特許第6048011号(P6048011)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立化成株式会社の特許一覧
<>
  • 特許6048011-調光材料及び調光フィルム 図000008
  • 特許6048011-調光材料及び調光フィルム 図000009
  • 特許6048011-調光材料及び調光フィルム 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6048011
(24)【登録日】2016年12月2日
(45)【発行日】2016年12月21日
(54)【発明の名称】調光材料及び調光フィルム
(51)【国際特許分類】
   G02F 1/19 20060101AFI20161212BHJP
   G02F 1/17 20060101ALI20161212BHJP
【FI】
   G02F1/19 501
   G02F1/17
【請求項の数】6
【全頁数】29
(21)【出願番号】特願2012-192517(P2012-192517)
(22)【出願日】2012年8月31日
(65)【公開番号】特開2014-48538(P2014-48538A)
(43)【公開日】2014年3月17日
【審査請求日】2015年7月10日
(73)【特許権者】
【識別番号】000004455
【氏名又は名称】日立化成株式会社
(74)【代理人】
【識別番号】110001519
【氏名又は名称】特許業務法人太陽国際特許事務所
(72)【発明者】
【氏名】野村 理行
(72)【発明者】
【氏名】田中 徹
(72)【発明者】
【氏名】森下 芳伊
【審査官】 磯野 光司
(56)【参考文献】
【文献】 特開2010−085606(JP,A)
【文献】 特開2012−155157(JP,A)
【文献】 特開2010−126623(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/167−1/19
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
エネルギー線照射により硬化可能な高分子媒体と、
前記高分子媒体中に分散され、ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及びポリシロキサン構造を有する(メタ)アクリレートに由来する第二の構造単位を含む共重合体、並びに光調整粒子を含有する光調整懸濁液と、
を含み、
前記共重合体における前記第一の構造単位及び前記第二の構造単位以外のその他の構造単位の割合が20モル%以下である調光材料。
【請求項2】
前記共重合体は、前記第一の構造単位と前記第二の構造単位のモル比(第一の構造単位/第二の構造単位)が10/90〜70/30である請求項1に記載の調光材料。
【請求項3】
前記共重合体は、β位及びγ位の少なくとも一方にヒドロキシ基を有するアルキルスルフィド構造を末端に有する請求項1又は請求項2に記載の調光材料。
【請求項4】
2枚の導電性樹脂基材と、前記2枚の導電性樹脂基材に挟持された調光層とを有し、
前記調光層が、樹脂マトリックスと、前記樹脂マトリックス中に分散され、ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及びポリシロキサン構造を有する(メタ)アクリレートに由来する第二の構造単位を含む共重合体、並びに光調整粒子を含有する光調整懸濁液と、を含み、
前記共重合体における前記第一の構造単位及び前記第二の構造単位以外のその他の構造単位の割合が20モル%以下である調光フィルム。
【請求項5】
前記共重合体は、前記第一の構造単位と前記第二の構造単位のモル比(第一の構造単位/第二の構造単位)が10/90〜70/30である請求項4に記載の調光フィルム。
【請求項6】
前記共重合体は、β位及びγ位の少なくとも一方にヒドロキシ基を有するアルキルスルフィド構造を末端に有する請求項4又は請求項5に記載の調光フィルム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は調光材料及び調光フィルムに関する。
【背景技術】
【0002】
光調整懸濁液を含む調光硝子は、エドウィン・ランド(Edwin.Land)により最初に発明されたもので、その形態は、狭い間隔を有する2枚の透明導電性基材の間に、液体状態の光調整懸濁液を注入した構造になっている(例えば、特許文献1参照)。エドウィン・ランドの発明によると、2枚の透明導電性基材の間に注入されている液状の光調整懸濁液は、電界を印加していない状態では懸濁液中に分散されている光調整粒子のブラウン運動により、入射光の大部分が光調整粒子により反射、散乱又は吸収され、ごく一部分だけが透過することになる。ロバート・エル・サックス(Robert.L.Saxe)らは、光調整粒子を安定して媒体に分散させる方法として、粒子と親和性の高いヒドロキシ基やその他の官能基をもつモノマーを用いて合成した分散高分子を用いる方法を提案している(例えば、特許文献2、3参照)。また、媒体としてトリメリット酸エステルが有効であることを提案している(例えば、特許文献4参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】米国特許第1,955,923号明細書
【特許文献2】米国特許第4,164,365号明細書
【特許文献3】米国特許第4,273,422号明細書
【特許文献4】米国特許第5,461,506号明細書
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献2〜4に記載された光調整粒子を媒体に懸濁させる方法では、構成された調光フィルムを低温環境下(例えば、0℃以下)においた場合に、電界を印加した時の着色状態から透明状態への変化及び電界を切った時の透明状態から着色状態への変化の速度が遅くなる、即ち電界のON/OFFによる透明状態と着色状態との間の相互変化の応答速度が遅くなる課題があった。
本発明は、低温環境下でも電圧のON/OFFによる透明状態と着色状態との間の相互変化の応答速度に優れる調光材料、及びこれを用いて構成される調光フィルムを提供することを課題とする。
【課題を解決するための手段】
【0005】
前記課題を解決するための具体的手段は以下の通りである。
<1> エネルギー線照射により硬化可能な高分子媒体と、前記高分子媒体中に分散され、ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及びポリシロキサン構造を有する(メタ)アクリレートに由来する第二の構造単位を含む共重合体、並びに光調整粒子を含有する光調整懸濁液とを含み、前記共重合体における前記第一の構造単位及び前記第二の構造単位以外のその他の構造単位の割合が20モル%以下である調光材料
【0006】
<2> 前記共重合体は、前記第一の構造単位と前記第二の構造単位のモル比(第一の構造単位/第二の構造単位)が10/90〜70/30である<1>に記載の調光材料。
【0007】
<3> 前記共重合体は、β位及びγ位の少なくとも一方にヒドロキシ基を有するアルキルスルフィド構造を末端に有する<1>又は<2>に記載の調光材料。
【0008】
<4> 2枚の導電性樹脂基材と、前記2枚の導電性樹脂基材に挟持された調光層とを有し、前記調光層が、樹脂マトリックスと、前記樹脂マトリックス中に分散され、ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及びポリシロキサン構造を有する(メタ)アクリレートに由来する第二の構造単位を含む共重合体、並びに光調整粒子を含有する光調整懸濁液と、を含み、前記共重合体における前記第一の構造単位及び前記第二の構造単位以外のその他の構造単位の割合が20モル%以下である調光フィルム。
【0009】
<5> 前記共重合体は、前記第一の構造単位と前記第二の構造単位のモル比(第一の構造単位/第二の構造単位)が10/90〜70/30である<4>に記載の調光フィルム。
【0010】
<6> 前記共重合体は、β位及びγ位の少なくとも一方にヒドロキシ基を有するアルキルスルフィド構造を末端に有する<4>又は<5>に記載の調光フィルム。
【発明の効果】
【0011】
本発明によれば、低温環境下でも電圧のON/OFFによる透明状態と着色状態との間の相互変化の応答速度に優れる調光材料、及びこれを用いて構成される調光フィルムを提供することができる。
【図面の簡単な説明】
【0012】
図1】本発明にかかる調光フィルムの一態様を示す概略断面図である。
図2図2(a)は、図1の調光フィルムの電界が印加されていない場合の作動を説明するための概略断面図であり、図2(b)は、電界が印加されていないときの光調整懸濁液の液滴3の様子を示す模式図である。
図3図3(a)は、図1の調光フィルムの電界が印加されている場合の作動を説明するための概略断面図であり、図3(b)は、電界が印加されているときの光調整懸濁液の液滴3の様子を示す模式図である。
【発明を実施するための形態】
【0013】
本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
また「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」の少なくとも一方を意味する。同様に「(メタ)アクリル」とは、「アクリル」及びそれに対応する「メタクリル」の少なくとも一方を意味する。
【0014】
<調光材料>
本発明の調光材料は、エネルギー線照射により硬化可能な高分子媒体と、前記高分子媒体中に分散され、ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及びポリシロキサン構造を有する(メタ)アクリレートに由来する第二の構造単位を含む共重合体、並びに光調整粒子を含有する光調整懸濁液とを含む。前記調光材料は必要に応じてその他の成分を含んでいてもよい。光調整懸濁液が特定構造を有する共重合体を含むことで光調整粒子の分散安定性が向上し、低温環境下(例えば、0℃以下)でも電圧のON/OFFによる透明状態と着色状態との間の相互変化の応答速度(以下、「低温応答性」ともいう)に優れる調光材料が得られる。
【0015】
[光調整懸濁液]
光調整懸濁液は、ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及びポリシロキサン構造を有する(メタ)アクリレートに由来する第二の構造単位を含む共重合体の少なくとも1種と、光調整粒子の少なくとも1種とを含み、前記高分子媒体中に液滴として分散されている。前記光調整懸濁液は必要に応じて、その他の成分を含んでいてもよい。前記共重合体は例えば、光調整懸濁液中で樹脂分散剤として機能し、光調整粒子の分散安定性を向上させ、その結果として低温応答性も向上する。
【0016】
(共重合体)
前記共重合体は、ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及びポリシロキサン構造を有する(メタ)アクリレートに由来する第二の構造単位を含む共重合体である(以下、「特定共重合体」ということがある)。調光粒子の分散安定性と低温における応答性との観点から、前記第一の構造単位と前記第二の構造単位のモル比(第一の構造単位/前記第二の構造単位)は、10/90〜70/30であることが好ましく、15/85〜65/35であることがより好ましく、15/85〜60/40であることが更に好ましい。ここで、構造単位とは、共重合体中に含まれるモノマー由来の繰り返し単位をいう。第一の構造単位のモル比が第一の構造単位と第二の構造単位の総量中に10モル%以上であると、調光粒子の分散安定性がより良好になり、調光粒子の分散性より向上し、低温応答性が向上する傾向がある。一方、第一の構造単位のモル比が第一の構造単位と第二の構造単位の総量中に70モル%以下であると、共重合体の粘度が大きくなり過ぎず、低温応答性がより優れる傾向がある。
【0017】
前記特定共重合体は、光調整粒子が分散した光調整懸濁液を構成する流動可能な分散媒として用いられる。かかる特定共重合体としては、後述する高分子媒体及びその硬化物である樹脂マトリックスと完全に相分離するもの、もしくは部分的に相分離可能なものであることが好ましい。より好ましくは、光調整粒子を流動可能な状態で分散させる役割を果たすとともに、光調整粒子に選択的に付着被覆し、高分子媒体との相分離の際に光調整粒子が相分離された液滴相に移動するように作用し、電気導電性が小さく、高分子媒体との親和性が小さく、調光フィルムとした際に高分子媒体から形成される樹脂マトリックスとの屈折率が近似した液状の特定共重合体である。
【0018】
前記特定共重合体は、例えば光調整懸濁液を調製する際、光調整粒子を安定に分散する際に好ましく用いられる。第一の構造単位と第二の構造単位とを含む特定共重合体を用いることにより、光調整粒子の分散安定性が向上し、低温応答性に優れた調光材料を得ることができる。かかる特定共重合体は、第一の構造単位及び第二の構造単位以外に、必要に応じてその他の構造単位を含んでいてもよい。
【0019】
前記第一の構造単位を構成するヒドロキシ基を有する(メタ)アクリレートは、少なくとも1つのヒドロキシ基と重合性基とを有するものであれば、特に限定されない。ヒドロキシ基を有する(メタ)アクリレートとしては例えば、(メタ)アクリル酸アルキルエステルのアルキル基部分に少なくとも1つのヒドロキシ基を有する(メタ)アクリレートを挙げることができ、(メタ)アクリル酸アルキルエステルのアルキル基部分に1つのヒドロキシ基を有する(メタ)アクリレートであることが好ましく、下記一般式(I)で表されるヒドロキシアルキル(メタ)アクリレートであることがより好ましい。
【0020】
【化1】
【0021】
一般式(I)中、Rは水素原子又はメチル基を示し、Rは炭素数2〜8のアルキレン基を示す。前記式(I)において、Rは水素原子又はメチル基であり、メチル基であることが好ましい。またRで示されるアルキレン基は、環状、直鎖状及び分岐鎖状のいずれであってもよい。中でもRで示されるアルキレン基は、分岐鎖状又は直鎖状であることが好ましく、直鎖状であることがより好ましい。Rで示されるアルキレン基は、耐熱性の観点から、炭素数が2〜4のであることが好ましく、炭素数が2〜4の直鎖状のアルキレン基であることがより好ましい。
及びRが、上述のような好ましい条件を満たすことにより、光調整粒子の分散性をより高めることができ、さらに耐熱性も向上させることができる。
【0022】
一般式(I)で表される化合物として具体的には、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、5−ヒドロキシペンチル(メタ)アクリレート、6−ヒドロキシヘキシル(メタ)アクリレート、4−ヒドロキシシクロヘキシル(メタ)アクリレート、7−ヒドロキシヘプチル(メタ)アクリレート、8−ヒドロキシオクチル(メタ)アクリレート等が挙げられる。これらの中でも、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート及び2−ヒドロキシブチル(メタ)アクリレートからなる群より選ばれる少なくとも1種が好ましく、2−ヒドロキシエチル(メタ)アクリレートがより好ましい。
【0023】
前記第二の構造単位を構成するポリシロキサン構造をもつ(メタ)アクリレートは、ポリシロキサン構造を有する(メタ)アクリル酸エステルであれば、特に限定されない。
【0024】
ポリシロキサン構造における繰り返し単位は、ジアルキルシロキサン、ジアリールシロキサン、モノアルキルモノアリールシロキサンであってもよい。シロキサン構造におけるアルキル基としては炭素数1〜6のアルキル基であることが好ましく、炭素数1〜3のアルキル基であることがより好ましい。シロキサン構造におけるアリール基としては、フェニル基及びナフチル基を挙げることができ、フェニル基であることが好ましい。
ポリシロキサン構造における繰り返し単位として具体的には、ジメチルシロキサン、ジフェニルシロキサン、メチルフェニルシロキサン等を挙げることができる。
【0025】
前記ポリシロキサン構造を有する(メタ)アクリレートは、下記一般式(II)で表される化合物であることが好ましい。
【化2】
【0026】
一般式(II)中、Rは炭素数1〜4のアルキル基を示す。Rはそれぞれ独立して炭素数1〜3のアルキル基又はフェニル基を示す。Rは炭素数1〜3のアルキレン基を示す。Rは水素原子又はメチル基を示す。nはシロキサン構造単位の繰り返し数であり、1〜200の数を示す。
【0027】
一般式(II)において、Rはメチル基であることが好ましい。Rは炭素数1〜3のアルキル基であることが好ましく、メチル基であることがより好ましい。Rは炭素数1〜3のアルキル基であることが好ましく、メチル基であることがより好ましい。
【0028】
前記式(II)で表される化合物としては、重量平均分子量(Mw)が500〜10000であることが好ましく、500〜8000であることがより好ましく、500〜6000であることがさらに好ましい。重量平均分子量がこの範囲にあることで、低温応答性に優れる調光材料が実現できる。
【0029】
前記特定共重合体は、必要に応じて前記第一の構造単位及び第二の構造単位以外のその他の構造単位を更に含んでいてもよい。その他の構造単位を形成するモノマーは、ヒドロキシ基を有する(メタ)アクリレート及びシロキサン構造を有する(メタ)アクリレートと共重合可能なモノマーであれば特に制限されない。中でもその他の構造単位を形成するモノマーは、アルキル(メタ)アクリレートであることが好ましく、炭素数4〜20のアルキル(メタ)アクリレートであることがより好ましく、光調整粒子の分散性の観点から、炭素数8〜16のアルキル(メタ)アクリレートが更に好ましく、炭素数10〜14のアルキル(メタ)アクリレートが特に好ましい。
ここで炭素数4〜20のアルキル(メタ)アクリレートとは、炭素数が4〜20のアルキル基を有するアルキル(メタ)アクリレートである。アルキル(メタ)アクリレートにおけるアルキル基は特に限定されず、直鎖状、分岐鎖状及び環状のいずれであってもよい。中でもアルキル基は直鎖状又は分岐鎖状であることが好ましい。
【0030】
その他の構成単位を形成するアルキル(メタ)アクリレートの具体例としては、2−メチルプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2,4,6−トリメチルヘプチル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、エイコシル(メタ)アクリレート等が挙げられる。これらの中でもヘキシル(メタ)アクリレート、2,4,6−トリメチルヘプチル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、及びペンタデシル(メタ)アクリレートからなる群より選ばれる少なくとも1種が好ましく、2,4,6−トリメチルヘプチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート及びトリデシル(メタ)アクリレートからなる群より選ばれる少なくとも1種がより好ましい。
【0031】
前記特定共重合体がその他の構成単位を含む場合、その含有比は全構成単位中に20モル%以下であることが好ましく、10モル%以下であることがより好ましい。下限は特に制限されないが、1モル%以上であることが好ましい。
【0032】
前記特定共重合体は、β位及びγ位の少なくとも一方にヒドロキシ基を有するアルキルスルフィド構造を末端に有することが好ましく、β位及びγ位にヒドロキシ基を有するアルキルスルフィド構造を片方の末端に有することがより好ましく、β位及びγ位にヒドロキシ基を有する炭素数3〜6のアルキルスルフィド構造を片方の末端に有することが更に好ましい。共重合体の末端部分にヒドロキシ基を有することで光調整粒子の分散性がより効果的に向上する傾向がある。これは例えば以下のように考えることができる。
【0033】
前記特定共重合体において、後述する光調整粒子と親和性がある官能基(好ましくは、ヒドロキシ基)は、特定重合体の中で近隣に嵩高い官能基が少ないほど、また特定共重合体の高分子鎖末端に近いほど、その親和性による相互作用が強くなり、光調整粒子の凝集や沈降防止に効果的と考えられる。
【0034】
少なくとも一方の末端に、β位及びγ位の少なくとも一方にヒドロキシ基を有するアルキルスルフィド構造を有する特定共重合体は、例えば、β位及びγ位の少なくとも一方にヒドロキシ基を有するアルキルメルカプタン誘導体を連鎖移動剤として用いて、(メタ)アクリル酸エステルのラジカル重合反応を行うことで得られる。
【0035】
一般に、共重合体を2種類以上のモノマーからラジカル共重合で合成する場合、光調整粒子と親和性がある官能基(以下、「親和性官能基」ともいう)をもつモノマーを、高分子鎖中のどの位置に導入するかという位置制御を行うことは難しい。嵩高い置換基をもつモノマーや反応性の低いモノマーを用いることで、ある程度の選択性は期待できるものの、モノマーの比率や重合条件によっては、高分子鎖中に親和性官能基がひとつもない共重合体が生成したり、親和性官能基が高分子鎖の中央付近に位置したりする可能性がある。
【0036】
一方、上述のようにβ位及びγ位の少なくとも一方にヒドロキシ基を有するアルキルメルカプタン誘導体を連鎖移動剤として用いて、(メタ)アクリル酸エステルのラジカル重合反応を行うことで得られる特定共重合体は、親和性官能基が、高い確率で嵩高い官能基から離れた高分子鎖末端に導入されることから、光調整粒子の凝集抑制及び沈降抑制により効果的と考えられる。
またこのような光調整粒子の凝集抑制及び沈降抑制に優れた効果を有する特定共重合体は、より少ない添加量でも光調整粒子を安定に分散させることが可能となり、特定共重合体の添加量の裕度を広くすることができる。また光調整粒子を安定に分散させることができれば、調光フィルムを構成した場合の透過率も優れたものとなる。
【0037】
β位及びγ位の少なくとも一方にヒドロキシ基を有するアルキルメルカプタン誘導体の具体例としては、3−メルカプト−1,2−プロパンジオール、1−メルカプト−2,3−ジヒドロキシブタン、1−メルカプト−2,3−ジヒドロキシヘキサン等を挙げることができる。
【0038】
前記特定共重合体の分子量は特に制限されない。特定共重合体の分子量は低温応答性の観点から、ゲルパーミエーションクロマトグラフィー(GPC)で測定した標準ポリスチレン換算の重量平均分子量が500〜20,000であることが好ましく、1,000〜15,000であることがより好ましい。また前記特定共重合体の粘度は、25℃の条件で、30mPa・s〜2,000mPa・sであることが好ましく、50mPa・s〜1,800でmPa・sあることがさらに好ましい。なお25℃における粘度は、E型粘度計で測定される。
【0039】
前記特定共重合体は、ヒドロキシ基を有する(メタ)アクリレート及びポリシロキサン構造を有する(メタ)アクリレートを含むモノマー混合物を、通常用いられる重合方法で共重合することで調製することができる。例えば、ヒドロキシ基を有する(メタ)アクリレート及びポリシロキサン構造を有する(メタ)アクリレートを含むモノマー混合物を、重合開始剤を用いてラジカル重合することで調製することができ、β位及びγ位の少なくとも一方にヒドロキシ基を有するアルキルメルカプタン誘導体を連鎖移動剤として用いて、ラジカル重合することが好ましい。
【0040】
特定共重合体の調製に用いられる重合開始剤は、特に制限されず通常用いられる重合開始剤から適宜選択することができる。重合開始剤としては、熱重合開始剤、光重合開始剤等を挙げることができる。具体的には、アゾイソブチロニトリル、ジ−tert−ブチルペルオキシド等を挙げることができる。
【0041】
上記のようにして得られる特定共重合体は、合成後に精製工程に付することが好ましい。精製方法としては、メタノール、エタノール、プロパノール等のアルコールを用いた分液精製、分子蒸留と呼ばれる10Pa以下の高真空下で蒸留して低分子成分を除去する方法などを挙げることができる。
【0042】
前記光調整懸濁液中における特定共重合体の含有量は、後述する光調整粒子の含有量等に応じて適宜選択することができる。一般的に特定共重合体の含有量は、光調整粒子100質量部に対して1000質量部〜100000質量部であることが好ましく、1200質量部〜10000質量部であることがより好ましい。
【0043】
(光調整粒子)
前記光調整懸濁液は。光調整粒子の少なくとも1種を含む。光調整粒子としては、前駆体であるピラジン−2,3−ジカルボン酸・2水和物、ピラジン−2,5−ジカルボン酸・2水和物、ピリジン−2,5−ジカルボン酸・1水和物からなる群の中から選ばれた1つの物質とヨウ素及びヨウ化物とニトロセルロースとを反応させて得られるポリヨウ化物の針状小結晶が、好ましく用いられる。
ヨウ化物としては、ヨウ化カルシウム等が挙げられる。このようにして得られるポリヨウ化物としては、例えば、下記一般式で表されるものが挙げられる。
CaI(C)・xHO (x:1〜2)
CaI(C・cHO (a:3〜7、b:1〜2、c:1〜3)
これらのポリヨウ化物は針状結晶であることが好ましい。
【0044】
また、調光フィルム用光調整懸濁液に用いる光調整粒子として、米国特許第2,041,138号明細書(E.H.Land)、米国特許第2,306,108号明細書(Landら)、米国特許第2,375,963号明細書(Thomas)、米国特許第4,270,841号明細書(R.L.Saxe)及び英国特許第433,455号明細書に開示されている光調整粒子も、使用することができる。これらの特許によって公知とされたポリヨウ化物の結晶は、ピラジンカルボン酸、又はピリジンカルボン酸の1つを選択して、ヨウ素、塩素又は臭素と反応させることにより、ポリヨウ化物、ポリ塩化物又はポリ臭化物等のポリハロゲン化物とすることによって作製されている。これらのポリハロゲン化物は、ハロゲン原子が無機質又は有機質と反応した錯化合物で、これらの詳しい製法は、例えば、サックスの米国特許第4,422,963号明細書に開示されている。
【0045】
光調整粒子の粒子サイズは、調光フィルムとしたときの印加電圧に対する応答時間と、光調整懸濁液中の凝集及び沈殿との関係から、以下のサイズが好ましい。
【0046】
光調整粒子の平均長径は、225nm〜625nmが好ましく、250nm〜550nmがより好ましく、300nm〜500nmがさらに好ましい。
【0047】
光調整粒子の短径に対する長径の比率、すなわちアスペクト比の平均値は3〜8が好ましく、3.3〜7がより好ましく、3.6〜6が更に好ましい。
【0048】
前記光調整粒子の長径と短径は、走査型電子顕微鏡、透過型電子顕微鏡等の電子顕微鏡で光調整粒子を撮影し、撮影した画像より任意に50個の光調整粒子を抽出し、各光調整粒子の長径及び短径のそれぞれの算術平均値として算出することができる。ここで、長径とは、上記撮影した画像により二次元視野内に投影された光調整粒子について、最も長い部分の長さとする。また、短径とは、上記長径に直交する最も長い部分の長さとする。
【0049】
また、前記光調整粒子の粒子径を評価する方法として、光子相関法や動的光散乱法の原理を用いた粒度分布計を用いることができる。この方法では直接粒子の大きさや形状を計測するのではなく、粒子を球状と仮定して相当径を評価することになり、SEM観察とは異なる値となる。特に、シスメックス株式会社製ゼータサイザーナノシリーズを用い、Z averageとして出力される相当径を粒子径とした場合に、光調整粒子の平均粒子径(以下、「粒度分布測定により求められる平均粒子径」ともいう)は135nm〜220nmが好ましく、140nm〜210nmがより好ましく、145nm〜205nmが更に好ましい。
【0050】
このZ average値は、例えば光相関法や動的光散乱法に基づいた、ゼータサイザーナノシリーズとは異なる粒度分布計の測定値や、上述の透過型電子顕微鏡等の電子顕微鏡で測定される光調整粒子の長径、短径とよい相関を示すことが知られおり、粒子径を評価する指標として適当である。
【0051】
製造された光調整粒子は、未反応物や副生成物、またサイズが小さい粒子や大きい粒子、アスペクト比が小さい粒子や大きい粒子が含まれる場合がある。通常は精製して用いることが好ましい。この精製方法としては例えば遠心分離を行う方法がある。遠心分離の条件は処理する量にもよるが、3000G〜20000Gが好ましい。また処理回数は2回以上が好ましい。遠心後は上澄みを傾斜して廃棄し、粒子が凝集せずに分散可能な有機溶剤を加えるとよい。このとき、加える有機溶剤に制限はないが、例えば酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸イソアミル、酢酸ヘキシル、アセトン、エチルメチルケトン、イソブチルケトン等が挙げられ、中でも、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸イソアミル、酢酸ヘキシルを好適に使用することができ、これらの溶媒が1種以上含まれていることが好ましい。これら溶媒は1種のみでもよいし、2種類以上を混合して用いてもよい。また、遠心分離処理を2回以上行う場合、最初の遠心分離処理にはニトロセルロースを溶解させた溶剤を用いてもよい。このとき、ニトロセルロースの濃度は3質量%〜20質量%、好ましくは5質量%〜15質量%である。また、溶剤を加えた後は、光調整粒子が溶剤中で分散できるように、ホモジナイザーや超音波で処理するとよい。
以上のようにして光調整粒子分散液を得ることができる。
【0052】
光調整粒子分散液における光調整粒子の濃度を求める方法として、この光調整粒子分散液を少量サンプリングし、加熱乾燥して残存する固形重量をもって粒子量とし、濃度を計算する方法がある。
さらに正確な濃度決定方法としては、例えば、光調整粒子分散液の密度を測定し、この密度の値から濃度を求める方法が挙げられる。具体的には、光調整懸濁液の製造方法においては、光調整粒子分散液の密度を測定する工程と、測定した前記密度に基づいて、前記光調整粒子分散液の濃度を算出する工程とを設けることができる。このような粒子と媒体である溶剤の密度に差があれば、粒子の濃度と分散液の密度には相関関係があると考えられる。溶剤、分散液の密度を測定する装置は特に制限されないが、例えば、アントンパール社製の振動式デジタル密度計を用いると、小数点以下第4位から6位までの密度を求めることが可能である。
【0053】
また、光調整粒子分散液の密度と粒子濃度の関係を表す式は、それぞれの、光調整粒子の密度、溶剤の密度、分散液の密度をそれぞれDp、Ds、Dsusとし、分散液中の粒子濃度をCpとすると、単位重量当たりの光調整粒子分散液の体積が、粒子と溶剤の体積の和になるとすれば求めることができる。単位重量の光調整粒子分散液に含まれる光調整粒子、溶剤の重量はそれぞれ、Cp/100、(100−Cp)/100となる。それぞれの体積は密度で除してCp/(100・Dp)、(100−Cp)/(100Ds)となる。従って式(1)のとおりになる。
【0054】
【数1】
【0055】
上記式(1)を展開すると、光調整分散液の粒子濃度を求める式(2)なる。
【0056】
【数2】
【0057】
このとき、Dsus、Dsは密度計を用いて測定することが可能であるが、固体の密度であるDpは測定することが困難である。ただし、式(2)を展開した下記式(3)のような光調整粒子密度を求める式において、適当な基準となる光調整粒子分散液の濃度を任意に決めるならば、基準となる光調整粒子密度が求まり、その値を式(2)に代入すると、粒子濃度が求められる。ここで求められる粒子濃度は、基準を決めた時の相対値であり、真の値とは言えないが、相対的な比較は可能であることから、事実上問題はない。また、基準となる光調整粒子分散液の濃度としては、例えば、光調整粒子分散液における不揮発分比であるNV値(乾燥後の光調整粒子分散液の質量/乾燥前の光調整分散液の質量)を採用すればよい。
【0058】
【数3】
【0059】
前記光調整懸濁液中における前記光調整粒子の含有量は、目的に応じて適宜選択できる。耐熱性と調光性能の観点から、光調整懸濁液中における含有率が、0.1質量%〜30質量%であることが好ましく、0.5質量%〜25質量%であることがより好ましく、1質量%〜15質量%であることが更に好ましく、2質量%〜10質量%であることが特に好ましい。
【0060】
(可塑剤)
前記光調整粒子が分散した光調整懸濁液は、流動可能な分散媒として上述の特定共重合体を含むが、必要に応じて可塑剤の少なくとも1種をさらに含んでいてもよい。これにより光調整懸濁液の粘度をより低減することができる。
可塑剤は上述の特定共重合体と同様に流動可能な状態で、光調整粒子を分散させる役割を果たすものであればよい。可塑剤としては、フタル酸ジオクチル、フタル酸ジイソオクチル、フタル酸ジブチル、フタル酸ブチルオクチル等のフタル酸アルキルエステル類、イソフタル酸ジオクチル等のイソフタル酸アルキルエステル類、オレイン酸ブチル、オレイン酸−n−プロピル等のオレイン酸アルキルエステル類、アジピン酸ジオクチル等のアジピン酸アルキルエステル類、ジ安息香酸ジエチレングリコール等の安息香酸アルキルエステル、トリメリット酸オクチル、トリメリット酸ドデシル、トリメリット酸イソデシルなどを挙げることができる。
光調整懸濁液中の分散媒として特定共重合体と可塑剤の割合に特に制限はなく、必要に応じて適宜選択できる。例えば、特定共重合体と可塑剤の総量中における特定共重合体の割合が3質量%以上であることが好ましく、5%質量以上であることがより好ましい。
【0061】
前記光調整懸濁液は、溶剤を含む光調整粒子分散液と、前記特定共重合体と、必要に応じて前記可塑剤とを通常用いられる方法で混合した後、光調整粒子が所望の濃度となるように溶剤の少なくとも一部を除去することで調製することができる。
溶剤の除去方法として具体的には、所定の濃度の光調整粒子分散液と特定共重合体及び必要に応じて含まれる可塑剤とを混合した後、加熱しながら溶剤を減圧留去する方法が好ましい。ロータリーエバポレータにアスピーレータやダイヤフラム式もしくは油回転式ポンプを接続し、減圧すると効率的に溶剤を留去できる。また光調整粒子分散液の濃度は上述のようにして算出することができる。
【0062】
[高分子媒体]
調光材料に含まれるエネルギー線照射により硬化可能な高分子媒体(以下、単に「高分子媒体」ともいう)としては、(A)(メタ)アクリロイル基を有する樹脂及び(B)光重合開始剤を含み、紫外線、可視光線、電子線等のエネルギー線を照射することにより硬化するものが挙げられる。(A)(メタ)アクリロイル基を有する樹脂としては、ポリシロキサン系樹脂、アクリル系樹脂、ポリエステル樹脂等が合成容易性、調光性能、耐久性等の点から好ましい。これらの樹脂は、置換基として、(メタ)アクリロイル基に加えて、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、アミル基、イソアミル基、ヘキシル基、シクロヘキシル基等のアルキル基;フェニル基、ナフチル基等のアリール基;などを有することが、調光性能、耐久性等の点から好ましい。なお、(メタ)アクリロイル基とは、アクリロイル基及びメタクリロイル基の少なくとも一方を意味する。
【0063】
前記ポリシロキサン系樹脂の具体例としては、例えば、特公昭53−36515号公報、特公昭57−52371号公報、特公昭58−53656号公報、特公昭61−17863号公報に記載の樹脂を挙げることができる。
【0064】
前記(メタ)アクリロイル基を有するポリシロキサン系樹脂(以下、単に「ポリシロキサン系樹脂」ともいう)は、例えば、両末端シラノールポリジメチルシロキサン、両末端シラノールポリジフェニルシロキサン−ジメチルシロキサンコポリマー、両末端シラノールポリジメチルジフェニルシロキサン等の両末端シラノールシロキサンポリマーと、トリメチルメトキシシラン等のトリアルキルアルコキシシランと、(3−アクリロキシプロピル)メチルジメトキシシラン等の(メタ)アクリロイル基含有シラン化合物等とを、2−エチルヘキサン錫等の有機錫系触媒の存在下で、脱水縮合反応及び脱アルコール反応させて合成される。またポリシロキサン系樹脂の形態としては、無溶剤型が好ましく用いられる。すなわち、ポリシロキサン系樹脂の合成に溶剤を用いた場合には、合成反応後に溶剤を除去することが好ましい。
【0065】
前記ポリシロキサン系樹脂中の(メタ)アクリロイル基を有する構造単位の含有率は、ポリシロキサン系樹脂全体の1.3質量%〜5.0質量%であることが好ましく、1.5質量%〜4.5質量%であることがより好ましい。
【0066】
前記ポリシロキサン系樹脂中の(メタ)アクリロイル基を有する構造単位の含有率を、ポリシロキサン系樹脂全体の1.3質量%〜5.0質量%とするためには、ポリシロキサン系樹脂の製造方法において、(メタ)アクリロイル基含有シラノール化合物をポリシロキサン系樹脂の縮合原料の総量(シラノール基含有シロキサン系モノマー、及びオリゴマーの少なくとも一方、(メタ)アクリロイル基含有シラノール化合物及び必要により添加するエンドキャップ剤の合計総量)の2.3質量%〜6.9質量%とすることにより達成可能である。
【0067】
前記ポリシロキサン系樹脂の重量平均分子量は、35,000〜60,000であることが好ましく、37,000〜58,000であることがより好ましく、40,000〜55,000であることがさらに好ましい。前記ポリシロキサン樹脂の重量平均分子量を上記範囲とするには、例えば、重合工程においてゲルパーミエーションクロマトグラフィー(GPC)で重量平均分子量の測定を行いながら35,000〜60,000になった時点で重合反応を停止すればよい。なお、重量平均分子量はGPCにより測定した分子量分布に対して標準ポリスチレンを用いた検量線から換算した値として与えられる。
【0068】
前記(メタ)アクリロイル基を有するアクリル系樹脂(以下、単に「アクリル系樹脂」ともいう)は、例えば以下のようにして得ることができる。(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アリールエステル、(メタ)アクリル酸ベンジル、スチレン等の主鎖形成用モノマーと、(メタ)アクリル酸、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸イソシアネートエチル、(メタ)アクリル酸グリシジル等の(メタ)アクリロイル基導入用官能基含有モノマー等とを共重合して、プレポリマーを一旦合成する。次いで、このプレポリマーの(メタ)アクリロイル基導入用官能基と反応させるべく(メタ)アクリル酸グリシジル、(メタ)アクリル酸イソシアネートエチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸等のモノマーを前記プレポリマーに付加反応させることにより得ることができる。
【0069】
また前記(メタ)アクリロイル基を有するポリエステル樹脂としては、特に制限はなく、公知の方法で容易に製造できるものが挙げられる。例えば、ポリエステル主鎖を形成可能なモノマーと、これらと共重合可能で、(メタ)アクリロイル基を有するモノマーとを共重合することで得ることができる。またポリエステル主鎖を有するプレポリマーに(メタ)アクリロイル基導入用官能基を有する化合物を反応させて得てもよい。
【0070】
尚、(A)(メタ)アクリロイル基を有する樹脂に含まれる(メタ)アクリロイル基濃度は、NMRの水素の積分強度比から求められる。また、仕込み原料の樹脂への転化率がわかる場合は、計算によっても求められる。
【0071】
高分子媒体に用いる(B)光重合開始剤としては、光照射により分解してラジカルを発生して重合性化合物の重合を開始し得るものであればよい。光重合開始剤は通常用いられる化合物から適宜選択することができる。光重合開始剤としては、ケトン化合物、ホスフィンオキサイド化合物、オキシムエステルを挙げることができる。具体的には、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−(4−(2−ヒドロキシエトキシ)フェニル)−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、(1−ヒドロキシシクロヘキシル)フェニルケトン等を挙げることができる。
【0072】
(B)光重合開始剤の含有量は、上記の(A)樹脂100質量部に対して0.1質量部〜20質量部であることが好ましく、0.2質量部〜10質量部であることがより好ましい。
【0073】
前記高分子媒体は、上記の(A)(メタ)アクリロイル基を有する樹脂の他に、その他の樹脂として、有機溶剤可溶型樹脂又は熱可塑性樹脂を更に含んでいてもよい。その他の樹脂としては、ポリアクリル酸、ポリメタクリル酸等を挙げることができる。その他の樹脂の重量平均分子量は特に制限されない。例えば、1,000〜100,000とすることができる。重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定した分子量分布に対して標準ポリスチレンを用いた検量線から換算した値として与えられる。
【0074】
前記高分子媒体中には、ジブチル錫ジラウレート等の着色防止剤などの添加物を必要に応じて添加してもよい。さらに高分子媒体は、溶剤を含んでもよい。溶剤としては、テトラヒドロフラン等のエーテル溶剤;トルエン、ヘプタン、シクロヘキサン等の炭化水素溶剤;エタノール、メタノール等のアルコール溶剤;エチルアセテート、酢酸イソアミル、酢酸ヘキシル等のエステル溶剤;などを用いることができる。
【0075】
本発明の調光材料は、前記光調整懸濁液と、前記高分子媒体とを混合することで調製することができる。前記光調整懸濁液及び高分子媒体の混合比率は、目的に応じて適宜選択できる。例えば、光調整懸濁液を、高分子媒体100質量部に対して、1質量部〜100質量部含むことが好ましく、4質量部〜70質量部含むことがより好ましく、6質量部〜60質量部含むことが更に好ましく、8質量部〜50質量部含むことが特に好ましい。
【0076】
<調光フィルム>
本発明の調光フィルムは、2枚の導電性樹脂基材と、2枚の導電性樹脂基材に挟持され、前記調光材料を用いて形成される調光層とを有するものである。前記調光材料は、高分子媒体から形成された樹脂マトリックスと、樹脂マトリックス中に分散した光調整懸濁液とを含む調光層が形成される。
調光層が前記調光材料から形成されることで、低温応答性に優れる調光フィルムを構成することができる。
【0077】
(導電性樹脂基材)
導電性樹脂基材は、一般的に樹脂基材上に導電膜を有して構成される。中でも導電性樹脂基材は、樹脂基材上に光透過率が80%以上の透明導電膜(ITO、SnO、In、有機導電膜等の膜)がコーティングされている表面抵抗率が3Ω/□〜3000Ω/□の導電性樹脂基材を使用することが好ましい。前記表面抵抗率は例えば、低抵抗率計(商品名:ロレスタEP、ダイヤインスツルメンツ社製)を用いて四探針法によって測定することができる。
【0078】
前記導電性樹脂基材は、光透過率が80%以上の透明導電性樹脂基材であることが好ましく、光透過率が85%以上の透明導電性樹脂基材であることがより好ましい。前記光透過率はJIS K7105の全光線透過率の測定法に準処して測定することができる。
【0079】
樹脂基材としては、例えば、高分子フィルム等を使用することができる。高分子フィルムとしては、例えば、ポリエチレンテレフタレート等のポリエステル系フィルム、ポリプロピレン等のポリオレフィン系フィルム、ポリ塩化ビニル、アクリル樹脂系のフィルム、ポリエーテルサルフォンフィルム、ポリアリレートフィルム、ポリカーボネートフィルム等の樹脂フィルムが挙げられるが、ポリエチレンテレフタレートフィルムが、透明性に優れ、成形性、接着性、加工性等に優れるので好ましい。
【0080】
樹脂基材に形成される導電膜の厚みは、10nm〜5,000nmであることが好ましい。樹脂基材の厚みは特に制限はない。例えば、高分子フィルムの場合には10μm〜200μmが好ましい。
【0081】
導電性樹脂基材として、導電膜の上に数nm〜1μm程度の厚さの絶縁層が形成されている導電性樹脂基材を使用してもよい。絶縁層を更に有することで調光フィルムにおける導電性樹脂基材の間隔が狭い場合でも、異物質の混入等により発生する短絡現象を防止することができる。
また本発明の調光フィルムを反射型の調光窓に利用する場合(例えば、自動車用リアビューミラー)は、反射体であるアルミニウム、金、又は銀のような導電性金属の薄膜を導電膜として用いてもよい。
【0082】
本発明の調光フィルムは、調光層との密着性を向上させるためのプライマー層を有する2枚の透明導電性樹脂基材に挟持されているか、あるいはプライマー層を有する透明導電性樹脂基材とプライマー層を有さない透明導電性樹脂基材の2枚の透明導電性樹脂基材に挟持されていてもよい。
【0083】
上記プライマー層は、ペンタエリスリトール骨格を含有するウレタンアクリレートを含有する材料、分子内に水酸基を有する(メタ)アクリレートを含有する材料、金属酸化物微粒子を有機バインダー樹脂に分散させた材料、分子内に1つ以上の重合性基を有するリン酸エステル、アミノ基を有するシランカップリング剤等からなる薄膜で形成されるのが好ましい。
【0084】
本発明における透明導電性樹脂基材のプライマー処理(プライマー層の形成)は、例えば、プライマー層を形成する材料を、バーコーター法、マイヤーバーコーター法、アプリケーター法、ドクターブレード法、ロールコーター法、ダイコーター法、コンマコーター法、グラビアコート法、マイクログラビアコート法、ロールブラッシュ法、スプレーコート法、エアーナイフコート法、含浸法、カーテンコート法等を単独又は組み合わせて用いて、透明導電性樹脂基材に塗布することにより行うことができる。
【0085】
なお、塗布する際は必要に応じて適当な溶剤で希釈し、プライマー層を形成する材料の溶液を用いてもよい。溶剤を用いた場合には、透明導電性樹脂基材上に塗布した後乾燥を要する。尚、プライマー層となる塗膜は必要に応じて透明導電性樹脂基材の片面のみ(透明導電膜側)に形成してもよいし、含浸法やディップコート法によって両面に形成してもよい。
【0086】
プライマー層形成に用いる溶剤としては、プライマー層を形成する材料を溶解あるいは分散し、プライマー層形成後に乾燥等により除去できるものであればよく、イソプロピルアルコール、エタノール、メタノール、1−メトキシ−2−プロパノール、2−メトキシエタノール、シクロヘキサノン、メチルイソブチルケトン、アニソール、メチルエチルケトン、アセトン、テトラヒドロフラン、トルエン、ヘプタン、シクロヘキサン、エチルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチルジグリコール、ジメチルジグリコール、酢酸イソアミル、酢酸ヘキシル等を用いることができ、これらの混合溶媒でもよい。
【0087】
(調光層)
本発明における調光層は、樹脂マトリックスと該樹脂マトリックス中に分散した前記光調整懸濁液とを含む。なお、樹脂マトリックスは、調光材料に含まれるエネルギー線照射により硬化可能な高分子媒体(好ましくは、エチレン性不飽和基含有高分子化合物)を硬化したものである。前記高分子媒体及び分散媒(光調整懸濁液中の共重合体および可塑剤等の分散媒)としては、前記高分子媒体及びその硬化物と分散媒とが、少なくともフィルム化したときに互いに相分離しうるものを用いる。互いに非相溶又は部分相溶性の前記高分子媒体と分散媒とを組み合わせて用いることが好ましい。
【0088】
調光フィルムを得るためには、まず、液状の光調整懸濁液を、高分子媒体と混合し、光調整懸濁液が高分子媒体中に液滴状態で分散した混合液である調光材料を調製する。具体的には、以下のようにして調光材料を調製する。光調整粒子を溶媒に分散した液と光調整懸濁液の分散媒とを混合し、ロータリーエバポレータ等で溶媒を留去し、光調整懸濁液を作製する。次いで、光調整懸濁液及び高分子媒体を混合し、光調整懸濁液が高分子媒体中に液滴状態で分散した混合液(調光材料)とする。調光材料は、前記高分子媒体100質量部に対して、前記光調整懸濁液を通常1質量部〜100質量部、好ましくは4質量部〜70質量部、より好ましくは6質量部〜60質量部混合して調製する。
【0089】
この調光材料を、前記導電性樹脂基材の導電層上に一定な厚さで塗布して、塗布層を形成する。調光材料の塗布には、バーコーター、アプリケーター、ドクターブレード、ロールコーター、ダイコーター、コンマコーター等の公知の塗工手段を用いることができる。調光材料は、導電性樹脂基材に設けたプライマー層面に塗布してもよく、又は、一方にプライマー層を有さない導電性樹脂基材を用いる場合には、導電層に直接塗布することもできる。なお、塗布する際は、必要に応じて、調光材料を適当な溶剤で希釈してもよい。溶剤を用いる場合には、導電性樹脂基材に調光材料を塗布した後で乾燥処理することが好ましい。
【0090】
調光材料の塗布に用いる溶剤としては、テトラヒドロフラン等のエーテル溶剤;トルエン、ヘプタン、シクロヘキサン等の炭化水素溶剤;エタノール、メタノール等のアルコール溶剤;エチルアセテート、酢酸イソアミル、酢酸ヘキシル等のエステル溶剤;などを用いることができる。液状の光調整懸濁液が、固体の樹脂マトリックス中に微細な液滴形態で分散されている調光層を形成するためには、調光材料をホモジナイザー、超音波ホモジナイザー等で混合して高分子媒体中に光調整懸濁液を微細に分散させる方法、高分子媒体中の樹脂成分の重合による相分離法、溶媒揮発による相分離法、温度による相分離法等を利用することができる。
【0091】
調光材料を塗布した後、又は必要に応じて調光材料に含有される溶剤を乾燥除去した後、高圧水銀灯等を用いて紫外線を照射して高分子媒体を硬化させる。その結果、高分子媒体が硬化して形成される樹脂マトリックス中に、光調整懸濁液が液滴状に分散されている調光層が形成される。高分子媒体と光調整懸濁液との混合比率を様々に変えることにより、調光層の光透過率を調節することができる。
【0092】
樹脂マトリックス中に分散されている光調整懸濁液の液滴の大きさ(平均液滴径)は、通常0.5μm〜100μmであり、好ましくは0.5μm〜20μmであり、より好ましくは1μm〜5μmである。液滴の大きさは、光調整懸濁液を構成している各成分の濃度、光調整懸濁液及び高分子媒体の粘度、光調整懸濁液中の分散媒の高分子媒体に対する相溶性等により調整することができる。
【0093】
平均液滴径は、例えば、SEMを用いて、調光フィルムの一方の面方向から写真等の画像を撮影し、任意に選択した50個の液滴直径を測定し、その平均値として算出することができる。また、調光フィルムの光学顕微鏡での視野画像をデジタルデータとしてコンピュータに取り込み、画像処理インテグレーションソフトウェアを使用し算出することも可能である。
【0094】
このようにして導電性樹脂基材上に形成された調光層の上に、もう一方の導電性樹脂基材を密着させることにより、調光フィルムが得られる。
【0095】
また前記調光材料を、導電性樹脂基材上に一定な厚さで塗布し、必要に応じて調光材料中の溶剤を乾燥除去した後、もう一方の導電性樹脂基材でラミネートした後に、紫外線を照射して高分子媒体を硬化させて調光層を形成し、調光フィルムを得ることもできる。
【0096】
更には、2枚の導電性樹脂基材の両方の導電層又はプライマー層上にそれぞれ調光層を形成し、その調光層同士が密着するようにして積層してもよい。
【0097】
調光層の厚みは、5μm〜1,000μmが好ましく、20μm〜200μmがより好ましい。
【0098】
<調光フィルムによる調光>
本発明の調光フィルムは、電界の形成により任意に光透過率を調節できる。この調光フィルムは、電界が形成されていない場合には、光の散乱が抑制された鮮明な着色状態を維持し、電界が形成されると透明な状態に転換される。この能力は、20万回以上の可逆的反復特性を示す。
【0099】
調光フィルムを作動させるための使用電源は交流で、10ボルト〜100ボルト(実効値)、30Hz〜500kHzの周波数範囲とすることができる。本発明の調光フィルムは、電界に対する応答時間を、消色時には1秒〜50秒以内、着色時には1秒〜100秒以内とすることができる。
【0100】
本発明の調光フィルムは、特定共重合体を含有する光調整懸濁液を含むため、低温環境下における低温応答性に優れる。具体的には、−20℃の環境下において電界のON/OFFに対する応答時間を、消色時には1秒〜50秒以内、着色時には1秒〜100秒以内とすることができ、実用上、充分な低温応答性を達成できる。
【0101】
また、紫外線耐久性は、750W紫外線等を利用した紫外線照射試験の結果、250時間が経過した後にも安定な可変特性を示し、−50℃〜90℃で長時間放置した場合にも、初期の可変特性を維持することが可能である。
【0102】
従来技術である液晶を使用した調光フィルムの製造において、水を用いたエマルションによる方法を使用すると、液晶が水分と反応して光調整特性を失うことが多く、同一の特性のフィルムを製造しにくいという課題がある。しかし、本発明においては、液晶ではなく、光調整粒子が光調整懸濁液内に分散されている液状の光調整懸濁液を使用するため、液晶を利用した調光フィルムとは異なり、電界が印加されていない場合にも光の散乱が抑制され、鮮明度が優れて視野角の制限のない着色状態を示す。そして、光調整粒子の含量、液滴形態や層厚を調節したり、又は電界強度を調節したりすることにより、光可変度を任意に調節できる。
【0103】
また、本発明の調光フィルムは、液晶を用いないことから、紫外線露光による色調変化及び可変能力の低下、大型製品特有の導電性樹脂基材の周辺部と中央部間に生ずる電圧降下に伴う応答時間差も解消される。
【0104】
次に本発明の調光フィルムの一態様の動作状態について図2及び図3を参照しながら説明する。なお図2及び図3では、一例として導電層5a及び樹脂基材5bを有する導電性樹脂基材を備える調光フィルムを図示している。図2(a)は、調光フィルムの電界が印加されていない状態を説明する調光フィルムの概略断面図であり、図2(b)は、このときの光調整懸濁液内の拡大図である。図3(a)は、調光フィルムの電界が印加されている状態を説明する概略断面図であり、図3(b)は、このときの光調整懸濁液内の拡大図である。
【0105】
電界が印加されていないときには、図2(b)に示すように光調整懸濁液内の光調整粒子はブラウン運動によりランダムな方向を向いている。そのため図2(a)に示すように、光調整粒子の光吸収、2色性効果による鮮明な着色状態を示す。電界が印加された状態では、図3(b)に示すように、液滴又は液滴連結体の中の光調整粒子が電界に平行に配列される。これにより図3(a)に示すように調光フィルムを可視光である入射光11が透過可能な状態に転換される。
【0106】
また、本発明の調光フィルムは調光層が硬化したフィルム状態であるので、液状の光調整懸濁液をそのまま使用する従来技術による調光硝子の問題点が解消される。即ち、2枚の導電性樹脂基材の間への液状の懸濁液の注入の困難性、製品の上下間の水圧差による下部の膨張現象、風圧等の外部環境による基材間隔の変化による局部的な色相変化、導電性樹脂基材の間の密封材の破壊による調光材料の漏洩が解決される。
【0107】
また、液晶を利用した従来技術による調光窓の場合には、液晶が紫外線により容易に劣化し、またネマチック液晶の熱的特性によりその使用温度の範囲も狭い。更に、光学特性面においても、電界が印加されていない場合には光散乱による乳白色の半透明な状態を示し、電界が印加される場合にも、完全には鮮明化せず、乳濁状態が残存する課題がある。
従って、このような調光窓では、既存の液晶表示素子で動作原理として利用されている光の遮断及び透過による調光機能が不十分である。しかし、本発明の調光フィルムでは、このような課題が解決できる。
【0108】
本発明の調光フィルムは、例えば、室内外の仕切り(パーティッション)、建築物用の窓硝子/天窓、電子産業及び映像機器に使用される各種平面表示素子、各種計器板と既存の液晶表示素子の代替品、光シャッター、各種室内外広告及び案内標示板、航空機/鉄道車両/船舶用の窓硝子、自動車用の窓硝子/バックミラー/サンルーフ、眼鏡、サングラス、サンバイザーの用途に好適に使用することができる。
【0109】
本発明の調光フィルムの適用法としては、調光フィルムをそのままの状態で直接使用することも可能である。また用途によっては、例えば、本発明の調光フィルムを2枚の基材に挟持させて使用したり、基材の片面に貼り付けて使用したりしてもよい。前記基材としては、例えば、ガラスや、上記樹脂基材と同様の高分子フィルムを使用することができる。
【実施例】
【0110】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0111】
<参考例>
(基準粒子密度決定のための光調整粒子分散液の調製)
ヨウ素(JIS試薬特級、和光純薬工業(株)製)と酢酸イソアミル(試薬特級、和光純薬工業(株)製)から8.5質量%ヨウ素の酢酸イソアミル溶液を、またニトロセルロース1/4LIG(商品名:ベルジュラックNC社製)と酢酸イソアミルから20.0質量%ニトロセルロースの酢酸イソアミル溶液を調製した。ヨウ化カルシウム水和物(化学用、和光純薬工業(株)製)を加熱乾燥して無水化して酢酸イソアミルに溶解させ、20.9質量%ヨウ化カルシウム溶液を調製した。20Lフラスコに撹拌機と冷却管を備え、ヨウ素溶液を6905g、ニトロセルロース溶液を8723g、を加え水浴温度を35〜40℃としてフラスコを加熱した。ニトロセルロース溶液中の水分比(質量%)は平沼産業(株)製、平沼水分測定装置AQ−7(発生液:ハイドラナールアクアライトRS、対極液:アクアライトCN)を用いて測定したところ、0.61質量%であり、加えた溶液質量からニトロセルロース溶液中の水分量は53.2gであった。フラスコ内容物の温度が35〜40℃となった後、脱水メタノール(試薬特級、和光純薬工業(株)製)を260g、精製水(和光純薬工業(株)製)を55.6g加えて撹拌した。ヨウ化カルシウム溶液を1643g、次いでピラジン−2,5−ジカルボン酸(日化テクノサービス(株)製)を390g加えた。水浴温度を42℃〜44℃として4時間撹拌した後、放冷した。
得られた合成液を9260Gで5時間遠心分離後、傾斜して上澄み液を除き、底部に残存した沈殿に、この沈殿の質量の5倍に相当する酢酸イソアミルを加え超音波で沈殿を分散し、次に710Gで10分間遠心分離後、上澄みを9260Gで3時間遠心分離した。
傾斜して上澄みを除き、底部に残存した沈殿に、この沈殿の質量の5倍に相当する酢酸イソアミルを加え超音波で沈殿を分散して光調整粒子分散液を調製した。
【0112】
得られた光調整粒子は、粒度分布測定(サブミクロン粒子アナライザ(製品名:N4MD、ベックマン・コールタ社製)で測定)で求められる平均粒子径が185nm、SEM観察による平均長径は350nm、平均アスペクト比は7.0であった。なお、SEMによる観察では、300個の光調整粒子から、長径及びアスペクト比の平均値を求めた。
【0113】
(基準粒子密度の決定)
上述の光調整分散液の密度を25.00℃で測定したところ、0.92854g/cmだった。この分散した液を1g金属プレートに秤量し、120℃1時間で乾燥後、再び質量を測定し、光調整分散液における不揮発成分の質量比である不揮発分比NV値を求めたところ、6.98質量%であった。この不揮発分比NV値を粒子濃度とし、密度の値とともに既述の式(3)に代入して得られた密度2.9722g/cmを基準粒子密度として、以下密度から粒子濃度を求めるときはすべてこの値を用いた。
【0114】
<実施例1>
(光調整粒子分散液の調製)
水分比が0.68質量%のニトロセルロース溶液を用いたこと、及び脱水メタノールと一緒に加える精製水を56.9gとしたこと以外は上記参考例と同様にして光調整粒子分散液を調製した。調製した光調整粒子分散液の密度は0.90925g/cm、粒子濃度は6.1005質量%となった。
【0115】
(光調整粒子と可塑剤との混合)
この光調整粒子分散液169.52g、トリメリット酸イソデシル(花王製)100.72gを500mLナス型フラスコに加えロータリーエバポレータにセットし、80℃で加熱しながら油回転ポンプでゆっくり減圧を開始し、約45分間で溶媒を留去した後、そのまま減圧を継続した。減圧開始から1時間経過後に真空度1000Pa以下を確認し、3時間後に減圧と加熱を停止して脱溶した。次に、フラスコに内容物重量と同量の酢酸イソアミルを加え、再び同じ手順で脱溶2回目を実施して粒子濃度9.73質量%の光調整粒子混合液を得た。光調整粒子混合液を得た。
【0116】
(樹脂分散剤(特定共重合体)[S−1]の合成)
トルエン(試薬特級、和光純薬工業(株)製)160g、メタクリル酸2−ヒドロキシエチル5g(共栄社化学)、メタクリル末端ポリジメチルシロキサンFM0711(Chisso America Inc.製、重量平均分子量:1,000)150g、3−メルカプト−1,2−プロパンジオール(試薬特級、和光純薬工業(株)製)17.5gを3つ口フラスコに加え窒素雰囲気下で撹拌しながら80℃に加熱した。5時間後、アゾイソブチロニトリル(試薬特級、和光純薬工業(株)製)1.84gをトルエン80gに溶解させた後、全量滴下した。そのまま21時間加熱した後、115℃に加熱して2時間撹拌した。その後、減圧して溶剤を留去した。これにメタノールを200g加えて分液ロートに移して激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、回収した下層から減圧下で溶剤を留去して、樹脂分散剤[S−1]を得た。
得られた樹脂分散剤における第一の構造単位と第二の構造単位の含有モル比(第一の構造単位/第二の構造単位)は20/80であった。また得られた樹脂分散剤の重量平均分子量は2,200、25℃における粘度は310mPa・sであった。
なお、25℃における粘度は、E型粘度計(型式:RE−80U、東機産業(株)製)を用いて測定した。また重量平均分子量は以下の条件で測定した。
(条件)
試料:10μL
検出器:株式会社日立製作所製、RI−モニター、商品名「L−3000RI」
インテグレーター:株式会社日立製作所製、GPCインテグレーター、商品名「D−2200」
ポンプ:株式会社日立製作所製、商品名「L−6000」
カラム:日立化成工業株式会社製、商品名「GL−R440」、「GL−R450」、「GL−R400M」をこの順番で連結して使用
溶離液:テトラヒドロフラン(THF)
測定温度:23℃
流速:1.75mL/分
【0117】
(光調整懸濁液の調製)
上記の光調整粒子混合液15.00g、樹脂分散剤22.5gをポリカップに量り取り、攪拌して光調整懸濁液を得た。光調整懸濁液から粒子を除いた質量のうち、樹脂分散剤[S−1]の質量の比率は60.0%であった。
【0118】
(高分子媒体の製造)
ディーンスタークトラップ、冷却管、撹拌機、加熱装置を備えた四つ口フラスコに、(3−アクリロキシプロピル)メチルジメトキシシラン(商品名:KBM−5102、信越化学工業(株)製)150.0g、蒸留水19.0g、酢酸(和光純薬工業(株)製)0.4g、質量比でエタノール/メタノール=9/1の混合溶媒89gを仕込み、65℃に昇温して5時間反応させた。反応溶液を40℃以下まで冷却した後、300Paに減圧して70℃まで昇温して2時間、脱溶工程を行った。その後、室温まで冷却してアルコキシシランの一部をシラノールへ変換した化合物140gを得た。また、シラノールへの変換率は54.5%であった。
【0119】
なお、アルコキシシランのシラノールへの変換率は、赤外分光測定における水酸基由来のピーク(3435cm−1付近)の吸収強度(A)とアルコキシ基由来のピーク(2835cm−1付近)の吸収強度(B)から変換率=A/(A+B)×100により求められる。ジメトキシシランをシラノールに変換後の赤外分光測定より、吸収強度(A)がAbs=0.250、吸収強度(B)がAbs=0.211であったことから、変換率は54.5%と算出した。
【0120】
ディーンスタークトラップ、冷却管、撹拌機、加熱装置を備えた四つ口フラスコに、両末端シラノールポリジメチルシロキサン(商品名:X−21−3114、信越化学工業(株)製)48.0g、両末端シラノールポリジメチルジフェニルシロキサン(商品名:X−21−3193B、信越化学工業(株)製)170.0g、前記で得られたKBM−5102のメトキシ基の一部をシラノールに変換したもの9.0g、ビス(2−エチルヘキサン酸)錫(商品名:KCS−405T、城北化学工業(株)製)0.01gを仕込み、ヘプタン中100℃で5時間還流し、反応を行った。温度を50℃まで冷却した後、トリメチルメトキシシラン(商品名:KBM−31、信越化学工業(株)製)109.0gを添加し、再び85℃において2時間還流してエンドキャップ反応させた。
【0121】
次いで温度を75℃に冷却してリン酸ジエチル(別名:エチルアシッドホスフェート、(商品名:JP−502、城北化学工業(株)製)0.01g(脱水縮合触媒ビス(2−エチルヘキサン酸)錫と同質量)を添加し20分攪拌した後、30℃まで冷却した。次いでメタノールを210g、エタノールを90g添加し20分攪拌した。12時間静置した後、アルコール層を除去した。残渣を100Paに減圧して115℃に昇温し5時間、脱溶処理を行い、重量平均分子量46,700、粘度16,000mPa・s、屈折率1.4744のポリシロキサン樹脂148.8gを得た。
【0122】
このとき、ポリシロキサンを構成する原料シロキサン及びシラン化合物総量に対するKBM−5102のメトキシ基をシラノールに変換したものの割合は、4.2質量%であった。また、エチレン性不飽和結合濃度から、この樹脂の3−アクリロキシプロピルメチルシロキサン構造単位の含有率は、1.9質量%であった。
【0123】
(調光材料の製造例)
上記の高分子媒体31.3g、光重合開始剤のビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド(BASFジャパン(株)製)とテトラヒドロフラン(和光純薬、特級)を各0.2g、上記で調製した光調整懸濁液18.7gをポリカップに量り取り、攪拌して調光材料を得た。
【0124】
(調光フィルムの作製)
(プライマー層形成用塗布液の調製)
AY42−151(ペンタエリスリトール骨格を含有するウレタン(メタ)アクリレートを含有する材料、商品名、東レ・ダウコーニング(株))を1.5質量%、1−メトキシ−2−プロパノール/イソプロピルアルコール=7/3(質量比)の混合溶媒を98.5質量%の割合となるように混合し、プライマー層形成用塗布液を調製した。
【0125】
(プライマー層付き導電性樹脂基材の製造)
ITO(インジウム錫の酸化物)の透明導電膜(厚み30nm)がコーティングされている表面電気抵抗値が200Ω/□〜700Ω/□のPETフィルム(300R、東洋紡績(株)製、厚み125μm)からなる透明導電性樹脂基材の導電層上に、前記プライマー層形成用塗布液を、マイクログラビア法(メッシュ#150)を用いて、全面塗布した。50℃/30秒、60℃/30秒、70℃/1分の条件で順次乾燥した後、UV照射4000mJ/cm(メタルハライドランプ)で光硬化して、導電層上にプライマー層を形成した。得られたプライマー層の平均厚みは、74nmであった。このプライマー層を有する導電性樹脂基材を2枚作製した。
なお、プライマー層の厚みは、瞬間分光光度計F−20(フィルメトリクス(株)製)を用いて5点の厚みを測定し、その算術平均値として算出測定した。
【0126】
前記「プライマー層付き導電性樹脂基材の製造」で得られたプライマー層付き導電性樹脂基材のプライマー層上に、前記「調光材料の製造例」で得られた調光材料を全面塗布した。次いで、その上に同様にプライマー層を形成した同じ透明導電性樹脂基材を、透明導電膜が調光材料の塗布層に向くようにして積層して密着させた。最後に、メタルハライドランプを用いて4000mJ/cmの紫外線を前記積層した透明導電性樹脂基材のポリエステルフィルム側から照射し、光調整懸濁液が球形の液滴として紫外線硬化した樹脂マトリックス内に分散形成されたフィルム状の厚み90μm〜98μmの調光層が透明導電性樹脂基材に挟まれた厚み330μm〜350μm調光フィルムを製造した。
【0127】
(調光フィルムの透過率測定)
分光式色差計SZ−Σ90(日本電色工業(株)製)を使用し、A光源、視野角2度で測定したY値(%)を光透過率とした。なお、電界印加時と未印加時の光透過率を測定した。また、電界印加時は、400Hzの交流電圧(実効値)100Vの印加時の透過率をTon(%)、電界印加がないときをToff(%)、透過率差をΔT(%)=Ton(%)−Toff(%)とし、印加後60秒後のΔT(%)値を測定したところ55.0%であった。この調光フィルムを110℃で2時間保管した後に同様にΔT(%)値を測定したところ46.8%であった。従って、この調光フィルムにおける110℃、2時間でのΔT保持率=ΔT/ΔT=85.1%であった。
【0128】
(低温応答性評価)
低温応答性は次のようにして応答時間を測定して評価した。電界未印加の時の透過率を0%、電界を印加してから透過率が一定になった時の透過率を100%とした。電界を印加(OFFからONへ)して透過率が0%から80%になるまでの時間をton、電圧を印加した状態から電圧を切り(ONからOFFへ)、透過率が100%から20%になるまでの時間をtoffと定義した。
温度−20℃において上記のようにして応答時間を測定したところ、tonは15秒(s)、toffは60秒(s)であった。結果をまとめて表1に示す。
【0129】
<実施例2>
(樹脂分散剤[S−2]の合成)
トルエン(試薬特級、和光純薬工業(株)製)160g、メタクリル酸2−ヒドロキシエチル5g(共栄社化学)、メタクリル末端ポリジメチルシロキサンFM0721(Chisso America Inc.製、重量平均分子量:5,000)150g、3−メルカプト−1,2−プロパンジオール(試薬特級、和光純薬工業(株)製)17.5gを3つ口フラスコに加え窒素雰囲気下で撹拌しながら80℃に加熱した。5時間後、アゾイソブチロニトリル(試薬特級、和光純薬工業(株)製)1.84gをトルエン80gに溶解させた後、全量滴下した。そのまま21時間加熱した後、115℃に加熱して2時間撹拌した。その後、減圧して溶剤を留去した。これにメタノールを200g加えて分液ロートに移して激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、回収した下層から減圧下に溶剤を留去して、樹脂分散剤[S−2]を得た。
得られた樹脂分散剤の重量平均分子量は11,000、25℃における粘度は950mPa・sであった。
【0130】
(光調整懸濁液の調製)
上記の光調整粒子混合液15.00g、樹脂分散剤22.5gをポリカップに量り取り、攪拌して光調整懸濁液を得た。光調整懸濁液から粒子を除いた質量のうち、樹脂分散剤[S−2]の質量の比率は60.0%であった。
【0131】
(調光材料の調製と調光フィルムの作製、透過率の測定)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値を測定したところ、51.3%であった。この調光フィルムを110℃で2時間保管した後に同様にΔT(%)値を測定したところ43.8%であった。従って、この調光フィルムにおける110℃、2時間でのΔT保持率は85.3%であった。
【0132】
(低温応答性評価)
温度−20℃におけるtonは29s、toffは89sであった。
【0133】
<実施例3>
(樹脂分散剤[S−3]の合成)
トルエン(試薬特級、和光純薬工業(株)製)160g、メタクリル酸2−ヒドロキシエチル5g(共栄社化学)、メタクリル末端ポリジメチルシロキサンX−22−174DX(信越シリコーン製、重量平均分子量:4,600)150g、3−メルカプト−1,2−プロパンジオール(試薬特級、和光純薬工業(株)製)17.6gを3つ口フラスコに加え窒素雰囲気下で撹拌しながら80℃に加熱した。5時間後、アゾイソブチロニトリル(試薬特級、和光純薬工業(株)製)1.85gをトルエン80gに溶解させた後、全量滴下した。そのまま21時間加熱した後、115℃に加熱して2時間撹拌した。その後、減圧して溶剤を留去した。これにメタノールを200g加えて分液ロートに移して激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、回収した下層から減圧下に溶剤を留去して、樹脂分散剤(分散高分子[S−3])を得た。
得られた樹脂分散剤の重量平均分子量は6,200、25℃における粘度は280mPa・sであった。
【0134】
(光調整懸濁液の調製)
上記の光調整粒子混合液15.00g、樹脂分散剤22.5gをポリカップに量り取り、攪拌して光調整懸濁液を得た。光調整懸濁液から粒子を除いた質量のうち、樹脂分散剤[S−3]の質量の比率は60.0%であった。
【0135】
(調光材料の調製と調光フィルムの作製、透過率の測定)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値を測定したところ、52.2%であった。この調光フィルムを110℃で2時間保管した後に同様にΔT(%)値を測定したところ45.0%であった。従って、この調光フィルムにおける110℃、2時間でのΔT保持率は86.2%であった。
【0136】
(低温応答性評価)
温度−20℃におけるtonは13s、toffは51sであった。
【0137】
<実施例4>
(樹脂分散剤[S−4]の合成)
トルエン(試薬特級、和光純薬工業(株)製)160g、メタクリル酸2−ヒドロキシエチル10g(共栄社化学)、メタクリル末端ポリジメチルシロキサンX−22−174DX(信越シリコーン製、重量平均分子量:4,600)150g、3−メルカプト−1,2−プロパンジオール(試薬特級、和光純薬工業(株)製)17.6gを3つ口フラスコに加え窒素雰囲気下で撹拌しながら80℃に加熱した。5時間後、アゾイソブチロニトリル(試薬特級、和光純薬工業(株)製)1.85gをトルエン80gに溶解させた後、全量滴下した。そのまま21時間加熱した後、115℃に加熱して2時間撹拌した。その後、減圧して溶剤を留去した。これにメタノールを200g加えて分液ロートに移して激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、回収した下層から減圧下に溶剤を留去して、樹脂分散剤[S−4]を得た。
得られた樹脂分散剤の重量平均分子量は7,600、25℃における粘度は520mPa・sであった。
【0138】
(光調整懸濁液の調製)
上記の光調整粒子混合液15.00g、樹脂分散剤22.5gをポリカップに量り取り、攪拌して光調整懸濁液を得た。光調整懸濁液から粒子を除いた質量のうち、樹脂分散剤(分散高分子[S−4])の質量の比率は60.0%であった。
【0139】
(調光材料の調製と調光フィルムの作製、透過率の測定)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値を測定したところ、56.4%であった。この調光フィルムを110℃で2時間保管した後に同様にΔT(%)値を測定したところ49.1%であった。従って、この調光フィルムにおける110℃、2時間でのΔT保持率は87.1%であった。
【0140】
(低温応答性評価)
温度−20℃におけるtonは20s、toffは69sであった。
【0141】
<実施例5>
(樹脂分散剤[S−5]の合成)
トルエン(試薬特級、和光純薬工業(株)製)160g、メタクリル酸2−ヒドロキシエチル6.5g(共栄社化学)、メタクリル末端ポリジメチルシロキサンFM0711(Chisso America Inc.製、重量平均分子量:1,000)150g、ヘキシルメルカプタン(試薬特級、和光純薬工業(株)製)18.9gを3つ口フラスコに加え窒素雰囲気下で撹拌しながら80℃に加熱した。5時間後、アゾイソブチロニトリル(試薬特級、和光純薬工業(株)製)1.84gをトルエン80gに溶解させた後、全量滴下した。そのまま21時間加熱した後、115℃に加熱して2時間撹拌した。その後、減圧して溶剤を留去した。これにメタノールを200g加えて分液ロートに移して激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、回収した下層から減圧下に溶剤を留去して、樹脂分散剤(分散高分子[S−5])を得た。
得られた樹脂分散剤の重量平均分子量は2,500、25℃における粘度は270mPa・sであった。
【0142】
(光調整懸濁液の調製)
上記の光調整粒子混合液15.00g、樹脂分散剤22.5gをポリカップに量り取り、攪拌して光調整懸濁液を得た。光調整懸濁液から粒子を除いた質量のうち、樹脂分散剤[S−5]の質量の比率は60.0%であった。
【0143】
(調光材料の調製と調光フィルムの作製、透過率の測定)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値を測定したところ、53.0%であった。この調光フィルムを110℃で2時間保管した後に同様にΔT(%)値を測定したところ45.1%であった。従って、この調光フィルムにおける110℃、2時間でのΔT保持率は85.1%であった。
【0144】
(低温応答性評価)
温度−20℃におけるtonは12s、toffは50sであった。
【0145】
<実施例6>
(樹脂分散剤[S−6]の合成)
トルエン(試薬特級、和光純薬工業(株)製)160g、メタクリル酸2−ヒドロキシエチル10.5g(共栄社化学)、FM0711(Chisso America Inc.製、重量平均分子量:1,000)150g、ヘキシルメルカプタン(試薬特級、和光純薬工業(株)製)18.9gを3つ口フラスコに加え窒素雰囲気下で撹拌しながら80℃に加熱した。5時間後、アゾイソブチロニトリル(試薬特級、和光純薬工業(株)製)1.85gをトルエン80gに溶解させた後、全量滴下した。そのまま21時間加熱した後、115℃に加熱して2時間撹拌した。その後、減圧して溶剤を留去した。これにメタノールを200g加えて分液ロートに移して激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、回収した下層から減圧下に溶剤を留去して、樹脂分散剤(分散高分子[S−3])を得た。
得られた樹脂分散剤の重量平均分子量は2,400、25℃における粘度は350mPa・sであった。
【0146】
(光調整懸濁液の調製)
上記の光調整粒子混合液15.00g、樹脂分散剤22.5gをポリカップに量り取り、攪拌して光調整懸濁液を得た。光調整懸濁液から粒子を除いた質量のうち、樹脂分散剤[S−6]の質量の比率は60.0%であった。
【0147】
(調光材料の調製と調光フィルムの作製、透過率の測定)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値を測定したところ、52.8%であった。この調光フィルムを110℃で2時間保管した後に同様にΔT(%)値を測定したところ44.8%であった。従って、この調光フィルムにおける110℃、2時間でのΔT保持率は84.8%であった。
【0148】
(低温応答性評価)
温度−20℃におけるtonは17s、toffは63sであった。
【0149】
<実施例7>
(樹脂分散剤[S−7]の合成)
トルエン(試薬特級、和光純薬工業(株)製)160g、メタクリル酸2−ヒドロキシエチル4.0g(共栄社化学)、FM0721(Chisso America Inc.製、重量平均分子量:5,000)150g、ヘキシルメルカプタン(試薬特級、和光純薬工業(株)製)18.9gを3つ口フラスコに加え窒素雰囲気下で撹拌しながら80℃に加熱した。5時間後、アゾイソブチロニトリル(試薬特級、和光純薬工業(株)製)1.85gをトルエン80gに溶解させた後、全量滴下した。そのまま21時間加熱した後、115℃に加熱して2時間撹拌した。その後、減圧して溶剤を留去した。これにメタノールを200g加えて分液ロートに移して激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、回収した下層から減圧下に溶剤を留去して、樹脂分散剤[S−3]を得た。
得られた樹脂分散剤の重量平均分子量は9,500、25℃における粘度は890mPa・sであった。
【0150】
(光調整懸濁液の調製)
上記の光調整粒子混合液15.00g、樹脂分散剤22.5gをポリカップに量り取り、攪拌して光調整懸濁液を得た。光調整懸濁液から粒子を除いた質量のうち、樹脂分散剤[S−7]の質量の比率は60.0%であった。
【0151】
(調光材料の調製と調光フィルムの作製、透過率の測定)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値を測定したところ、51.9%であった。この調光フィルムを110℃で2時間保管した後に同様にΔT(%)値を測定したところ44.2%であった。従って、この調光フィルムにおける110℃、2時間でのΔT保持率は85.2%であった。
【0152】
(低温応答性評価)
温度−20℃におけるtonは27s、toffは85sであった。
【0153】
<実施例8>
(樹脂分散剤[S−8]の合成)
トルエン(試薬特級、和光純薬工業(株)製)160g、メタクリル酸2−ヒドロキシエチル4.0g(共栄社化学)、メタクリル末端ポリジメチルシロキサンX−22−174DX(信越シリコーン製、重量平均分子量:4,600)150g、ヘキシルメルカプタン(試薬特級、和光純薬工業(株)製)18.9gを3つ口フラスコに加え窒素雰囲気下で撹拌しながら80℃に加熱した。5時間後、アゾイソブチロニトリル(試薬特級、和光純薬工業(株)製)1.85gをトルエン80gに溶解させた後、全量滴下した。そのまま21時間加熱した後、115℃に加熱して2時間撹拌した。その後、減圧して溶剤を留去した。これにメタノールを200g加えて分液ロートに移して激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、回収した下層から減圧下に溶剤を留去して、樹脂分散剤[S−3]を得た。
得られた樹脂分散剤の重量平均分子量は6,000、25℃における粘度は240mPa・sであった。
【0154】
(光調整懸濁液の調製)
上記の光調整粒子混合液15.00g、樹脂分散剤22.5gをポリカップに量り取り、攪拌して光調整懸濁液を得た。光調整懸濁液から粒子を除いた質量のうち、樹脂分散剤[S−8]の質量の比率は60.0%であった。
【0155】
(調光材料の調製と調光フィルムの作製、透過率の測定)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値を測定したところ、53.1%であった。この調光フィルムを110℃で2時間保管した後に同様にΔT(%)値を測定したところ46.2%であった。従って、この調光フィルムにおける110℃、2時間でのΔT保持率は87.0%であった。
【0156】
(低温応答性評価)
温度−20℃におけるtonは10s、toffは47sであった。
【0157】
<比較例1>
(比較樹脂分散剤[R−1]の合成)
トルエン(試薬特級、和光純薬工業(株)製)164g、メタクリル酸ドデシル231.4g(共栄社化学)、メタクリル酸2−ヒドロキシエチル(試薬特級、和光純薬工業(株)製)7.56g、ヘキシルメルカプタン(試薬特級、和光純薬工業(株)製)18.9gを3つ口フラスコに加え窒素雰囲気下で撹拌しながら60℃に加熱した。1時間後、アゾイソブチロニトリル(試薬特級、和光純薬工業(株)製)1.84gをトルエン80gに溶解させた後、全量滴下した。そのまま21時間加熱した後、115℃に加熱して2時間撹拌した。その後、減圧して溶剤を留去した。これにメタノールを200g加えて分液ロートに移して激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、回収した下層から減圧下に溶剤を留去した後、110Pa200℃条件で短行程蒸留精製を行い、樹脂分散剤 [R−1]を得た。ヒドロキシ基をもつメタクリル酸エステルとアルキル基をもつメタクリル酸エステルのモル比は6:94であった。
得られた樹脂分散剤の重量平均分子量は3,600、25℃における粘度は2,000mPa・sであった。
【0158】
(光調整懸濁液の調製)
上記の光調整粒子混合液15.00g、樹脂分散剤22.5gをポリカップに量り取り、攪拌して光調整懸濁液を得た。光調整懸濁液から粒子を除いた質量のうち、樹脂分散剤[R−1]の質量の比率は60.0%であった。
【0159】
(調光材料の調製と調光フィルムの作製、透過率の測定)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値を測定したところ、52.2%であった。この調光フィルムを110℃で2時間保管した後に同様にΔT(%)値を測定したところ43.9%であった。従って、この調光フィルムにおける110℃、2時間でのΔT保持率は84.1%であった。
【0160】
(低温応答性評価)
温度−20℃におけるtonは62s、toffは235sであった。
【0161】
【表1】
【0162】
以上から、本発明の調光材料を用いて調製した調光フィルムは、低温環境下での応答速度に優れることが分かる。さらに優れた耐熱性を示すことが分かる。
【符号の説明】
【0163】
1 調光層
2 樹脂マトリックス
3 液滴
4 導電性樹脂基材
5a 導電膜
5b 樹脂基材
6 プライマー層
7 電源
8 スイッチ
9 分散媒
10 光調整粒子
11 入射光
図1
図2
図3