み酢酸ビニルに対して52%であった。該共重合反応液を追出に供給し、塔下部からのメタノール蒸気の導入により未反応酢酸ビニルを塔頂より除去した後、該共重合体の40%のメタノール溶液を得た。該共重合体はエチレン単位含有量26.5モル%、酢酸ビニル単位含有量73.5モル%であった。
【0189】
該共重合体のメタノール溶液をけん化反応器に導入し、次いで水酸化ナトリウム/メタノール溶液(85g/L)を共重合体中の酢酸ビニル成分に対して0.5当量となるように添加し、更にメタノールを添加して共重合体濃度が15質量%になるように調整した。反応器内温度を60℃に昇温し反応器内に窒素ガスを吹き込みながら5時間反応させた。その後、酢酸で中和し反応を停止させ内容物を反応器より取り出し、常温に放置し粒子状に析出した。析出後の粒子を遠心分離機で脱液しさらに大量の水を加え脱液する操作を繰り返し、けん化度99.8%のEVOH(A−3)を得た。
【0190】
得られたEVOH(A−3)を酢酸、酢酸ナトリウム、リン酸水素ナトリウム及びオルトホウ酸(OBA)を含む水溶液(水溶液1L中、酢酸0.3g、酢酸ナトリウム0.02g、リン酸水素ナトリウム0.005g、オルトホウ酸0.15g溶解)を用い、浴比20で処理し、乾燥後、押出機にてペレット化し、ペレット(A−3)を得た。ペレット(A−3)のMFRは6.4g/10分(210℃、2160g荷重下)であった。またペレット(A−3)の酢酸含有量は95ppm、ナトリウムイオン含有量は14ppm、リン酸化合物含有量はリン酸根換算で5ppm、ホウ素化合物の含有量はホウ素換算値で85ppmであった。
【0191】
(製造例4[ペレット(A−4)の製造])
製造例2と同様にして得られたEVOH(A−2)を、酢酸、及びリン酸水素ナトリウムを含む水溶液(水溶液1L中、酢酸0.05g、リン酸水素ナトリウム0.02g、オルトホウ酸0.04g溶解)を用い、浴比20で処理し、乾燥してEVOH組成物粒子を得た。該EVOH組成物粒子のMFRは9.7g/10分(210℃、2160g荷重下)であった。また、該EVOH組成物粒子の酢酸含有量は40ppm、リン酸化合物含有量はリン酸根換算で20ppm、ホウ素化合物含有量はホウ素換算値で14ppmであった。
【0192】
上記で得られたEVOH組成物粒子を用い、東芝機械社製二軸押出機「TEM−35BS」(37mmφ、L/D=52.5)を使用し、下記押出条件にて触媒添加下でEVOHにエポキシプロパンを反応させ、未反応のエポキシプロパンをベントより除去し、次いで触媒失活剤としてエチレンジアミン四酢酸三ナトリウム水和物8.2質量%水溶液を添加し、ペレット化を行った後、乾燥を行い、エチレン単位及びビニルアルコール単位以外の構造単位(II)として下記式で表される構造単位(ii)を有するエポキシプロパン変性のエチレン−ビニルアルコール共重合体EVOH(A−4)を含むペレット(A−4)を得た。
【0193】
【化12】
【0194】
シリンダー、ダイ温度設定:
シリンダー部樹脂フィード口/シリンダー部/アダプター/ダイ
=160/200/240/240(℃)
スクリュー回転数:400rpm
エチレン−ビニルアルコール共重合体フィード量:16kg/hr
エポキシプロパンフィード量:2.4kg/hrの割合(フィード時の圧力6MPa)
触媒溶液フィード量:0.32kg/hr
触媒調整:亜鉛アセチルアセトナート一水和物28質量部を、1,2−ジメトキシエタン957質量部と混合し、混合溶液を得た。得られた混合溶液に、攪拌しながらトリフルオロメタンスルホン酸15質量部を添加し、触媒溶液を得た。すなわち、亜鉛アセチルアセトナート一水和物1モルに対して、トリフルオロメタンスルホン酸1モルを混合した溶液を調整した。
触媒失活剤水溶液フィード量:0.16kg/hr
【0195】
得られたペレット(A−4)のMFRは6.8g/10分(210℃、2160g荷重下)であった。また、ペレット(A−4)の酢酸含有量は420ppm、亜鉛イオン含有量は120ppm、ナトリウム含有量は130ppm、リン酸化合物含有量はリン酸根換算で20ppm、トリフルオロメタンスルホン酸イオンの含有量は280ppm、ホウ素化合物の含有量はホウ素換算値で12ppmであった。また、EVOH(A−4)のエチレン単位及びビニルアルコール単位以外の構造単位(ii)の導入量(エポキシプロパン変性量)は
1H−NMR(内部標準物質:テトラメチルシラン、溶媒:d6−DMSO)の測定より、5.8モル%であった。
【0196】
(製造例5[ペレット(A−5)の製造])
冷却装置及び攪拌機を有する重合槽に酢酸ビニル20000質量部、メタノール4000質量部、重合開始剤としてアセチルパーオキシド10質量部(仕込み酢酸ビニル量に対して500ppm)、クエン酸0.4質量部(仕込み酢酸ビニル量に対して20ppm)、および3,4−ジアセトキシ−1−ブテンを560質量部を仕込み、攪拌しながら窒素置換後、エチレンを導入、内温67℃、エチレン圧力35Kg/cm
2に調節し、次いで3,4−ジアセトキシ−1−ブテン全量180質量部を徐々に添加しながら重合し、重合率が仕込み酢酸ビニルに対して50%になるまで6時間重合した。その後、ソルビン酸(SA)10質量部(仕込み酢酸ビニル量に対して500ppm)をメタノールに溶解し、1.5質量%溶液にして添加した。該共重合反応液を追出に供給し、塔下部からのメタノール蒸気の導入により未反応酢酸ビニルを塔頂より除去した後、該共重合体の40質量%のメタノール溶液を得た。該共重合体はエチレン単位含有量29.0モル%であった。
【0197】
該共重合体のメタノール溶液をけん化反応器に導入し、次いで水酸化ナトリウム/メタノール溶液(85g/L)を共重合体中の酢酸ビニル成分に対して0.5当量となるように添加し、更にメタノールを添加して共重合体濃度が15質量%になるように調整した。反応器内温度を60℃に昇温し反応器内に窒素ガスを吹き込みながら5時間反応させた。その後、酢酸で中和し反応を停止させ内容物を反応器より取り出し、常温に放置し粒子状に析出した。析出後の粒子は遠心分離機で脱液しさらに大量の水を加え脱液する操作を繰り返し、けん化度99.5モル%のEVOH(A−5)を得た。
【0198】
なお、上記のEVOH(A−5)のエチレン単位及びビニルアルコール単位以外の構造単位(I)としては、下記式で表される構造単位(i)が導入されており、その導入量は
1H−NMR(内部標準物質:テトラメチルシラン、溶媒:d6−DMSO)の測定から2.5モル%であった。
【0199】
【化13】
【0200】
得られたEVOH(A−5)を酢酸、酢酸ナトリウム、リン酸水素ナトリウム及びオルトホウ酸(OBA)を含む水溶液(水溶液1L中、酢酸0.3g、酢酸ナトリウム0.2g、リン酸水素ナトリウム0.07g、オルトホウ酸0.32g溶解)を用い、浴比20で処理し、乾燥後、押出機にてペレット化し、ペレット(A−5)を得た。ペレット(A−5)のMFRは2.5g/10分(210℃、2160g荷重下)であった。また、ペレット(A−5)の酢酸含有量は150ppm、ナトリウム含有量は150ppm、リン酸化合物含有量はリン酸根換算で50ppm、ホウ素化合物の含有量はホウ素換算値で150ppmであった。
【0201】
(製造例6[ペレット(A−6)の製造])
製造例1において得られたペレット(A−1)を90質量部、上記の合成例で得られたポリオクテニレン10質量部およびステアリン酸コバルト(II)0.4242質量部(コバルト原子として0.0400質量部)をドライブレンドし、東芝機械社製二軸押出機「TEM−35BS」(37mmφ、L/D=52.5)を使用し、下記押出条件にて押出しを行い、ペレット化した後、乾燥して、EVOH(A−1)、ポリオクテニレンおよびステアリン酸コバルトからなる組成物のペレット(A−6)を得た。
【0202】
シリンダー、ダイ温度設定:
シリンダー部樹脂フィード口/シリンダー部/アダプター/ダイ
=160/200/220/220(℃)
スクリュー回転数:200rpm
フィード量:20kg/hr
【0203】
得られたペレット(A−6)のMFRは4.5g/10分(210℃、2160g荷重下)であった。また、ペレット(A−6)の酢酸含有量は105ppm、ナトリウムイオン含有量は125ppm、コバルトイオン含有量は400ppm、リン酸化合物含有量はリン酸根換算で40ppm、ホウ素化合物の含有量はホウ素換算値で230ppmであった。
【0204】
また、ペレット(A−6)を、40φ押出機(プラスチック工学研究所製「PLABOR GT−40−A」)とTダイからなる製膜機を用いて、下記押出条件で製膜し、厚み30μmの単層フィルムを得た。
形式:単軸押出機(ノンベントタイプ)
L/D:24
口径:40mmφ
スクリュー:一条フルフライトタイプ、表面窒化鋼
スクリュー回転数:40rpm
ダイス:550mm幅コートハンガーダイ
リップ間隙:0.3mm
シリンダー、ダイ温度設定:
シリンダー部樹脂フィード口/シリンダー部/アダプター/ダイ
=160/190/200/200(℃)
冷却ロールの温度:30℃
引き取り速度 :10m/分
【0205】
得られた単層フィルムの切断面を電子顕微鏡で観察したところ、ポリオクテニレンの1μm以下の粒子がEVOH(A−1)からなるマトリックス中に分散していた。
【0206】
(製造例7[ペレット(A−7)の製造])
製造例1で得られたペレット(A−1)を80質量部、製造例4で得られたペレット(A−4)20質量部をドライブレンドし、東芝機械社製二軸押出機「TEM−35BS」(37mmφ、L/D=52.5)を使用し、下記押出条件にて押出しを行い、ペレット化した後、乾燥して、EVOH(A−1)、EVOH(A−4)を含むペレット(A−7)を得た。
【0207】
シリンダー、ダイ温度設定:
シリンダー部樹脂フィード口/シリンダー部/アダプター/ダイ
=160/200/220/220(℃)
スクリュー回転数:200rpm
フィード量:20kg/hr
【0208】
得られたペレット(A−7)のMFRは4.3g/10分(210℃、2160g荷重下)であった。また、ペレット(A−7)の酢酸含有量は160ppm、亜鉛イオン含有量は20ppm、ナトリウム含有量は135ppm、リン酸化合物含有量はリン酸根換算で40ppm、トリフルオロメタンスルホン酸イオンの含有量は55ppm、ホウ素化合物の含有量はホウ素換算値で210ppmであった。
【0209】
(製造例8[ペレット(A−8)の製造])
製造例2において、エチレン単位含有量44.5モル%、けん化度99.5%のEVOH(A−2)を酢酸、およびリン酸を含む水溶液(水溶液1L中、酢酸0.3g、リン酸0.06g、オルトホウ酸0.03g溶解)を用い、浴比20で処理した以外は、製造例2と同様にしてペレット(A−8)を得た。ペレット(A−8)のMFRは11.6g/10分(210℃、2160g荷重下)であった。また、ペレット(A−8)の酢酸含有量は90ppm、リン酸化合物含有量はリン酸根換算で43ppm、ホウ素化合物の含有量はホウ素換算で10ppmであった。
【0210】
[実施例1]
ペレット(A−1)を、ペレットを構成する樹脂組成物によってA層及びB層それぞれ交互にA層が8層及びB層が9層の多層構造体が形成されるように、17層フィードブロックにて、共押出機に210℃の溶融状態として供給し、共押出を行い合流させることによって、多層の積層体とした。合流するペレット(A−1)の溶融物は、フィードブロック内にて各層流路を表面側から中央側に向かうにつれ徐々に厚くなるように変化させることにより、押出された多層構造体の各層の厚みが均一になるように押出された。また、隣接するA層とB層の層厚みはほぼ同じになるようにスリット形状を設計した。このようにして得られた計17層からなる積層体を、表面温度80℃に保たれ静電印加したキャスティングドラム上で急冷固化し、巻取りを行った。なお、ペレット(A−1)の溶融物が合流してからキャスティングドラム上で急冷固化されるまでの時間が約4分となるように流路形状及び総吐出量を設定した。
【0211】
上記のようにして得られたキャストフィルムはDIGITAL MICROSCOPE VHX−900(KEYENCE製)にて断面観察を行った結果、A層及びB層それぞれの平均厚みが1μm、全体の平均厚みが17μmである多層構造体であった。なお、各厚みはランダムに選択された9点での測定値の平均値とした。
【0212】
[比較例1]
単層フィルム押出装置を用いて、ペレット(A−1)を単層のフィルムが形成されるように210℃の溶融状態として押出し、表面温度80℃に保たれ静電印加したキャスティングドラム上で急冷固化し、巻取りを行った。なお、ペレット(A−1)の溶融物が押出されてからキャスティングドラム上で急冷固化されるまでの時間が約4分となるように流路形状及び総吐出量を設定した。
【0213】
上記のようにして得られたキャストフィルムはDIGITAL MICROSCOPE VHX−900(KEYENCE製)にて断面観察を行った結果、全体の平均厚みが20μmであった。
【0214】
[実施例2〜23、比較例2、比較例4、比較例6、比較例8、比較例10、比較例12]
表1〜6に記載されているとおりのペレットの種類、積層状態、並びに金属塩の種類及び含有量を採用した以外は、実施例1と同様にして、これらの実施例及び比較例に係る多層構造体を製造した。
【0215】
[比較例3、比較例5、比較例7、比較例9、比較例11]
表1〜6に記載されているとおりのペレットの種類、並びに金属塩の種類及び含有量を採用した以外は比較例1と同様にして、これらの比較例に係る単層フィルムを製造した。
【0216】
(多層構造体及び単層フィルムの特性評価方法)
実施例1〜23及び比較例1〜12で得られた多層構造体及び単層フィルムの各特性は以下の記載の方法に従って評価した。これらの特性の評価結果を、A層及びB層における成分割合、物性等と共に表1〜6に示す。
【0217】
(1)各層を構成する樹脂組成物の溶融粘度
A層を構成する樹脂組成物及びB層を構成する樹脂組成物の所定温度における溶融粘度は、溶融させた対象ペレットについて、キャピログラフ(東洋精機製作所株式会社製IC型)を用いて測定した。
【0218】
(2)多層構造体及び単層フィルムの外観
得られた多層構造物及び単層フィルムの流れ斑、ストリーク、及びフィッシュアイの有無を目視にて確認した。多層構造物及び単層フィルムの外観を、以下の基準に従って判断した。
◎:流れ斑、ストリーク、フィッシュアイは皆無に近かった。
○:流れ斑、ストリーク、フィッシュアイが存在するが、少なかった。
△:流れ斑、ストリーク、フィッシュアイが、目立つ程度に存在した。
×:流れ斑、ストリークが著しく、フィッシュアイが多数存在した。
【0219】
(3)多層構造体及び単層フィルムのヘイズ
得られた多層構造体及び単層フィルムの一部を切り取り、シリコンオイルを塗布して、村上色彩技術研究所製HR−100を用い、ASTM D1003−61に従ってヘイズ値を測定した。
【0220】
(4)多層構造体及び単層フィルムの酸素透過速度
多層構造体を水系内容物を充填する包装材料に使用することを想定し、得られた多層構造体及び単層フィルムを、20℃で一方の片面を30%RH、もう一方の片面を高湿の95%RHで5日間調湿し、調湿済みの多層構造体及び単層フィルムのサンプルを2枚使用して、モダンコントロ−ル社製 MOCON OX−TRAN10/50A型を用い、それぞれ20℃−30%RH/100%RH条件下でJIS K7126(等圧法)に記載の方法に準じて、酸素透過速度を測定し、その平均値を求めた(単位:mL・20μm/m
2・day・atm)。
【0221】
(5)多層構造体及び単層フィルムの耐屈曲性
ASTM−F392−74に準じて、理学工業(株)製「ゲルボフレックステスター」を使用し、屈曲を繰り返し、最初に貫通孔(ピンホール)が観察された屈曲回数を計測した。
【0222】
(6)多層構造体及び単層フィルムの屈曲後酸素透過速度
ASTM−F392−74に準じて、理学工業(株)製「ゲルボフレックステスター」を使用し、屈曲を50回繰り返したのち、上記同様に多層構造体及び単層フィルムの酸素透過速度を測定し、平均値を求めた。なお、屈曲後の多層構造体又は単層フィルムに貫通孔(ピンホール)が観察された場合には評価結果を「測定不可」とした。
【0223】
【表1】
【0224】
【表2】
【0225】
【表3】
【0226】
【表4】
【0227】
【表5】
【0228】
【表6】
【0229】
[実施例24]
下記4種37層共押出装置を用いて、下記条件で多層構造体と熱可塑性樹脂層が積層された積層体(ポリプロピレン/接着性樹脂/エチレン−ビニルアルコール共重合体層(EVOH(A−2)及びEVOH(A−1)からなる交互構成の33層の多層構造体)/接着性樹脂/ポリプロピレン)を作製した。シートの構成は、エチレン−ビニルアルコール共重合体層(EVOH(A−2)及びEVOH(A−1)からなる交互構成の33層の多層構造体)が100μm、接着性樹脂層が50μm、ポリプロピレン層が800μmである。なお、交互構成の33層からなるエチレン−ビニルアルコール共重合体層は、ペレット(A−2)及びペレット(A−1)を、それぞれのペレットが構成する樹脂組成物によって交互にA層が17層及びB層が16層の多層構造体が形成されるように、33層フィードブロックにて、共押出機に220℃の溶融状態として供給し、共押出を行い合流させることによって、多層の積層体とした。合流したペレット(A−2)及びペレット(A−1)の溶融物は、フィードブロック内にて各層厚みが表面側から中央側に向かうにつれ徐々に厚くなるように変化させることにより、押出された多層構造体の各層の厚みが均一になるように押出された。また、隣接するA層とB層の層厚みはほぼ同じになるようにスリット形状を設計した。交互構成の33層からなるエチレン−ビニルアルコール共重合体層の最外層はペレット(A−2)からなるEVOH(A−2)となる構成で該積層体を作製した。
【0230】
共押出成形条件は以下のとおりである。
層構成:ポリプロピレン/接着性樹脂/エチレン−ビニルアルコール共重合体層(EVOH(A−2)及びEVOH(A−1)からなる交互構成の33層の多層構造体)/接着性樹脂/ポリプロピレン
エチレン−ビニルアルコール共重合体(ペレット(A−2)及びペレット(A−1))の押出温度:
シリンダー部樹脂フィード口/シリンダー上流部/シリンダー中央部/シリンダー下流部=175/210/220/220℃
接着性樹脂の押出温度:
シリンダー部樹脂フィード口/シリンダー上流部/シリンダー中央部/シリンダー下流部=170/170/220/220℃
ポリプロピレンの押出温度:
シリンダー部樹脂フィード口/シリンダー上流部/シリンダー中央部/シリンダー下流部=170/170/230/230℃
アダプターの温度:230℃
フィードブロックの温度:230℃
ダイの温度:235℃
各樹脂の押出機、Tダイ仕様:
エチレン−ビニルアルコール共重合体(2台):
40φ押出機 VSVE−40−24型(大阪精機工作株式会社製)
接着性樹脂:
40φ押出機 10VSE−40−22型(大阪精機工作株式会社製)
ポリプロピレン:
65φ押出機 20VS−65−22型(大阪精機工作株式会社製)
Tダイ:
650mm幅 (プラスチック工学研究所製)
冷却ロールの温度:30℃
引き取り速度 :2m/分
【0231】
なお、ポリプロピレン樹脂としては、日本ポリプロ(株)製ノバテックPP EA7A及びノバテックPP EG−7FTを85:15(質量比)の割合で混合したもの使用し、また接着性樹脂としては、三井化学製「アドマ−QF551」を使用した。
【0232】
上記作製した積層体を23℃、50%RHの雰囲気下で30日間調湿したのち、15mm幅の短冊状の切片を作成して、接着性樹脂層とA層との層間接着力を測定したところ、2,850g/15mmであり、良好な接着性を示した。なお、短冊状切片の測定試料は、23℃、50%RHの雰囲気下、株式会社島津製作所製オートグラフ「AGS−H型」を用いて、引張速度250mm/分にて、T型剥離強度を測定した。得られた値(単位:g/15mm)を、接着性樹脂層とA層との層間接着力とした。
【0233】
上記作製した積層体を東洋精機製パンタグラフ式二軸延伸機にかけ、140℃で延伸倍率3×3倍で同時二軸延伸を行い、多層延伸フィルムを得た。上記の多層シ−トは良好な延伸性を示し、延伸後、得られた多層延伸フィルムはクラック、ムラ、偏肉も少なく、外観(透明性、ゲル・ブツ)も良好であった。
【0234】
上記作製した多層延伸フィルムを、20℃で一方の片面を30%RH、もう一方の片面を高湿の95%RHで5日間調湿し、調湿済みの多層構造体のサンプルを2枚使用して、モダンコントロ−ル社製 MOCON OX−TRAN10/50A型を用い、それぞれ20℃−30%RH/100%RH条件下でJIS K7126(等圧法)に記載の方法に準じて、酸素透過速度を測定し、その平均値を求めた。本実施例の多層延伸フィルムの酸素透過量は、0.34cc/m
2・day・atmであり、良好なガスバリア性を示した。
【0235】
さらに、上記で得られた積層体を熱成形機(浅野製作所製:真空圧空深絞り成形機FX−0431−3型)にて、シ−ト温度を140℃にして、圧縮空気(気圧5kgf/cm
2)によりカップ形状(金型形状:上部75mmφ、下部60mmφ、深さ75mm、絞り比S=1.0)に熱成形することにより、熱成形容器を得た。成形条件を以下に示す。
ヒ−タ−温度:400℃
プラグ :45φ×65mm
プラグ温度 :120℃
金型温度 :70℃
【0236】
得られた熱成形容器の外観を目視にて観察したところ、クラック、ムラおよび局部的偏肉はなく均一に延伸されており、また透明性に優れており、外観についても良好だった。
【0237】
[参考例1]
ペレット(A−2)に代えてペレット(A−8)を用いた以外は実施例20と同様にして積層体を得た。得られた積層体を用いて実施例20と同様にして接着性樹脂層とA層との層間接着力を測定したところ、160g/15mmであった。