特許第6048143号(P6048143)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日産化学工業株式会社の特許一覧

特許6048143ポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤及び液晶配向膜
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6048143
(24)【登録日】2016年12月2日
(45)【発行日】2016年12月21日
(54)【発明の名称】ポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤及び液晶配向膜
(51)【国際特許分類】
   G02F 1/1337 20060101AFI20161212BHJP
   C08L 79/08 20060101ALI20161212BHJP
   C08G 73/10 20060101ALI20161212BHJP
【FI】
   G02F1/1337 525
   C08L79/08 Z
   C08G73/10
【請求項の数】10
【全頁数】40
(21)【出願番号】特願2012-505685(P2012-505685)
(86)(22)【出願日】2011年3月14日
(86)【国際出願番号】JP2011055973
(87)【国際公開番号】WO2011115078
(87)【国際公開日】20110922
【審査請求日】2014年3月12日
(31)【優先権主張番号】特願2010-58554(P2010-58554)
(32)【優先日】2010年3月15日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000003986
【氏名又は名称】日産化学工業株式会社
(74)【代理人】
【識別番号】100090918
【弁理士】
【氏名又は名称】泉名 謙治
(74)【代理人】
【識別番号】100082887
【弁理士】
【氏名又は名称】小川 利春
(72)【発明者】
【氏名】作本 直樹
(72)【発明者】
【氏名】飯沼 洋介
(72)【発明者】
【氏名】長尾 将人
(72)【発明者】
【氏名】野口 勇歩
【審査官】 磯野 光司
(56)【参考文献】
【文献】 特開2009−075569(JP,A)
【文献】 特開2004−075944(JP,A)
【文献】 特開2010−072011(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/1337
(57)【特許請求の範囲】
【請求項1】
下記式(1)で表される繰り返し単位を有するポリアミック酸エステルと、下記式(2)で表される繰り返し単位を有するポリアミック酸と、有機溶媒と、を含有し、前記ポリアミック酸エステルの重量平均分子量が前記ポリアミック酸の重量平均分子量よりも小さいことを特徴とする液晶配向剤。
【化1】
(式(1)及び式(2)において、X及びX2は、それぞれ独立して4価の有機基であり、Y及びYはそれぞれ独立して2価の有機基である。Rは、炭素数1〜5のアルキル基であり、A及びAはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1〜10のアルキル基、アルケニル基、若しくはアルキニル基である。)
【請求項2】
前記ポリアミック酸エステルの含有量と前記ポリアミック酸の含有量が、(ポリアミック酸エステルの含有量/ポリアミック酸の含有量)の質量比率で、1/9〜9/1である請求項1に記載の液晶配向剤。
【請求項3】
前記ポリアミック酸エステル及びポリアミック酸の合計含有量が、有機溶媒に対して0.5〜15質量%である請求項1又は2に記載の液晶配向剤。
【請求項4】
前記ポリアミック酸エステルの重量平均分子量が前記ポリアミック酸の重量平均分子量よりも1000〜100000小さい請求項1〜3のいずれかに記載の液晶配向剤。
【請求項5】
式(1)及び式(2)におけるX及びXが、それぞれ独立して、下記式で表される構造からなる群から選ばれる少なくとも1種である請求項1〜4のいずれかに記載の液晶配向剤。
【化2】
【請求項6】
前記式(1)におけるYが下記式で表される構造からなる群から選ばれる少なくとも1種類である請求項1〜5のいずれかに記載の液晶配向剤。
【化3】
【請求項7】
式(2)において、Yが下記式で表される構造からなる群から選ばれる少なくとも1種である請求項1〜6のいずれかに記載の液晶配向剤。
【化4】
【請求項8】
請求項1〜7のいずれかに記載の液晶配向剤から得られる液晶配向膜。
【請求項9】
請求項1〜7のいずれかに記載の液晶配向剤を基板に塗布、焼成する液晶配向膜の製造方法。
【請求項10】
請求項1〜7のいずれかに記載の液晶配向剤を基板に塗布し、焼成し、得られる被膜に偏光させた放射線を照射する液晶配向膜の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤、及び該液晶配向剤から得られる液晶配向膜に関する。
【背景技術】
【0002】
液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。液晶配向膜としては、これまで、ポリアミック酸(ポリアミド酸)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤をガラス基板等に塗布し焼成したポリイミド系の液晶配向膜が主として用いられている。
液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像現象の低減といった要求から、液晶配向膜においては、優れた液晶配向性や安定したプレチルト角の発現に加えて、高い電圧保持率、交流駆動により発生する残像の抑制、直流電圧を印加した際の少ない残留電荷、及び/又は直流電圧による蓄積した残留電荷の早い緩和といった特性が次第に重要となっている。
【0003】
ポリイミド系の液晶配向膜においては、上記のような要求にこたえるために、種々の提案がなされてきている。例えば、直流電圧によって発生する残像が消えるまでの時間が短い液晶配向膜として、ポリアミド酸やイミド基含有ポリアミド酸に加えて特定構造の3級アミンを含有する液晶配向剤を使用したもの(例えば、特許文献1参照)や、ピリジン骨格などを有する特定ジアミン化合物を原料に使用した可溶性ポリイミドを含有する液晶配向剤を使用したもの(例えば、特許文献2参照)などが提案されている。また、電圧保持率が高く、かつ直流電圧によって発生した残像が消えるまでの時間が短い液晶配向膜として、ポリアミド酸やそのイミド化重合体などに加えて、分子内に1個のカルボン酸基を含有する化合物、分子内に1個のカルボン酸無水物基を含有する化合物及び分子内に1個の3級アミノ基を含有する化合物から選ばれる化合物を極少量含有する液晶配向剤を使用したもの(例えば、特許文献3参照)が提案されている。また、液晶配向性に優れ、電圧保持率が高く、残像が少なく、信頼性に優れ、且つ高いプレチルト角を示す液晶配向膜として、特定構造のテトラカルボン酸二無水物とシクロブタンを有するテトラカルボン酸二無水物と特定のジアミン化合物から得られるポリアミド酸やそのイミド化重合体を含有する液晶配向剤を使用したもの(例えば、特許文献4参照)が知られている。また、横電界駆動方式の液晶表示素子において発生する交流駆動による残像を抑制する方法として、液晶配向性が良好で、且つ液晶分子との相互作用が大きい特定の液晶配向膜を使用する方法(特許文献5参照)が提案されている。
【0004】
しかし、近年では大画面で高精細の液晶テレビが主体となり、残像に対する要求はより厳しくなり、且つ過酷な使用環境での長期使用に耐えうる特性が要求されている。それとともに、使用される液晶配向膜は従来よりも信頼性の高いものが必要となってきており、液晶配向膜の諸特性に関しても、初期特性が良好なだけでなく、例えば、高温下に長時間曝された後であっても、良好な特性を維持することが求められている。
一方、ポリイミド系の液晶配向剤を構成するポリマー成分として、ポリアミック酸エステルは、信頼性が高く、これをイミド化するときの加熱処理により、分子量低下を起こさないために、液晶の配向安定性・信頼性に優れることが報告されている(特許文献6参照)。しかし、ポリアミック酸エステルは、一般に、体積抵抗率が高く、直流電圧を印加した際の残留電荷が多いなどの問題があるが、かかるポリアミック酸エステルを含有するポリイミド系の液晶配向剤の特性を改善する方法はいまだ知られていない。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平9−316200号公報
【特許文献2】特開平10−104633号公報
【特許文献3】特開平8−76128号公報
【特許文献4】特開平9−138414号公報
【特許文献5】特開平11−38415号公報
【特許文献6】特開2003−26918号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明者らは、上記ポリアミック酸エステルを含有する液晶配向剤の特性を改善する方法として、ポリアミック酸エステルと、電気特性の点で優れるポリアミック酸とをブレンドした液晶配向剤に注目した。しかし、かかるポリアミック酸エステルとポリアミック酸とをブレンドした液晶配向剤から得られる液晶配向膜は、液晶配向性と電気特性の点のいずれにおいても満足するものではない。
すなわち、ポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤から得られる液晶配向膜は、白濁現象を起こしてしまうということに加えて、膜を高温で使用した場合の電圧保持率の低下、直流電圧の蓄積による残像の発生、また、交流駆動による残像の発生などの不具合が生じる。
本発明は、ポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤であって、液晶配向性と電気特性の点のいずれも良好で、かつ白濁のない透明性のある液晶配向膜が得られる液晶配向剤を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者らの研究によると、ポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤から形成された液晶配向膜を解析したところ、膜表面に微細な凹凸が生じていることが確認された。さらに、本発明者らは、膜表面に生じている微細な凹凸は、液晶配向剤に含有されるポリアミック酸エステルの重量平均分子量を前記ポリアミック酸の重量平均分子量よりも小さくすることにより小さく抑制できること見出した。また、本発明者らは、かかる膜表面に生じている微細な凹凸を小さくした場合には、ポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤の有する難点が解消されることを見出した。
【0008】
かくして、本発明は、上記の知見に基づくものであり、下記の要旨を有する。
1.下記式(1)で表される繰り返し単位を有するポリアミック酸エステルと、下記式(2)で表される繰り返し単位を有するポリアミック酸と、有機溶媒とを含有し、前記ポリアミック酸エステルの重量平均分子量が前記ポリアミック酸の重量平均分子量よりも小さいことを特徴とする液晶配向剤。
【0009】
【化1】
(式(1)及び式(2)において、X及びX2は、それぞれ独立して4価の有機基であり、Y及びYはそれぞれ独立して2価の有機基である。Rは、炭素数1〜5のアルキル基であり、A及びAはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1〜10のアルキル基、アルケニル基、若しくはアルキニル基である。)
2.前記ポリアミック酸エステルの含有量と前記ポリアミック酸の含有量が、(ポリアミック酸エステルの含有量/ポリアミック酸の含有量)の質量比率で、1/9〜 9/1である上記1に記載の液晶配向剤。
3.前記ポリアミック酸エステル及びポリアミック酸の合計含有量が、有機溶媒に対して0.5〜15質量%である上記1又は2に記載の液晶配向剤。
4.前記ポリアミック酸エステルの重量平均分子量が前記ポリアミック酸の重量平均分子量よりも1000〜100000小さい上記1〜3のいずれかに記載の液晶配向剤。
【0010】
5.式(1)及び式(2)におけるX及びXが、それぞれ独立して、下記式で表される構造からなる群から選ばれる少なくとも1種である上記1〜4のいずれかに記載の液晶配向剤。
【0011】
【化2】
【0012】
6.式(1)において、Yが下記式で表される構造からなる群から選ばれる少なくとも1種類である上記1〜5のいずれかに記載の液晶配向剤。
【0013】
【化3】
7.式(2)において、Yが下記式で表される構造からなる群から選ばれる少なくとも1種である上記1〜6のいずれかに記載の液晶配向剤。
【0014】
【化4】
8.上記1〜7のいずれかに記載の液晶配向剤から得られる液晶配向膜。
9.上記1〜7のいずれかに記載の液晶配向剤を基板に塗布、焼成する液晶配向膜の製造方法。
10.上記1〜7のいずれかに記載の液晶配向剤を基板に塗布し、焼成し、得られる被膜に偏光させた放射線を照射する液晶配向膜の製造方法。
【発明の効果】
【0015】
本発明によれば、得られる液晶配向膜の表面の微細な凹凸が低減でき、液晶配向性が向上するとともに、電圧保持率、イオン密度、交流電流による残像、直流電圧の残留などの電気的特性も改善され、信頼性が向上した液晶配向剤が提供される。
ポリアミック酸エステルの重量平均分子量を前記ポリアミック酸の重量平均分子量よりも小さくすることにより、何故に、かかる膜表面に生じている微細な凹凸を小さくし、ポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤の有する難点が解消されるかについては、必ずしも明らかではないが、ほぼ次のように考えられる。
【0016】
すなわち、ポリアミック酸エステルとポリアミック酸とが有機溶剤中に溶解された液晶配向剤から溶媒が除去されて形成される液晶配向膜では、ポリアミック酸よりも表面自由エネルギーが低いポリアミック酸エステルが表面に偏在するものの、ポリアミック酸エステルとポリアミック酸とが相分離を起こすことによって、ポリアミック酸エステル相の中にポリアミック酸の凝集体が形成されるか、又はポリアミック酸相の中にポリアミック酸エステルの凝集体が形成されるために、膜表面に微細な凹凸が多数存在する膜となる。
【0017】
それに対し、本発明の液晶配向剤では、ポリアミック酸エステルの重量平均分子量を前記ポリアミック酸の重量平均分子量よりも小さくすることにより、該液晶配向剤から溶媒が除去されて液晶配向膜が形成される際に、ポリアミック酸エステルとポリアミック酸の相分離が促進され、ポリアミック酸エステルが膜表面付近にポリアミック酸と混在することなく存在し、且つポリアミック酸は膜内部及び基板界面にポリアミック酸エステルを混在することなく存在することになる。
よって、得られる液晶配向膜の表面は、ポリアミック酸エステルとポリアミック酸の相分離による凹凸が形成されることがないために平滑な表面となり、凹凸の発生に起因する膜の白濁も低減される。そして、凹凸のない平滑な表面を有する液晶配向膜は、配向性安定性、信頼性に優れたポリアミック酸エステルが膜表面を覆い、且つ、電気特性に優れたポリアミック酸が膜内部及び電極界面に存在するため、優れた特性を有するものと考えられる。
【発明を実施するための形態】
【0018】
<ポリアミック酸エステル及びポリアミック酸>
本発明に用いられるポリアミック酸エステルは、ポリイミドを得るためのポリイミド前駆体であり、加熱することによって下記に示すイミド化反応が可能な部位を有するポリマーである。
【0019】
【化5】
本発明の液晶配向剤に含有するポリアミック酸エステル及びポリアミック酸は、それぞれ、下記式(1)及び下記式(2)を有する。
【0020】
【化6】
【0021】
上記式(1)において、R1は、炭素数1〜5、好ましくは1〜2のアルキル基である。ポリアミック酸エステルは、アルキル基における炭素数が増えるに従ってイミド化が進行する温度が高くなる。そのため、R1は、熱によるイミド化のしやすさの観点から、メチル基が特に好ましい。式(1)及び式(2)において、A及びAはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1〜10のアルキル基、アルケニル基、若しくはアルキニル基である。上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t−ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH−CH構造を、CH=CH構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1−プロペニル基、イソプロペニル基、2−ブテニル基、1,3−ブタジエニル基、2−ペンテニル基、2−ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH−CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1−プロピニル基、2−プロピニル基などが挙げられる。
上記のアルキル基、アルケニル基、若しくはアルキニル基は、全体として炭素数が1〜10であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
【0022】
この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
置換基であるオルガノオキシ基としては、−O−Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
置換基であるオルガノチオ基としては、−S−Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。
置換基であるオルガノシリル基としては、−Si−(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。
【0023】
置換基であるアシル基としては、−C(O)−Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
置換基であるエステル基としては、−C(O)O−R、又は−OC(O)−Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
置換基であるチオエステル基としては、−C(S)O−R、又は−OC(S)−Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
置換基であるリン酸エステル基としては、−OP(O)−(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
【0024】
置換基であるアミド基としては、−C(O)NH、又は、−C(O)NHR、−NHC(O)R、−C(O)N(R)、−NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、A及びAとしては、水素原子、又は置換基を有してもよい炭素数1〜5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
上記式(1)及び式(2)において、X及びX2は、それぞれ独立して4価の有機基であり、Y及びYはそれぞれ独立して2価の有機基である。X及びXは4価の有機基であり、特に限定されるものではない。ポリイミド前駆体中、X及びXは2種類以上が混在していてもよい。X及びXの具体例を示すならば、それぞれ独立して、以下に示すX−1〜X−46が挙げられる。
【0025】
【化7】
【0026】
【化8】
【0027】
【化9】
【0028】
【化10】
【0029】
なかでも、X及びXは、モノマーの入手性から、それぞれ独立して、X−1、X−2、X−3、X−4、X−5、X−6、X−8、X−16、X−19、X−21、X−25、X−26、X−27、X−28又はX−32が好ましい。これらの好ましいX及びXを有するテトラカルボン酸二無水物の使用量は、全テトラカルボン酸二無水物の
好ましくは2〜100モル%、より好ましくは40〜100モル%である。
【0030】
また、式(1)において、Y及びYは、それぞれ独立して、2価の有機基であり、特に限定されるものではない。Y及びYの具体例を示すと、下記のY−1〜Y−103が挙げられる。Y及びYとしては、それぞれ独立して、2種類以上が混在していてもよい。
【0031】
【化11】
【0032】
【化12】
【0033】
【化13】
【0034】
【化14】
【0035】
【化15】
【0036】
【化16】
【0037】
【化17】
【0038】
【化18】
【0039】
【化19】
【0040】
【化20】
【0041】
【化21】
【0042】
【化22】
【0043】
【化23】
【0044】
なかでも、良好な液晶配向性を得るためには、直線性の高いジアミンをポリアミック酸エステルに導入するために、Yとして、Y−7、Y−10、Y−11、Y−12、Y−13、Y−21、Y−22、Y−23、Y−25、Y−26、Y−27、Y−41、Y−42、Y−43、Y−44、Y−45、Y−46、Y−48、Y−61、Y−63、Y−64、Y−71、Y−72、Y−73、Y−74、Y−75、又はY−98を有するジアミンが好ましい。Yとして好ましいこれらのジアミンの使用量は、全ジアミンの好ましくは1〜100モル%、より好ましくは50〜100モル%である。
なかでも、プレチルト角を高くしたい場合は、側鎖に長鎖アルキル基、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造を有するジアミンをポリアミック酸エステルに導入することが好ましく、この場合、Yとしては、Y−76、Y−77、Y−78、Y−79、Y−80、Y−81、Y−82、Y−83、Y−84、Y−85、Y−86、Y−87、Y−88、Y−89、Y−90、Y−91、Y−92、Y−93、Y−94、Y−95、Y−96、又はY−97がより好ましい。
なかでも、下式で表される構造から選ばれる少なくとも1種類であるのが特に好ましい。
【0045】
【化24】
【0046】
ポリアミック酸の体積抵抗率を低くすることで、直流電圧の蓄積による残像を低減できるため、ヘテロ原子を有する構造、多環芳香族構造、又はビフェニル骨格を有するジアミンをポリアミック酸に導入するために、Yとして、Y−19、Y−23、Y−25、Y−26、Y−27、Y−30、Y−31、Y−32、Y−33、Y−34、Y−35、Y−36、Y−40、Y−41Y−42、Y−44、Y−45、Y−49、Y−50、Y−51、又はY−61がより好ましく、Y−31、又はY−40のジアミンが好ましい。Yとして好ましいこれらのジアミンの使用量は、全ジアミンの好ましくは1〜100モル%、より好ましくは50〜100モル%添である。
なかでも、ポリアミック酸の表面自由エネルギーを高くすることにより、ポリアミック酸エステルとポリアミック酸の相分離がさらに促進され、塗布、焼成して得られる液晶配向膜の膜表面がより平滑になるため、2級アミノ基、ヒドロキシル基、アミド基、ウレイド基、又はカルボキシル基を含有するジアミンをポリアミック酸に導入することが好ましい。このため、Yとしては、Y−19、Y−31、Y−40、Y−45、Y−98、又はY−99がより好ましく、カルボキシル基を含有するY−98又はY−99が特に好ましい。Yは、なかでも、下記式で表される構造から選ばれる少なくとも1種類であるのが好ましい。
【0047】
【化25】
【0048】
<ポリアミック酸エステルの製造方法>
上記式(1)で表されるポリアミック酸エステルは、下記式(6)〜(8)で表されるテトラカルボン酸誘導体のいずれかと、式(9)で表されるジアミン化合物との反応によって得ることができる。
【0049】
【化26】
【0050】
【化27】
(式中、X、Y、R、A及びAはそれぞれ上記式(1)中の定義と同じである。)
上記式(1)で表されるポリアミック酸エステルは、上記モノマーを用いて、以下に示す(1)〜(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
【0051】
具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で−20℃〜150℃、好ましくは0℃〜50℃において、30分〜24時間、好ましくは1〜4時間反応させることによって合成することができる。
エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N−ジメチルホルムアミドジメチルアセタール、N,N−ジメチルホルムアミドジエチルアセタール、N,N−ジメチルホルムアミドジプロピルアセタール、N,N−ジメチルホルムアミドジネオペンチルブチルアセタール、N,N−ジメチルホルムアミドジ−t−ブチルアセタール、1−メチル−3−p−トリルトリアゼン、1−エチル−3−p−トリルトリアゼン、1−プロピル−3−p−トリルトリアゼン、4−(4,6−ジメトキシー1,3,5−トリアジンー2−イル)−4−メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2〜6モル当量が好ましい。
【0052】
上記の反応に用いる溶媒は、ポリマーの溶解性からN,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、又はγ−ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1〜30質量%が好ましく、5〜20質量%がより好ましい。
【0053】
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
【0054】
具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で−20℃〜150℃、好ましくは0℃〜50℃において、30分〜24時間、好ましくは1〜4時間反応させることによって合成することができる。
前記塩基には、ピリジン、トリエチルアミン、4−ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2〜4倍モルであることが好ましい。
【0055】
上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性からN−メチル−2−ピロリドン、又はγ−ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1〜30質量%が好ましく、5〜20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
【0056】
(3)テトラカルボン酸ジエステルとジアミンからポリアミック酸を合成する場合
ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、有機溶剤の存在下で0℃〜150℃、好ましくは0℃〜100℃において、30分〜24時間、好ましくは3〜15時間反応させることによって合成することができる。
【0057】
前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’−カルボニルジイミダゾール、ジメトキシ−1,3,5−トリアジニルメチルモルホリニウム、O−(ベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウム テトラフルオロボラート、O−(ベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロホスファート、(2,3−ジヒドロ−2−チオキソ−3−ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2〜3倍モルであることが好ましい。
前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2〜4倍モルが好ましい。
【0058】
また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0〜1.0倍モルが好ましい。
上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。
上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
【0059】
<ポリアミック酸の製造方法>
上記式(2)で表されるポリアミック酸は、下記式(10)で表されるテトラカルボン酸二無水物と式(11)で表されるジアミン化合物との反応によって得ることができる。
【0060】
【化28】
(式中、X、Y、A及びAはそれぞれ上記式(2)中の定義と同じである。)
【0061】
具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で−20℃〜150℃、好ましくは0℃〜50℃において、30分〜24時間、好ましくは1〜12時間反応させることによって合成できる。
上記の反応に用いる有機溶媒は、モノマー及びポリマーの溶解性からN,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、又はγ−ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1〜30質量%が好ましく、5〜20質量%がより好ましい。
上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
【0062】
<液晶配向剤>
本発明の液晶配向剤は、上記した式(1)で表わされるポリアミック酸エステルと式(2)で表わされるポリアミック酸とを含有する。
ポリアミック酸エステルの重量平均分子量は、好ましくは5,000〜300,000であり、より好ましくは、10,000〜200,000である。また、数平均分子量は、好ましくは、2,500〜150,000であり、より好ましくは、5,000〜100,000である。
一方、ポリアミック酸の重量平均分子量は、好ましくは10,000〜305,000であり、より好ましくは、20,000〜210,000である。また、数平均分子量は、好ましくは、5,000〜152,500であり、より好ましくは、10,000〜105,000である。
【0063】
本発明では、ポリアミック酸エステルの重量平均分子量を、ポリアミック酸の重量平均分子量よりも小さくしなければならない。ポリアミック酸エステルとポリアミック酸の重量平均分子量の差は好ましくは1,000〜100,000であるのが好ましく、3,000〜80,000がより好ましく、5,000〜60,000であるのが特に好ましい。該重量平均分子量の差が1,000〜100,000の範囲にある場合には、ポリアミック酸エステルとポリアミック酸の相分離により発生する微細な凹凸が特に顕著に制されるので良好である。
本発明の液晶液晶配向剤における前記ポリアミック酸エステルの含有量と前記ポリアミック酸の含有量は、(ポリアミック酸エステル/ポリアミック酸)の質量比率で、1/9〜9/1であるのが好ましく、より好ましくは2/8〜8/2であり、特に好ましくは3/7〜7/3であることが好ましい。かかる比率を1/9〜9/1の範囲にせしめることにより、液晶配向性と電気特性のいずれもが良好な液晶配向剤を提供することができる。
【0064】
本発明の液晶配向剤は、上記のポリアミック酸エステル及びポリアミック酸が有機溶媒中に溶解した溶液の形態である。かかる形態を有する限り、例えば、ポリアミック酸エステル及び/又はポリアミック酸を有機溶媒中で合成した場合には、得られる反応溶液そのものであってもよく、また、この反応溶液を適宜の溶媒で希釈したものであってもよい。また、ポリアミック酸エステル及び/又はポリアミック酸を粉末として得た場合は、これを有機溶媒に溶解させて溶液としたものであってもよい。
本発明の液晶配向剤におけるポリアミック酸及びポリアミック酸エステル(以下、ポリマーともいう。)の含有量(濃度)は、形成させようとするポリイミド膜の厚みの設定によっても適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から、有機溶媒に対して、ポリマー成分の含有量は、0.5質量%以上が好ましく、溶液の保存安定性の点からは15質量%以下がより好ましく、特に好ましくは、1〜10質量%である。なお、この場合、予め、ポリマーの濃厚溶液を作製し、かかる濃厚溶液から液晶配向剤とする場合に希釈してもよい。かかるポリマー成分の濃厚溶液の濃度は10〜30質量%が好ましく、10〜15質量%がより好ましい。また、ポリマー成分の粉末を有機溶媒に溶解して溶液を作製する際に加熱してもよい。加熱温度は、20℃〜150℃が好ましく、20℃〜80℃が特に好ましい。
【0065】
本発明の液晶配向剤に含有される上記有機溶媒は、ポリマー成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−メチルカプロラクタム、2−ピロリドン、N−ビニル−2−ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ−ブチロラクトン、1,3−ジメチル−イミダゾリジノン、3−メトキシ−N,N−ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独ではポリマー成分を均一に溶解できない溶媒であっても、ポリマーが析出しない範囲であれば、上記の有機溶媒に混合してもよい。
【0066】
本発明の液晶配向剤は、ポリマー成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、ブチルセロソルブアセテート、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−ブトキシ−2−プロパノール、1−フェノキシ−2−プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール−1−モノメチルエーテル−2−アセテート、プロピレングリコール−1−モノエチルエーテル−2−アセテート、ジプロピレングリコール、2−(2−エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n−プロピルエステル、乳酸n−ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種類上を併用してもよい。
【0067】
本発明の液晶配向剤は、シランカップリング剤や架橋剤などの各種添加剤を含有してもよい。シランカップリング剤は、液晶配向剤が塗布される基板と、そこに形成される液晶配向膜との密着性を向上させる目的で添加される。以下にシランカップリング剤の具体例を挙げるが、これに限定されるものではない。
【0068】
3−アミノプロピルトリエトキシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−フェニルアミノプロピルトリメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、3−アミノプロピルジエトキシメチルシランなどのアミン系シランカップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、ビニルトリアセトキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、p−スチリルトリメトキシシランなどのビニル系シランカップリング剤;3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシランなどのメタクリル系シランカップリング剤;3−アクリロキシプロピルトリメトキシシランなどのアクリル系シランカップリング剤;3−ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤;ビス(3−(トリエトキシシリル)プロピル)ジスルフィド、ビス(3−(トリエトキシシリル)プロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−オクタノイルチオ−1−プロピルトリエトキシシランなどのメルカプト系シランカップリング剤;3−イソシアネートプロピルトリエトキシシラン、3−イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤;トリエトキシシリルブチルアルデヒドなどのアルデヒド系シランカップリング剤;トリエトキシシリルプロピルメチルカルバメート、(3−トリエトキシシリルプロピル)−t−ブチルカルバメートなどのカルバメート系シランカップリング剤。
【0069】
上記シランカップリング剤の添加量は、多すぎると未反応のものが液晶配向性に悪影響を及ぼすことがあり、少なすぎると密着性への効果が現れないため、ポリマーの固形分に対して0.01〜5.0重量%が好ましく、0.1〜1.0重量%がより好ましい。
上記シランカップリング剤を添加する場合は、ポリマーの析出を防ぐために、前記した塗膜均一性を向上させるための溶媒を加える前に添加するのが好ましい。また、シランカップリング剤を添加する場合は、ポリアミック酸エステル溶液とポリアミック酸溶液を混合する前に、ポリアミック酸エステル溶液、ポリアミック酸溶液、又はポリアミック酸エステル溶液とポリアミック酸溶液の両方に添加することができる。また、ポリアミック酸エステル−ポリアミック酸混合溶液に添加することができる。シランカップリング剤はポリマーと基板との密着性を向上させる目的で添加するため、シランカップリング剤の添加方法としては、膜内部及び基板界面に偏在することができるポリアミック酸溶液に添加し、ポリマーとシランカップリング剤を十分に反応させてから、ポリアミック酸エステル溶液と混合する方法がより好ましい。
塗膜を焼成する際にポリアミック酸エステルのイミド化を効率よく進行させるために、イミド化促進剤を添加してもよい。以下にポリアミック酸エステルのイミド化促進剤の具体例を挙げるが、これに限定されるものではない。
【0070】
【化29】
【0071】
【化30】
【0072】
上記式(B−1)〜(B−17)におけるDは、それぞれ独立してtert-ブトキシカルボニル基、又は9−フルオレニルメトキシカルボニル基である。なお、(B−14)〜(B−17)には、ひとつの式に複数のDが存在するが、これらは互いに同一であっても異なってもよい。
ポリアミック酸エステルの熱イミド化を促進する効果が得られる範囲であれば、イミド化促進剤の含有量は特に制限されるものではないが、液晶配向剤中のポリアミック酸エステルに含まれる下記式(12)のアミック酸エステル部位1モルに対して、好ましくは0.01モル以上、より好ましくは0.05モル以上、更に好ましくは0.1モル以上である。また、焼成後の膜中に残留するイミド化促進剤自体が、液晶配向膜の諸特性に及ぼす悪影響を最小限に留めるという点から、液晶配向剤中のポリアミック酸エステルに含まれる下記式(12)のアミック酸エステル部位1モルに対して、好ましくはイミド化促進剤が2モル以下、より好ましくは1モル以下、更に好ましくは0.5モル以下である。
【0073】
【化31】

イミド化促進剤を添加する場合は、加熱することでイミド化が進行する可能性があるため、良溶媒及び貧溶媒で希釈した後に加えるのが好ましい。
【0074】
<液晶配向膜>
本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
【0075】
本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃〜120℃で1分〜10分乾燥させ、その後150℃〜300℃で5分〜120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5〜300nm、好ましくは10〜200nmである。
【0076】
得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられるが、本発明の液晶配向剤は光配向処理法で使用する場合に特に有用である。
光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によってはさらに150〜250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100nm〜800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100nm〜400nmの波長を有する紫外線が好ましく、200nm〜400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50〜250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1〜10,000mJ/cmが好ましく、100〜5,000mJ/cmが特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
【0077】
[液晶表示素子]
本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得、配向処理を行った後、公知の方法で液晶セルを作成し、液晶表示素子としたものである。
液晶セルの製造方法は特に限定されないが、一例を挙げるならば、液晶配向膜が形成された1対の基板を液晶配向膜面を内側にして、好ましくは1〜30μm、より好ましくは2〜10μmのスペーサーを挟んで設置した後、周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を行う滴下法などが例示できる。
【実施例】
【0078】
以下に実施例を挙げて、さらに、本発明を具体的に説明をする。但し、本発明は、これらの実施例に限定して解釈されないことはもちろんである。
なお、実施例及び比較例で使用する略号、及び各特性の測定方法は、以下のとおりである。
1,3DMCBDE−Cl:ジメチル 1,3−ビス(クロロカルボニル)−1,3−ジ メチルシクロブタン−2,4−ジカルボキシレート
ODA:4,4´−ジアミノジフェニルエーテル
BDA:1,2,3,4−ブタンテトラカルボン酸二無水物
CBDA:1,2,3,4−シクロブタンテトラカルボン酸二無水物
NMP:N−メチル−2−ピロリドン
γ−BL:γ−ブチロラクトン
BCS:ブチルセロソルブ
PAE:ポリアミック酸エステル
PAA:ポリアミック酸
【0079】
【化32】
【0080】
[粘度]
合成例において、ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TVE−22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE−1(1°34’、R24)、温度25℃で測定した。
[分子量]
また、ポリアミック酸エステルの分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC−101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o−リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定。
【0081】
[中心線平均粗さ測定]
スピンコート塗布により得られた液晶配向剤の塗膜を、温度80℃のホットプレート上で5分間の乾燥後、温度250℃の熱風循環式オーブンで1時間の焼成し、膜厚100nmの塗膜を得た。この塗膜の膜表面を原子間力顕微鏡(AFM)で観察し、膜表面の中心線平均粗さ(Ra)を測定し、膜表面の平坦性を評価した。
測定装置:L−traceプローブ顕微鏡 (エスアイアイ・テクノロジー社製)
【0082】
[電圧保持率]
液晶配向剤を透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、250℃の熱風循環式オーブンで60分間の焼成を経て膜厚100nmのポリイミド膜を得た。この塗膜面に偏光板を介して254nmの紫外線を100mJ/cm照射し、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC−2041、メルク社製)を常温で真空注入し、注入口を封止して液晶セルとした。
上記液晶セルの電圧保持率の測定は以下のようにして行った。
4Vの電圧を60μs間印加し、16.67ms後の電圧を測定することで、初期値からの変動を電圧保持率として計算した。測定の際、液晶セルの温度を23℃、60℃、90℃とし、それぞれの温度で測定を行った。
【0083】
[イオン密度]
上記液晶セルのイオン密度の測定は以下のようにして行った。
東陽テクニカ社製の6254型液晶物性評価装置を用いて測定を行った。10V、0.01Hzの三角波を印加し、得られた波形のイオン密度に相当する面積を三角形近似法により算出し、イオン密度とした。測定の際、液晶セルの温度を23℃、60℃とし、それぞれの温度で測定を行った。
【0084】
[FFS駆動液晶セルの交流駆動焼き付き]
ガラス基板上に、第1層目に電極として膜厚50nmのITO電極を、第2層目に絶縁膜として膜厚500nmの窒化珪素を、第3層目に電極として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有するフリンジフィールドスィッチング(Fringe Field Switching:以下、FFSという)駆動用電極が形成されているガラス基板に、スピンコート塗布にて液晶配向剤を塗布した。80℃のホットプレート上で5分間乾燥させた後、250℃の熱風循環式オーブンで60分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を100mJ/cm照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC−2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
このFFS駆動液晶セルの58℃の温度下でのV−T特性(電圧−透過率特性)を測定した後、±4V/120Hzの矩形波を4時間印加した。4時間後、電圧を切り、58℃の温度下で60分間放置した後、再度V−T特性を測定し、矩形波印加前後の透過率50%となる電圧の差を算出した。
【0085】
[電荷蓄積特性の評価]
上記FFS駆動液晶セルを光源上に置き、V−T特性(電圧−透過率特性)を測定した後、±1.5V/60Hzの矩形波を印加した状態での透過率(Ta)を測定した。その後、±1.5V/60Hzの矩形波を10分間印加した後、直流1Vを重畳し30分間駆動させた。 直流電圧を切り、交流駆動10分経過した後の透過率(T)を測定し、TとTの差から液晶表示素子内に残留した電圧により生じた透過率の差を算出した。
【0086】
・ジメチル 1,3−ビス(クロロカルボニル)−1,3−ジ メチルシクロブタン−2,4−ジカルボキシレート(1,3DMCBDE−Cl)の合成
a−1:テトラカルボン酸ジアルキルエステルの合成
【0087】
【化33】
【0088】
窒素気流下中、3Lの四つ口フラスコに、1,3−ジメチルシクロブタン−1,2,3,4−テトラカルボン酸二無水物(式(5−1)の化合物、以下1,3−DM−CBDAと略す)を220g(0.981mol)と、メタノールを2200g(68.7mol、1,3−DM−CBDAに対して10wt倍)仕込み、65℃にて加熱還流を行ったところ、30分で均一な溶液となった。反応溶液はそのまま4時間30分加熱還流下で撹拌した。この反応液を高速液体クロマトグラフィー(以下、HPLCと略す)にて測定した。この測定結果の解析は後述する。
エバポレーターにて、この反応液から溶媒を留去した後、酢酸エチル1301gを加えて80℃まで加熱し、30分還流させた。その後、10分間に2〜3℃の速度で内温が25℃になるまで冷却し、そのまま25℃で30分撹拌した。析出した白色結晶をろ過によって取り出し、この結晶を酢酸エチル141gにて2回洗浄した後、減圧乾燥することで、白色結晶を103.97g得た。
この結晶は、1H NMR分析、及びX線結晶構造解析の結果により、化合物(1−1)であることを確認した(HPLC相対面積97.5%)(収率36.8%)。
1H NMR (DMSO-d6, δppm);12.82 (s, 2H), 3.60 (s, 6H), 3.39 (s, 2H), 1.40 (s, 6H).
a−2.1,3−DM−CBDE−C1の合成
【0089】
【化34】
【0090】
窒素気流下中、3Lの四つ口フラスコに、化合物(1−1)234.15g(0.81mol)、n−ヘプタン1170.77g(11.68mol.5wt倍)を仕込んだ後、ピリジン0.64g(0.01mol)を加え、マグネチックスターラー攪拌下にて75℃まで加熱撹拌した。続いて、塩化チオニル289.93g(2.44mol)を1時間かけて滴下した。滴下直後から発泡が開始し、滴下終了30分後に反応溶液は均一となり、発泡は停止した。続いてそのまま75℃にて1時間30分撹拌した後、エバポレーターにて水浴40℃で内容量が924.42gになるまで溶媒を留去した。これを60℃に加熱し、溶媒留去時に析出した結晶を溶解させ、60℃にて熱時ろ過を行うことで不溶物をろ過した後、ろ液を25℃まで10分間に1℃の速度で冷却した。そのまま25℃で30分撹拌させた後、析出した白色結晶をろ過により取り出し、この結晶をn−ヘプタン264.21gにて洗浄した。これを減圧乾燥することで、白色結晶を226.09g得た。
続いて窒素気流下中、3Lの四つ口フラスコに、上記で得られた白色結晶226.09g、n−ヘプタン452.18gを仕込んだ後、60℃に加熱撹拌して結晶を溶解させた。その後、25℃まで10分間に1℃の速度で冷却撹拌し、結晶を析出させた。そのまま25℃で1時間撹拌させた後、析出した白色結晶をろ過により取り出し、この結晶をn−ヘキサン113.04gにて洗浄した後、減圧乾燥することで白色結晶を203.91g得た。この結晶は、1H NMR分析結果により、化合物(3−1)すなわち、ジメチル−1,3−ビス(クロロカルボニル)−1,3−ジメチルシクロブタン−2,4−ジカルボキシレート(1,3−DM−CBDE−C1)であるであることを確認した(HPLC相対面積99.5%)(収率77.2%)。
1H NMR (CDCl3, δppm) : 3.78 (s, 6H), 3.72 (s, 2H), 1.69 (s, 6H).
【0091】
(合成例1)
撹拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、ODAを8.0129 g (40.02mmol)入れ、NMPを157.25g、塩基としてピリジンを7.13g (90.13mmol) 加え撹拌して溶解させた。次にこのジアミン溶液を撹拌しながら1,3DM−CBDE−Clを12.2295g (37.61mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、1747g の水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、1747g の水で1回、1747g のエタノールで1回、437g のエタノールで3回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末16.65gを得た。収率は、95.3%であった。また、このポリアミック酸エステルの分子量はMn=13,104、Mw=29,112であった。
得られたポリアミック酸エステル樹脂粉末1.8731gを50ml三角フラスコにとり、NMP16.89gを加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(A−1)を得た。
【0092】
(合成例2)
撹拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、ODAを7.0154 g (35.03mmol)入れ、NMPを140.77g、塩基としてピリジンを6.50g (82.22mmol) 加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながら1,3DM−CBDE−Clを11.1392g (34.26mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、1564g の水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、1564g の水で1回、1564g のエタノールで1回、391g のエタノールで3回洗浄し、乾燥することで白色のポリアミド酸エステル樹脂粉末14.33gを得た。収率は、91.6%であった。また、このポリアミック酸エステルの分子量はMn=24,228、Mw=61,076であった。
得られたポリアミック酸エステル樹脂粉末1.7324gを50ml三角フラスコにとり、NMP15.65gを加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(A−2)を得た。
【0093】
(合成例3)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、4,4´−ジアミノジフェニルアミンを4.583g(23.0mmol)取り、NMPを62.9g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCBDAを4.335g(22.10mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(B−1)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は165.1mPa・sであった。また、このポリアミック酸の分子量はMn=17,171、Mw=35,201であった。
【0094】
(実施例1)
合成例1で得られたポリアミック酸エステル溶液(A−1)1.5114gと合成例3で得られたポリアミック酸溶液(B−1)1.5048gを三角フラスコにとり、NMPを1.028g、BCSを1.0016g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(I)を得た。
(比較例1)
合成例2で得られたポリアミック酸エステル溶液(A−2)1.5145gと合成例3で得られたポリアミック酸溶液(B−1)1.5241gを三角フラスコにとり、NMPを1.0331g、BCSを1.0012gを加えてマグネチックスターラーで30分間撹拌し液晶配向剤(II)を得た。
(比較例2)
合成例1で得られたポリアミック酸エステル溶液(A−1)4.2010gを三角フラスコにとり、NMPを0.5993g、BCSを1.2519gを加えてマグネチックスターラーで30分間撹拌し液晶配向剤(III)を得た。
(実施例2)
実施例1で得られた液晶配向剤(I)を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、温度250℃の熱風循環式オーブンで60分間の焼成を経て膜厚100nmのイミド化した膜を得た。このイミド化した膜について、中心線平均粗さ(Ra)を測定した。測定結果については、後述する表1に示す。
(比較例3)
比較例1で得られた液晶配向剤(II)を用いた以外は、実施例2と同様の方法でイミド化した膜を作製した。このイミド化した膜について、中心線平均粗さ(Ra)を測定した。測定結果については、後述する表1に示す。
【0095】
【表1】
実施例2と比較例3の結果より、PAEの重量平均分子量をPAAよりも小さくすることにより、ポリアミック酸エステルとポリアミック酸の相分離により発生する微小な凹凸が小さく抑制され、より平滑な膜が得られることが確認された。
【0096】
(実施例3)
実施例1で得られた液晶配向剤(I)を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、250℃の熱風循環式オーブンで60分間の焼成を経て膜厚100nmのイミド化した膜を得た。この塗膜面に偏光板を介して254nmの紫外線を100mJ/cm照射し、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC−2041、メルク社製)を常温で真空注入し、注入口を封止して液晶セルとした。この液晶セルについて、電圧保持率を測定し、その後イオン密度の測定を行った。電圧保持率及びイオン密度の測定結果は後述する表2に示す。
【0097】
(比較例4)
比較例1で得られた液晶配向剤(II)を用いた以外は、実施例3と同様の方法で液晶セルを作製した。この液晶セルについて、電圧保持率を測定し、その後イオン密度の測定を行った。電圧保持率及びイオン密度の測定結果は後述する表2に示す。
(比較例5)
比較例2で得られた液晶配向剤(III)を用いた以外は、実施例3と同様の方法で液晶セルを作製した。この液晶セルについて、電圧保持率を測定し、その後イオン密度の測定を行った。電圧保持率及びイオン密度の測定結果は後述する表2に示す。
【0098】
【表2】
実施例3及び比較例4の結果より、より平滑な膜とすることで、高温時の電圧保持率及びイオン密度が良好であることが確認された。また、実施例3と比較例5の結果より、ポリアミック酸エステルとポリアミック酸をブレンドし、且つ平滑な膜が得られた場合、ポリアミック酸エステル単独よりも、高温時の電圧保持率及びイオン密度がより良好となり、信頼性の高い液晶配向膜が得られることが確認された。
【0099】
(実施例4)
実施例1で得られた液晶配向剤(I)を1.0μmのフィルターで濾過した後、ガラス基板上に、第1層目として膜厚50nmのITO電極を、第2層目として絶縁膜として膜厚500nmの窒化ケイ素を、第3層目として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有するフリンジ・フィールド・スィッチング(Fringe Field Switching:以下、FFSという)駆動用電極が形成されているガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、250℃の熱風循環式オーブンで60分間焼成を行い、膜厚130nmの塗膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を100mJ/cm照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC−2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
このFFS駆動液晶セルについて、液晶配向規制力の測定及び電荷蓄積特性の評価をおこなった。結果については、後述する表3に示す。
【0100】
(比較例6)
比較例1で得られた液晶配向剤(II)を用いた以外は、実施例4と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、液晶配向規制力の測定及び電荷蓄積特性の評価をおこなった。結果については、後述する表3に示す。
【0101】
【表3】
実施例4と比較例6の結果より、本発明の液晶配向膜を用いることにより、交流駆動焼き付きの程度が小さく、且つ残留電圧が少ない液晶配向膜が得られることが確認された。
【0102】
・(AD−4)の合成
【0103】
【化35】
500mL反応容器に化合物(b)(50.00g,229mmol)、ピリジン(0.500g,0.632mmol)、化合物(c)(63.02, 504mmol)、アセトノトリル(300g)を加え、窒素雰囲気下、加熱還流で反応を行った。反応終了後、20℃まで冷却した後、ろ過、アセトニトリル(100g)で洗浄を行い、粗物を得た。次に、粗物に2−プロパノール(300g)、蒸留水(100g)を加え、加熱還流した。その後、20℃に冷却し、固体をろ過、2−プロパノール(100g)で洗浄、乾燥し化合物(d)を得た(収量:37.8g,収率:37%)。
H−NMR(H核磁気共鳴分光)(400MHz,DMSO−d,σ(ppm)):8.07(2H,s),5.15−5.14(2H,m),4.62(2H,t),4.59−4.49(4H,m),4.38(2H,q).
【0104】
500mL反応容器に化合物(d)(20.00g,44.0mmol)、塩化チオニル(120.0g,1.01mol)を加え、加熱還流を行った。30分後、20℃まで冷却した後、塩化チオニル(120.0g,1.01mol)を追加し、さらに2時間加熱還流を行った。反応終了後、過剰の塩化チオニルを減圧留去し、ヘキサン(200g)で洗浄した。次に、粗物に20℃にてジクロロメタン(200g)を加え撹拌を行い、そこへ化合物(c)(12.1g, 96.8mmol)、ピリジン(13.93g,176mmol)、ジクロロメタン(100g)溶液を徐々に滴下して加えた。1時間撹拌後、さらに化合物(c)(12.1g, 96.8mmol)、ピリジン(13.93g,176mmol)を加えた。反応終了後、溶媒を留去し、蒸留水(144g)で洗浄し粗物を得た。この粗物にテトラヒドロフラン(144g)を加え、23℃にて分散洗浄し、ろ過、テトラヒドロフラン(130g)、蒸留水(170g)、メタノール(150g)でそれぞれ洗浄後、乾燥し、(AD−4)を得た(収量:17.72g,収率:62%)。
H−NMR(H核磁気共鳴分光)(400MHz,DMSO−d,σ(ppm)):8.17(2H,s),5.18−5.13(2H,m),4.64−4.53(6H,m),4.37(2H,q).
【0105】
(合成例4)
撹拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、ODAを5.0284g (25.11mmol)入れ、NMPを202.80g、塩基としてピリジンを4.72g(59.63mmol)を加え撹拌して溶解させた。次にこのジアミン溶液を撹拌しながら1,3DM−CBDE−Clを8.0794g(24.85mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、1127gの水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、1127gの水で1回、1127gのエタノールで1回、282gのエタノールで3回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=6,394、Mw=13,794であった。
得られたポリアミック酸エステル樹脂粉末4.5796gを50ml三角フラスコにとり、NMP41.20g を加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(A−3)を得た。
(合成例5)
攪拌装置付きの100ml四つ口フラスコに2,4−ビス(メトキシカルボニル)シクロブタン−1,3−ジカルボン酸を5.1584g(19.82mmol)取り、NMPを68.12g加え、撹拌して溶解させた。続いて、トリエチルアミンを4.45g(43.98mmol)、p−フェニレンジアミンを1.7315g(16.01mmol)、4,4'−ジアミノジフェニルメタンを0.7922g(3.99mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら(2,3−ジヒドロキシ−2−チオキソ−3−ベンゾオキサゾイル)ホスホン酸ジフェニルを16.90g(44.08mmol)添加し、更にNMPを9.67g加え、水冷下で4時間反応させた。得られたポリアミド酸エステル溶液を650gの2−プロパノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、210gの2−プロパノールで5回洗浄し、乾燥することでポリアミック酸エステル樹脂粉末を得た。
このポリアミック酸エステルの分子量はMn=3860、Mw=5384であった。
得られたポリアミック酸エステル樹脂粉末2.0332gを50ml三角フラスコに取り、NMPを18.4708g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(A−4)を得た。
(合成例6)
攪拌装置付きの100mL四つ口フラスコを窒素雰囲気とし、4,4‘−ジアミノジフェニルメタンを2.01g(10.09mmol)、3−アミノ−N−メチルベンジルアミンを0.92g(6.73mmol)入れ、NMPを131.14g、塩基としてトリエチルアミンを3.83g(37.93mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながら1,3DM−CBDE−Clを5.1407g(15.81mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、690gの2−プロパノールに攪拌しながら投入し、析出した白色沈殿をろ取し、続いて220gの2−プロパノールで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=5064、Mw=11348であった。
得られたポリアミック酸エステル樹脂粉末2.0014gを50ml三角フラスコにとり、NMPを18.2912g加え、室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液(A−5)を得た。
(合成例7)
攪拌装置付きの100mL四つ口フラスコを窒素雰囲気とし、4,4‘−ジアミノジフェニルメタンを2.01g(10.09mmol)、3−アミノ−N−メチルベンジルアミンを0.92g(6.73mmol)入れ、NMPを135.18g、塩基としてトリエチルアミンを4.04g(39.95mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながら1,3DM−CBDE−Clを5.4260g(16.69mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、711gの2−プロパノールに攪拌しながら投入し、析出した白色沈殿をろ取し、続いて230gの2−プロパノールで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=11820、Mw=28719であった。
得られたポリアミック酸エステル樹脂粉末2.4381gを50ml三角フラスコにとり、NMPを21.4224g加え、室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液(A−6)を得た。
【0106】
(合成例8)
攪拌装置付きの300ml四つ口フラスコに2,5−ビス(メトキシカルボニル)テレフタル酸を2.2617g(8.01mmol)、2,4−ビス(メトキシカルボニル)シクロブタン−1,3−ジカルボン酸を2.7808g(10.61mmol)取り、NMPを102.82g加え、撹拌して溶解させた。続いて、トリエチルアミンを4.45g(43.98mmol)、1,5−ビス(4−アミノフェノキシ)ペンタンを3.4396g(12.01mmol)、1,3−ビス(4−アミノフェネチル)ウレアを2.3914g(8.01mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロリド(15±2重量%水和物)を16.60g添加し、更にNMPを14.12g加え、水冷下で4時間反応させた。得られたポリアミド酸エステル溶液を890gの2-プロパノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、300gの2-プロパノールで5回洗浄し、乾燥することでポリアミック酸エステル樹脂粉末を得た。
このポリアミック酸エステルの分子量はMn=9450、Mw=22588であった。
得られたポリアミック酸エステル樹脂粉末1.1487gを50ml三角フラスコに取り、NMPを19.1544g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(A−7)を得た。
(合成例9)
攪拌装置付きの300ml四つ口フラスコに2,5−ビス(メトキシカルボニル)テレフタル酸を2.2589g(8.00mmol)、2,4−ビス(メトキシカルボニル)シクロブタン−1,3−ジカルボン酸を3.0710g(11.80mmol)取り、NMPを105.54g加え、撹拌して溶解させた。続いて、トリエチルアミンを4.45g(43.98mmol)、1,5−ビス(4−アミノフェノキシ)ペンタンを3.4376g(12.00mmol)、1,3−ビス(4−アミノフェネチル)ウレアを2.3862g(8.00mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロリド(15±2重量%水和物)を16.73g添加し、更にNMPを14.50g加え、水冷下で4時間反応させた。得られたポリアミド酸エステル溶液を910gの2−プロパノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、300gの2−プロパノールで5回洗浄し、乾燥することでポリアミック酸エステル樹脂粉末を得た。
このポリアミック酸エステルの分子量はMn=18067、Mw=46973であった。
得られたポリアミック酸エステル樹脂粉末1.3221gを50ml三角フラスコに取り、NMPを24.8708g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(A−8)を得た。
【0107】
(合成例11)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を6.0854g(40.0mmol)取り、NMPを65.56g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらピロメリット酸二無水物を8.5449g(39.18mmol)添加し、更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は523mPa・sであった。また、このポリアミック酸の分子量はMn=20565、Mw=47912であった。
さらにこの溶液に0.3質量%3−グリシドキシプロピルメチルジエトキシシランのNMP溶液を13.79g加え、ポリアミック酸溶液(B−3)を得た。
(合成例12)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を3.6541g(24.02mmol)、1,4−ビス(4−アミノフェニル)ピペラジンを4.2931g(16.00mmol)取り、NMPを36.48g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらBDAを4.7522g(23.99mmol)添加し、室温で2時間撹拌した。次に、NMPを36.50g加え、ピロメリット酸二無水物を3.4084g(15.63mmol)加えた。更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は1166mPa・sであった。また、このポリアミック酸の分子量はMn=19307、Mw=42980であった。
さらにこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0483g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−4)を得た。
(合成例13)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を3.6516g(24.0mmol)、4−((2−メチルアミノ)エチル)アニリンを2.4070g(16.02mmol)を取り、NMPを66.21g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらピロメリット酸二無水物を8.5972g(39.42mmol)加えた。更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は488mPa・sであった。また、このポリアミック酸の分子量はMn=13205、Mw=33511であった。
さらにこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0438g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−5)を得た。
(合成例14)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を0.6123g(4.00mmol)、4,4−ジアミノジフェニルアミンを3.199g(16.06mmol)取り、NMPを19.64g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらBDAを3.1780g(16.04mmol)添加し、室温で2時間撹拌した。次に、NMPを8.93g加え、ピロメリット酸二無水物を0.8736g(4.01mmol)加えた。更に固形分濃度が18質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は8100mPa・sであった。また、このポリアミック酸の分子量はMn=22537、Mw=72601であった。
更にこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0235g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−6)を得た。
(合成例15)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を3.6603g(24.06mmol)、1,3−ビス(4−アミノフェネチル)ウレアを4.7740g(16.0mmol)取り、NMPを28.59g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらBDAを2.3782g(12.0mmol)添加し、室温で2時間撹拌した。次に、NMPを38.13g加え、ピロメリット酸二無水物を6.0903g(27.92mmol)加えた。更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は744mPa・sであった。また、このポリアミック酸の分子量はMn=17771、Mw=38991であった。
更にこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0505g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−7)を得た。
【0108】
(合成例16)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を3.6536g(24.01mmol)、DA−1を3.8715g(15.98mmol)取り、NMPを31.75g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらBDAを3.9621g(20.0mmol)添加し、室温で2時間撹拌した。次に、NMPを25.42g加え、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物を4.4776g(19.97mmol)加えた。更に固形分濃度が20質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は417mPa・sであった。また、このポリアミック酸の分子量はMn=13291、Mw=54029であった。
更にこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0476g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−8)を得た。
(合成例17)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を1.2133g(7.97mmol)、4,4’−ジアミノジフェニル−N−メチル−アミンを6.8216g(31.98mmol)取り、NMPを44.03g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらBDAを7.1310g(36.0mmol)添加し、室温で2時間撹拌した。次に、NMPを14.62g加え、ピロメリット酸二無水物を0.8713g(3.99mmol)加えた。更に固形分濃度が18質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は577mPa・sであった。また、このポリアミック酸の分子量はMn=12656、Mw=28487であった。
更にこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0480g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−9)を得た。
(合成例18)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を2.7365g(17.99mmol)、2,2’−ジメチルー4,4’−ジアミノビフェニルを2.5471g(12.0mmol)取り、NMPを27.32g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらビシクロ[3.3.0]オクタン−2,4,6,8−テトラカルボン酸二無水物を2.2562g(9・02mmol)加え、80℃で3時間撹拌した。反応溶液を室温まで冷却した後、NMPを27.32g加え、ピロメリット酸二無水物を4.5715g(20.96mmol)加えた。更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は2190mPa・sであった。また、このポリアミック酸の分子量はMn=23632、Mw=56881であった。
更にこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0360g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−10)を得た。
(実施例5)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0443g、合成例3で得られたポリアミック酸溶液(B−1)を3.0126g取り、NMPを1.7670g、BCSを2.0083g、更に架橋剤として多官能エポキシ化合物である(AD−1)の5質量%NMP溶液を0.2380g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−1)を得た。
【0109】
(実施例6)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0160g、合成例3で得られたポリアミック酸溶液(B−1)を3.1312g取り、NMPを2.0339g、BCSを2.0099g、更に架橋剤として多官能ヒドロキシ基含有化合物である(AD−2)を0.0274g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−2)を得た。
(実施例7)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0328g、合成例3で得られたポリアミック酸溶液(B−1)を3.0058g取り、NMPを2.0417g、BCSを2.0125g、更に架橋剤として多官能シクロカーボネート化合物である(AD−4)を0.0366g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−3)を得た。
(実施例8)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0463g、合成例3で得られたポリアミック酸溶液(B−1)を3.0433g取り、NMPを2.0306g、BCSを2.0367g、更に架橋剤として多官能オキセタン化合物である(AD−3)を0.0454g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−4)を得た。
(実施例9)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0073g、合成例3で得られたポリアミック酸溶液(B−1)を3.0197g取り、NMPを2.0436g、BCSを2.0364g、更にイミド化促進剤としてN−α−(9−フルオレニルメトキシカルボニル)−N−t−ブトキシカルボニル−L−ヒスチジンを0.0701g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−5)を得た。
(実施例10)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0210g、合成例3で得られたポリアミック酸溶液(B−1)を3.0105g取り、NMPを2.0140g、BCSを2.0246g、更にイミド化促進剤として4−(t−ブトキシカルボニルアミノ)ピリジンを0.0341g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−6)を得た。
【0110】
(実施例11)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0021g、合成例3で得られたポリアミック酸溶液(B−1)を3.1795g取り、NMPを2.0480g、BCSを2.0062g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−7)を得た。
実施例13)
50ml三角フラスコに撹拌子を入れ、合成例5で得られたポリアミック酸エステル溶液(A−4)を1.8212g、合成例11で得られたポリアミック酸溶液(B−3)を2.8206g取り、NMPを3.4198g、BCSを2.0629g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(III−1)を得た。
(実施例14)
50ml三角フラスコに撹拌子を入れ、合成例5で得られたポリアミック酸エステル溶液(A−4)を4.2276g、合成例12で得られたポリアミック酸溶液(B−4)を1.2331g取り、NMPを2.6302g、BCSを2.0189g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(III−2)を得た。
(実施例15)
50ml三角フラスコに撹拌子を入れ、合成例5で得られたポリアミック酸エステル溶液(A−4)を3.0022g、合成例13で得られたポリアミック酸溶液(B−5)を2.3359g取り、NMPを2.9918g、BCSを20168g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(III−3)を得た。
【0111】
(実施例16)
50ml三角フラスコに撹拌子を入れ、合成例6で得られたポリアミック酸エステル溶液(A−5)を3.0145g、合成例14で得られたポリアミック酸溶液(B−6)を1.7284g取り、NMPを3.3210g、BCSを2.0155g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(IV−1)を得た。
(実施例17)
50ml三角フラスコに撹拌子を入れ、合成例7で得られたポリアミック酸エステル溶液(A−6)を3.0186g、合成例14で得られたポリアミック酸溶液(B−6)を1.7640g取り、NMPを3.3171g、BCSを2.0344g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(IV−2)を得た。
(実施例18)
50ml三角フラスコに撹拌子を入れ、合成例6で得られたポリアミック酸エステル溶液(A−5)を3.0250g、合成例15で得られたポリアミック酸溶液(B−7)を2.1211g取り、NMPを3.0711g、BCSを2.0720g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(IV−3)を得た。
(実施例19)
50ml三角フラスコに撹拌子を入れ、合成例7で得られたポリアミック酸エステル溶液(A−6)を3.0026g、合成例15で得られたポリアミック酸溶液(B−7)を2.0594g取り、NMPを3.0194g、BCSを2.0030g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(IV−4)を得た。
(実施例20)
50ml三角フラスコに撹拌子を入れ、合成例6で得られたポリアミック酸エステル溶液(A−5)を1.2318g、合成例16で得られたポリアミック酸溶液(B−8)を3.2286g取り、NMPを3.6275g、BCSを2.0178g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(IV−5)を得た。
【0112】
(実施例21)
50ml三角フラスコに撹拌子を入れ、合成例8で得られたポリアミック酸エステル溶液(A−7)を4.8328g、合成例17で得られたポリアミック酸溶液(B−9)を2.1984g取り、NMPを1.2268g、BCSを2.0307g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(V−1)を得た。
(比較例8)
50ml三角フラスコに撹拌子を入れ、合成例9で得られたポリアミック酸エステル溶液(A−8)を4.8426g、合成例17で得られたポリアミック酸溶液(B−9)を2.0480g取り、NMPを1.2241g、BCSを2.0380g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(V−2)を得た。
(実施例22)
50ml三角フラスコに撹拌子を入れ、合成例8で得られたポリアミック酸エステル溶液(A−7)を4.8210g、合成例14で得られたポリアミック酸溶液(B−5)を2.4526g取り、NMPを0.8197g、BCSを2.0452g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(V−3)を得た。
(比較例9)
50ml三角フラスコに撹拌子を入れ、合成例9で得られたポリアミック酸エステル溶液(A−8)を4.7940g、合成例14で得られたポリアミック酸溶液(B−5)を2.5558g取り、NMPを0.8545g、BCSを2.0254g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(V−4)を得た。
(実施例23)
50ml三角フラスコに撹拌子を入れ、合成例8で得られたポリアミック酸エステル溶液(A−7)を3.6281g、合成例18で得られたポリアミック酸溶液(B−10)を2.8751g取り、NMPを1.6002g、BCSを2.0514g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(V−5)を得た。
【0113】
(実施例24)
50ml三角フラスコに撹拌子を入れ、合成例9で得られたポリアミック酸エステル溶液(A−8)を3.6507g、合成例18で得られたポリアミック酸溶液(B−10)を2.8195g取り、NMPを1.6288g、BCSを1.9982g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(V−6)を得た。
(実施例25)
実施例5で得られた液晶配向剤(I−1)を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、温度230℃の温風循環式オーブンで20分間の焼成を経て膜厚100nmのイミド化した膜を得た。このイミド化した膜について、中心線平均粗さ(Ra)を測定した。測定結果については、後述する表4に示す。
(実施例26〜31、3344及び比較例11、12)
上記実施例6〜24、比較例8、9で得られたそれぞれの液晶配向剤を用いた以外は、実施例25と同様の方法で各塗膜を形成させた。各塗膜の膜表面をAFMにて観察した。また、各塗膜について、中心線平均粗さ(Ra)を測定した。これらの測定結果を後述する表4に示す。
【0114】
【表4】

【産業上の利用可能性】
【0115】
本発明の液晶配向剤は、得られる液晶配向膜の表面の微細な凹凸が低減できることを通じて、液晶配向性が向上するとともに、電圧保持率、イオン密度、交流電流による残像、直流電圧の残留などの電気的特性も改善される。その結果、TN素子、STN素子、TFT液晶素子、更には、垂直配向型の液晶表示素子などに広く有用である。
なお、2010年3月15日に出願された日本特許出願2010−058554号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。