【実施例】
【0078】
以下に実施例を挙げて、さらに、本発明を具体的に説明をする。但し、本発明は、これらの実施例に限定して解釈されないことはもちろんである。
なお、実施例及び比較例で使用する略号、及び各特性の測定方法は、以下のとおりである。
1,3DMCBDE−Cl:ジメチル 1,3−ビス(クロロカルボニル)−1,3−ジ メチルシクロブタン−2,4−ジカルボキシレート
ODA:4,4´−ジアミノジフェニルエーテル
BDA:1,2,3,4−ブタンテトラカルボン酸二無水物
CBDA:1,2,3,4−シクロブタンテトラカルボン酸二無水物
NMP:N−メチル−2−ピロリドン
γ−BL:γ−ブチロラクトン
BCS:ブチルセロソルブ
PAE:ポリアミック酸エステル
PAA:ポリアミック酸
【0079】
【化32】
【0080】
[粘度]
合成例において、ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TVE−22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE−1(1°34’、R24)、温度25℃で測定した。
[分子量]
また、ポリアミック酸エステルの分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC−101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・H
2O)が30mmol/L、リン酸・無水結晶(o−リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定。
【0081】
[中心線平均粗さ測定]
スピンコート塗布により得られた液晶配向剤の塗膜を、温度80℃のホットプレート上で5分間の乾燥後、温度250℃の熱風循環式オーブンで1時間の焼成し、膜厚100nmの塗膜を得た。この塗膜の膜表面を原子間力顕微鏡(AFM)で観察し、膜表面の中心線平均粗さ(Ra)を測定し、膜表面の平坦性を評価した。
測定装置:L−traceプローブ顕微鏡 (エスアイアイ・テクノロジー社製)
【0082】
[電圧保持率]
液晶配向剤を透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、250℃の熱風循環式オーブンで60分間の焼成を経て膜厚100nmのポリイミド膜を得た。この塗膜面に偏光板を介して254nmの紫外線を100mJ/cm
2照射し、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC−2041、メルク社製)を常温で真空注入し、注入口を封止して液晶セルとした。
上記液晶セルの電圧保持率の測定は以下のようにして行った。
4Vの電圧を60μs間印加し、16.67ms後の電圧を測定することで、初期値からの変動を電圧保持率として計算した。測定の際、液晶セルの温度を23℃、60℃、90℃とし、それぞれの温度で測定を行った。
【0083】
[イオン密度]
上記液晶セルのイオン密度の測定は以下のようにして行った。
東陽テクニカ社製の6254型液晶物性評価装置を用いて測定を行った。10V、0.01Hzの三角波を印加し、得られた波形のイオン密度に相当する面積を三角形近似法により算出し、イオン密度とした。測定の際、液晶セルの温度を23℃、60℃とし、それぞれの温度で測定を行った。
【0084】
[FFS駆動液晶セルの交流駆動焼き付き]
ガラス基板上に、第1層目に電極として膜厚50nmのITO電極を、第2層目に絶縁膜として膜厚500nmの窒化珪素を、第3層目に電極として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有するフリンジフィールドスィッチング(Fringe Field Switching:以下、FFSという)駆動用電極が形成されているガラス基板に、スピンコート塗布にて液晶配向剤を塗布した。80℃のホットプレート上で5分間乾燥させた後、250℃の熱風循環式オーブンで60分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を100mJ/cm
2照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC−2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
このFFS駆動液晶セルの58℃の温度下でのV−T特性(電圧−透過率特性)を測定した後、±4V/120Hzの矩形波を4時間印加した。4時間後、電圧を切り、58℃の温度下で60分間放置した後、再度V−T特性を測定し、矩形波印加前後の透過率50%となる電圧の差を算出した。
【0085】
[電荷蓄積特性の評価]
上記FFS駆動液晶セルを光源上に置き、V−T特性(電圧−透過率特性)を測定した後、±1.5V/60Hzの矩形波を印加した状態での透過率(T
a)を測定した。その後、±1.5V/60Hzの矩形波を10分間印加した後、直流1Vを重畳し30分間駆動させた。 直流電圧を切り、交流駆動10分経過した後の透過率(T
b)を測定し、T
bとT
aの差から液晶表示素子内に残留した電圧により生じた透過率の差を算出した。
【0086】
・ジメチル 1,3−ビス(クロロカルボニル)−1,3−ジ メチルシクロブタン−2,4−ジカルボキシレート(1,3DMCBDE−Cl)の合成
a−1:テトラカルボン酸ジアルキルエステルの合成
【0087】
【化33】
【0088】
窒素気流下中、3Lの四つ口フラスコに、1,3−ジメチルシクロブタン−1,2,3,4−テトラカルボン酸二無水物(式(5−1)の化合物、以下1,3−DM−CBDAと略す)を220g(0.981mol)と、メタノールを2200g(68.7mol、1,3−DM−CBDAに対して10wt倍)仕込み、65℃にて加熱還流を行ったところ、30分で均一な溶液となった。反応溶液はそのまま4時間30分加熱還流下で撹拌した。この反応液を高速液体クロマトグラフィー(以下、HPLCと略す)にて測定した。この測定結果の解析は後述する。
エバポレーターにて、この反応液から溶媒を留去した後、酢酸エチル1301gを加えて80℃まで加熱し、30分還流させた。その後、10分間に2〜3℃の速度で内温が25℃になるまで冷却し、そのまま25℃で30分撹拌した。析出した白色結晶をろ過によって取り出し、この結晶を酢酸エチル141gにて2回洗浄した後、減圧乾燥することで、白色結晶を103.97g得た。
この結晶は、1H NMR分析、及びX線結晶構造解析の結果により、化合物(1−1)であることを確認した(HPLC相対面積97.5%)(収率36.8%)。
1H NMR (DMSO-d6, δppm);12.82 (s, 2H), 3.60 (s, 6H), 3.39 (s, 2H), 1.40 (s, 6H).
a−2.1,3−DM−CBDE−C1の合成
【0089】
【化34】
【0090】
窒素気流下中、3Lの四つ口フラスコに、化合物(1−1)234.15g(0.81mol)、n−ヘプタン1170.77g(11.68mol.5wt倍)を仕込んだ後、ピリジン0.64g(0.01mol)を加え、マグネチックスターラー攪拌下にて75℃まで加熱撹拌した。続いて、塩化チオニル289.93g(2.44mol)を1時間かけて滴下した。滴下直後から発泡が開始し、滴下終了30分後に反応溶液は均一となり、発泡は停止した。続いてそのまま75℃にて1時間30分撹拌した後、エバポレーターにて水浴40℃で内容量が924.42gになるまで溶媒を留去した。これを60℃に加熱し、溶媒留去時に析出した結晶を溶解させ、60℃にて熱時ろ過を行うことで不溶物をろ過した後、ろ液を25℃まで10分間に1℃の速度で冷却した。そのまま25℃で30分撹拌させた後、析出した白色結晶をろ過により取り出し、この結晶をn−ヘプタン264.21gにて洗浄した。これを減圧乾燥することで、白色結晶を226.09g得た。
続いて窒素気流下中、3Lの四つ口フラスコに、上記で得られた白色結晶226.09g、n−ヘプタン452.18gを仕込んだ後、60℃に加熱撹拌して結晶を溶解させた。その後、25℃まで10分間に1℃の速度で冷却撹拌し、結晶を析出させた。そのまま25℃で1時間撹拌させた後、析出した白色結晶をろ過により取り出し、この結晶をn−ヘキサン113.04gにて洗浄した後、減圧乾燥することで白色結晶を203.91g得た。この結晶は、1H NMR分析結果により、化合物(3−1)すなわち、ジメチル−1,3−ビス(クロロカルボニル)−1,3−ジメチルシクロブタン−2,4−ジカルボキシレート(1,3−DM−CBDE−C1)であるであることを確認した(HPLC相対面積99.5%)(収率77.2%)。
1H NMR (CDCl3, δppm) : 3.78 (s, 6H), 3.72 (s, 2H), 1.69 (s, 6H).
【0091】
(合成例1)
撹拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、ODAを8.0129 g (40.02mmol)入れ、NMPを157.25g、塩基としてピリジンを7.13g (90.13mmol) 加え撹拌して溶解させた。次にこのジアミン溶液を撹拌しながら1,3DM−CBDE−Clを12.2295g (37.61mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、1747g の水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、1747g の水で1回、1747g のエタノールで1回、437g のエタノールで3回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末16.65gを得た。収率は、95.3%であった。また、このポリアミック酸エステルの分子量はMn=13,104、Mw=29,112であった。
得られたポリアミック酸エステル樹脂粉末1.8731gを50ml三角フラスコにとり、NMP16.89gを加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(A−1)を得た。
【0092】
(合成例2)
撹拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、ODAを7.0154 g (35.03mmol)入れ、NMPを140.77g、塩基としてピリジンを6.50g (82.22mmol) 加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながら1,3DM−CBDE−Clを11.1392g (34.26mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、1564g の水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、1564g の水で1回、1564g のエタノールで1回、391g のエタノールで3回洗浄し、乾燥することで白色のポリアミド酸エステル樹脂粉末14.33gを得た。収率は、91.6%であった。また、このポリアミック酸エステルの分子量はMn=24,228、Mw=61,076であった。
得られたポリアミック酸エステル樹脂粉末1.7324gを50ml三角フラスコにとり、NMP15.65gを加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(A−2)を得た。
【0093】
(合成例3)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、4,4´−ジアミノジフェニルアミンを4.583g(23.0mmol)取り、NMPを62.9g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCBDAを4.335g(22.10mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(B−1)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は165.1mPa・sであった。また、このポリアミック酸の分子量はMn=17,171、Mw=35,201であった。
【0094】
(実施例1)
合成例1で得られたポリアミック酸エステル溶液(A−1)1.5114gと合成例3で得られたポリアミック酸溶液(B−1)1.5048gを三角フラスコにとり、NMPを1.028g、BCSを1.0016g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(I)を得た。
(比較例1)
合成例2で得られたポリアミック酸エステル溶液(A−2)1.5145gと合成例3で得られたポリアミック酸溶液(B−1)1.5241gを三角フラスコにとり、NMPを1.0331g、BCSを1.0012gを加えてマグネチックスターラーで30分間撹拌し液晶配向剤(II)を得た。
(比較例2)
合成例1で得られたポリアミック酸エステル溶液(A−1)4.2010gを三角フラスコにとり、NMPを0.5993g、BCSを1.2519gを加えてマグネチックスターラーで30分間撹拌し液晶配向剤(III)を得た。
(実施例2)
実施例1で得られた液晶配向剤(I)を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、温度250℃の熱風循環式オーブンで60分間の焼成を経て膜厚100nmのイミド化した膜を得た。このイミド化した膜について、中心線平均粗さ(Ra)を測定した。測定結果については、後述する表1に示す。
(比較例3)
比較例1で得られた液晶配向剤(II)を用いた以外は、実施例2と同様の方法でイミド化した膜を作製した。このイミド化した膜について、中心線平均粗さ(Ra)を測定した。測定結果については、後述する表1に示す。
【0095】
【表1】
実施例2と比較例3の結果より、PAEの重量平均分子量をPAAよりも小さくすることにより、ポリアミック酸エステルとポリアミック酸の相分離により発生する微小な凹凸が小さく抑制され、より平滑な膜が得られることが確認された。
【0096】
(実施例3)
実施例1で得られた液晶配向剤(I)を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、250℃の熱風循環式オーブンで60分間の焼成を経て膜厚100nmのイミド化した膜を得た。この塗膜面に偏光板を介して254nmの紫外線を100mJ/cm
2照射し、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC−2041、メルク社製)を常温で真空注入し、注入口を封止して液晶セルとした。この液晶セルについて、電圧保持率を測定し、その後イオン密度の測定を行った。電圧保持率及びイオン密度の測定結果は後述する表2に示す。
【0097】
(比較例4)
比較例1で得られた液晶配向剤(II)を用いた以外は、実施例3と同様の方法で液晶セルを作製した。この液晶セルについて、電圧保持率を測定し、その後イオン密度の測定を行った。電圧保持率及びイオン密度の測定結果は後述する表2に示す。
(比較例5)
比較例2で得られた液晶配向剤(III)を用いた以外は、実施例3と同様の方法で液晶セルを作製した。この液晶セルについて、電圧保持率を測定し、その後イオン密度の測定を行った。電圧保持率及びイオン密度の測定結果は後述する表2に示す。
【0098】
【表2】
実施例3及び比較例4の結果より、より平滑な膜とすることで、高温時の電圧保持率及びイオン密度が良好であることが確認された。また、実施例3と比較例5の結果より、ポリアミック酸エステルとポリアミック酸をブレンドし、且つ平滑な膜が得られた場合、ポリアミック酸エステル単独よりも、高温時の電圧保持率及びイオン密度がより良好となり、信頼性の高い液晶配向膜が得られることが確認された。
【0099】
(実施例4)
実施例1で得られた液晶配向剤(I)を1.0μmのフィルターで濾過した後、ガラス基板上に、第1層目として膜厚50nmのITO電極を、第2層目として絶縁膜として膜厚500nmの窒化ケイ素を、第3層目として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有するフリンジ・フィールド・スィッチング(Fringe Field Switching:以下、FFSという)駆動用電極が形成されているガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、250℃の熱風循環式オーブンで60分間焼成を行い、膜厚130nmの塗膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を100mJ/cm
2照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC−2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
このFFS駆動液晶セルについて、液晶配向規制力の測定及び電荷蓄積特性の評価をおこなった。結果については、後述する表3に示す。
【0100】
(比較例6)
比較例1で得られた液晶配向剤(II)を用いた以外は、実施例4と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、液晶配向規制力の測定及び電荷蓄積特性の評価をおこなった。結果については、後述する表3に示す。
【0101】
【表3】
実施例4と比較例6の結果より、本発明の液晶配向膜を用いることにより、交流駆動焼き付きの程度が小さく、且つ残留電圧が少ない液晶配向膜が得られることが確認された。
【0102】
・(AD−4)の合成
【0103】
【化35】
500mL反応容器に化合物(b)(50.00g,229mmol)、ピリジン(0.500g,0.632mmol)、化合物(c)(63.02, 504mmol)、アセトノトリル(300g)を加え、窒素雰囲気下、加熱還流で反応を行った。反応終了後、20℃まで冷却した後、ろ過、アセトニトリル(100g)で洗浄を行い、粗物を得た。次に、粗物に2−プロパノール(300g)、蒸留水(100g)を加え、加熱還流した。その後、20℃に冷却し、固体をろ過、2−プロパノール(100g)で洗浄、乾燥し化合物(d)を得た(収量:37.8g,収率:37%)。
1H−NMR(
1H核磁気共鳴分光)(400MHz,DMSO−d
6,σ(ppm)):8.07(2H,s),5.15−5.14(2H,m),4.62(2H,t),4.59−4.49(4H,m),4.38(2H,q).
【0104】
500mL反応容器に化合物(d)(20.00g,44.0mmol)、塩化チオニル(120.0g,1.01mol)を加え、加熱還流を行った。30分後、20℃まで冷却した後、塩化チオニル(120.0g,1.01mol)を追加し、さらに2時間加熱還流を行った。反応終了後、過剰の塩化チオニルを減圧留去し、ヘキサン(200g)で洗浄した。次に、粗物に20℃にてジクロロメタン(200g)を加え撹拌を行い、そこへ化合物(c)(12.1g, 96.8mmol)、ピリジン(13.93g,176mmol)、ジクロロメタン(100g)溶液を徐々に滴下して加えた。1時間撹拌後、さらに化合物(c)(12.1g, 96.8mmol)、ピリジン(13.93g,176mmol)を加えた。反応終了後、溶媒を留去し、蒸留水(144g)で洗浄し粗物を得た。この粗物にテトラヒドロフラン(144g)を加え、23℃にて分散洗浄し、ろ過、テトラヒドロフラン(130g)、蒸留水(170g)、メタノール(150g)でそれぞれ洗浄後、乾燥し、(AD−4)を得た(収量:17.72g,収率:62%)。
1H−NMR(
1H核磁気共鳴分光)(400MHz,DMSO−d
6,σ(ppm)):8.17(2H,s),5.18−5.13(2H,m),4.64−4.53(6H,m),4.37(2H,q).
【0105】
(合成例4)
撹拌装置付きの300mL四つ口フラスコを窒素雰囲気とし、ODAを5.0284g (25.11mmol)入れ、NMPを202.80g、塩基としてピリジンを4.72g(59.63mmol)を加え撹拌して溶解させた。次にこのジアミン溶液を撹拌しながら1,3DM−CBDE−Clを8.0794g(24.85mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、1127gの水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、1127gの水で1回、1127gのエタノールで1回、282gのエタノールで3回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=6,394、Mw=13,794であった。
得られたポリアミック酸エステル樹脂粉末4.5796gを50ml三角フラスコにとり、NMP41.20g を加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(A−3)を得た。
(合成例5)
攪拌装置付きの100ml四つ口フラスコに2,4−ビス(メトキシカルボニル)シクロブタン−1,3−ジカルボン酸を5.1584g(19.82mmol)取り、NMPを68.12g加え、撹拌して溶解させた。続いて、トリエチルアミンを4.45g(43.98mmol)、p−フェニレンジアミンを1.7315g(16.01mmol)、4,4'−ジアミノジフェニルメタンを0.7922g(3.99mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら(2,3−ジヒドロキシ−2−チオキソ−3−ベンゾオキサゾイル)ホスホン酸ジフェニルを16.90g(44.08mmol)添加し、更にNMPを9.67g加え、水冷下で4時間反応させた。得られたポリアミド酸エステル溶液を650gの2−プロパノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、210gの2−プロパノールで5回洗浄し、乾燥することでポリアミック酸エステル樹脂粉末を得た。
このポリアミック酸エステルの分子量はMn=3860、Mw=5384であった。
得られたポリアミック酸エステル樹脂粉末2.0332gを50ml三角フラスコに取り、NMPを18.4708g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(A−4)を得た。
(合成例6)
攪拌装置付きの100mL四つ口フラスコを窒素雰囲気とし、4,4‘−ジアミノジフェニルメタンを2.01g(10.09mmol)、3−アミノ−N−メチルベンジルアミンを0.92g(6.73mmol)入れ、NMPを131.14g、塩基としてトリエチルアミンを3.83g(37.93mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながら1,3DM−CBDE−Clを5.1407g(15.81mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、690gの2−プロパノールに攪拌しながら投入し、析出した白色沈殿をろ取し、続いて220gの2−プロパノールで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=5064、Mw=11348であった。
得られたポリアミック酸エステル樹脂粉末2.0014gを50ml三角フラスコにとり、NMPを18.2912g加え、室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液(A−5)を得た。
(合成例7)
攪拌装置付きの100mL四つ口フラスコを窒素雰囲気とし、4,4‘−ジアミノジフェニルメタンを2.01g(10.09mmol)、3−アミノ−N−メチルベンジルアミンを0.92g(6.73mmol)入れ、NMPを135.18g、塩基としてトリエチルアミンを4.04g(39.95mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながら1,3DM−CBDE−Clを5.4260g(16.69mmol)添加し、水冷下4時間反応させた。得られたポリアミック酸エステルの溶液を、711gの2−プロパノールに攪拌しながら投入し、析出した白色沈殿をろ取し、続いて230gの2−プロパノールで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=11820、Mw=28719であった。
得られたポリアミック酸エステル樹脂粉末2.4381gを50ml三角フラスコにとり、NMPを21.4224g加え、室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液(A−6)を得た。
【0106】
(合成例8)
攪拌装置付きの300ml四つ口フラスコに2,5−ビス(メトキシカルボニル)テレフタル酸を2.2617g(8.01mmol)、2,4−ビス(メトキシカルボニル)シクロブタン−1,3−ジカルボン酸を2.7808g(10.61mmol)取り、NMPを102.82g加え、撹拌して溶解させた。続いて、トリエチルアミンを4.45g(43.98mmol)、1,5−ビス(4−アミノフェノキシ)ペンタンを3.4396g(12.01mmol)、1,3−ビス(4−アミノフェネチル)ウレアを2.3914g(8.01mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロリド(15±2重量%水和物)を16.60g添加し、更にNMPを14.12g加え、水冷下で4時間反応させた。得られたポリアミド酸エステル溶液を890gの2-プロパノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、300gの2-プロパノールで5回洗浄し、乾燥することでポリアミック酸エステル樹脂粉末を得た。
このポリアミック酸エステルの分子量はMn=9450、Mw=22588であった。
得られたポリアミック酸エステル樹脂粉末1.1487gを50ml三角フラスコに取り、NMPを19.1544g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(A−7)を得た。
(合成例9)
攪拌装置付きの300ml四つ口フラスコに2,5−ビス(メトキシカルボニル)テレフタル酸を2.2589g(8.00mmol)、2,4−ビス(メトキシカルボニル)シクロブタン−1,3−ジカルボン酸を3.0710g(11.80mmol)取り、NMPを105.54g加え、撹拌して溶解させた。続いて、トリエチルアミンを4.45g(43.98mmol)、1,5−ビス(4−アミノフェノキシ)ペンタンを3.4376g(12.00mmol)、1,3−ビス(4−アミノフェネチル)ウレアを2.3862g(8.00mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロリド(15±2重量%水和物)を16.73g添加し、更にNMPを14.50g加え、水冷下で4時間反応させた。得られたポリアミド酸エステル溶液を910gの2−プロパノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、300gの2−プロパノールで5回洗浄し、乾燥することでポリアミック酸エステル樹脂粉末を得た。
このポリアミック酸エステルの分子量はMn=18067、Mw=46973であった。
得られたポリアミック酸エステル樹脂粉末1.3221gを50ml三角フラスコに取り、NMPを24.8708g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(A−8)を得
た。
【0107】
(合成例11)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を6.0854g(40.0mmol)取り、NMPを65.56g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらピロメリット酸二無水物を8.5449g(39.18mmol)添加し、更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は523mPa・sであった。また、このポリアミック酸の分子量はMn=20565、Mw=47912であった。
さらにこの溶液に0.3質量%3−グリシドキシプロピルメチルジエトキシシランのNMP溶液を13.79g加え、ポリアミック酸溶液(B−3)を得た。
(合成例12)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を3.6541g(24.02mmol)、1,4−ビス(4−アミノフェニル)ピペラジンを4.2931g(16.00mmol)取り、NMPを36.48g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらBDAを4.7522g(23.99mmol)添加し、室温で2時間撹拌した。次に、NMPを36.50g加え、ピロメリット酸二無水物を3.4084g(15.63mmol)加えた。更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は1166mPa・sであった。また、このポリアミック酸の分子量はMn=19307、Mw=42980であった。
さらにこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0483g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−4)を得た。
(合成例13)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を3.6516g(24.0mmol)、4−((2−メチルアミノ)エチル)アニリンを2.4070g(16.02mmol)を取り、NMPを66.21g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらピロメリット酸二無水物を8.5972g(39.42mmol)加えた。更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は488mPa・sであった。また、このポリアミック酸の分子量はMn=13205、Mw=33511であった。
さらにこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0438g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−5)を得た。
(合成例14)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を0.6123g(4.00mmol)、4,4−ジアミノジフェニルアミンを3.199g(16.06mmol)取り、NMPを19.64g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらBDAを3.1780g(16.04mmol)添加し、室温で2時間撹拌した。次に、NMPを8.93g加え、ピロメリット酸二無水物を0.8736g(4.01mmol)加えた。更に固形分濃度が18質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は8100mPa・sであった。また、このポリアミック酸の分子量はMn=22537、Mw=72601であった。
更にこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0235g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−6)を得た。
(合成例15)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を3.6603g(24.06mmol)、1,3−ビス(4−アミノフェネチル)ウレアを4.7740g(16.0mmol)取り、NMPを28.59g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらBDAを2.3782g(12.0mmol)添加し、室温で2時間撹拌した。次に、NMPを38.13g加え、ピロメリット酸二無水物を6.0903g(27.92mmol)加えた。更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は744mPa・sであった。また、このポリアミック酸の分子量はMn=17771、Mw=38991であった。
更にこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0505g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−7)を得た。
【0108】
(合成例16)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を3.6536g(24.01mmol)、DA−1を3.8715g(15.98mmol)取り、NMPを31.75g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらBDAを3.9621g(20.0mmol)添加し、室温で2時間撹拌した。次に、NMPを25.42g加え、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物を4.4776g(19.97mmol)加えた。更に固形分濃度が20質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は417mPa・sであった。また、このポリアミック酸の分子量はMn=13291、Mw=54029であった。
更にこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0476g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−8)を得た。
(合成例17)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を1.2133g(7.97mmol)、4,4’−ジアミノジフェニル−N−メチル−アミンを6.8216g(31.98mmol)取り、NMPを44.03g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらBDAを7.1310g(36.0mmol)添加し、室温で2時間撹拌した。次に、NMPを14.62g加え、ピロメリット酸二無水物を0.8713g(3.99mmol)加えた。更に固形分濃度が18質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は577mPa・sであった。また、このポリアミック酸の分子量はMn=12656、Mw=28487であった。
更にこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0480g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−9)を得た。
(合成例18)
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5−ジアミノ安息香酸を2.7365g(17.99mmol)、2,2’−ジメチルー4,4’−ジアミノビフェニルを2.5471g(12.0mmol)取り、NMPを27.32g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらビシクロ[3.3.0]オクタン−2,4,6,8−テトラカルボン酸二無水物を2.2562g(9・02mmol)加え、80℃で3時間撹拌した。反応溶液を室温まで冷却した後、NMPを27.32g加え、ピロメリット酸二無水物を4.5715g(20.96mmol)加えた。更に固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌した。得られたポリアミック酸溶液の温度25℃における粘度は2190mPa・sであった。また、このポリアミック酸の分子量はMn=23632、Mw=56881であった。
更にこの溶液に3−グリシドキシプロピルメチルジエトキシシランを0.0360g加え、室温で24時間攪拌し、ポリアミック酸溶液(B−10)を得た。
(実施例5)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0443g、合成例3で得られたポリアミック酸溶液(B−1)を3.0126g取り、NMPを1.7670g、BCSを2.0083g、更に架橋剤として多官能エポキシ化合物である(AD−1)の5質量%NMP溶液を0.2380g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−1)を得た。
【0109】
(実施例6)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0160g、合成例3で得られたポリアミック酸溶液(B−1)を3.1312g取り、NMPを2.0339g、BCSを2.0099g、更に架橋剤として多官能ヒドロキシ基含有化合物である(AD−2)を0.0274g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−2)を得た。
(実施例7)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0328g、合成例3で得られたポリアミック酸溶液(B−1)を3.0058g取り、NMPを2.0417g、BCSを2.0125g、更に架橋剤として多官能シクロカーボネート化合物である(AD−4)を0.0366g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−3)を得た。
(実施例8)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0463g、合成例3で得られたポリアミック酸溶液(B−1)を3.0433g取り、NMPを2.0306g、BCSを2.0367g、更に架橋剤として多官能オキセタン化合物である(AD−3)を0.0454g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−4)を得た。
(実施例9)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0073g、合成例3で得られたポリアミック酸溶液(B−1)を3.0197g取り、NMPを2.0436g、BCSを2.0364g、更にイミド化促進剤としてN−α−(9−フルオレニルメトキシカルボニル)−N−t−ブトキシカルボニル−L−ヒスチジンを0.0701g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−5)を得た。
(実施例10)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0210g、合成例3で得られたポリアミック酸溶液(B−1)を3.0105g取り、NMPを2.0140g、BCSを2.0246g、更にイミド化促進剤として4−(t−ブトキシカルボニルアミノ)ピリジンを0.0341g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−6)を得た。
【0110】
(実施例11)
50ml三角フラスコに撹拌子を入れ、合成例4で得られたポリアミック酸エステル溶液(A−3)を3.0021g、合成例3で得られたポリアミック酸溶液(B−1)を3.1795g取り、NMPを2.0480g、BCSを2.0062g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(I−7)を得
た。
(実施例13)
50ml三角フラスコに撹拌子を入れ、合成例5で得られたポリアミック酸エステル溶液(A−4)を1.8212g、合成例11で得られたポリアミック酸溶液(B−3)を2.8206g取り、NMPを3.4198g、BCSを2.0629g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(III−1)を得た。
(実施例14)
50ml三角フラスコに撹拌子を入れ、合成例5で得られたポリアミック酸エステル溶液(A−4)を4.2276g、合成例12で得られたポリアミック酸溶液(B−4)を1.2331g取り、NMPを2.6302g、BCSを2.0189g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(III−2)を得た。
(実施例15)
50ml三角フラスコに撹拌子を入れ、合成例5で得られたポリアミック酸エステル溶液(A−4)を3.0022g、合成例13で得られたポリアミック酸溶液(B−5)を2.3359g取り、NMPを2.9918g、BCSを20168g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(III−3)を得た。
【0111】
(実施例16)
50ml三角フラスコに撹拌子を入れ、合成例6で得られたポリアミック酸エステル溶液(A−5)を3.0145g、合成例14で得られたポリアミック酸溶液(B−6)を1.7284g取り、NMPを3.3210g、BCSを2.0155g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(IV−1)を得た。
(実施例17)
50ml三角フラスコに撹拌子を入れ、合成例7で得られたポリアミック酸エステル溶液(A−6)を3.0186g、合成例14で得られたポリアミック酸溶液(B−6)を1.7640g取り、NMPを3.3171g、BCSを2.0344g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(IV−2)を得た。
(実施例18)
50ml三角フラスコに撹拌子を入れ、合成例6で得られたポリアミック酸エステル溶液(A−5)を3.0250g、合成例15で得られたポリアミック酸溶液(B−7)を2.1211g取り、NMPを3.0711g、BCSを2.0720g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(IV−3)を得た。
(実施例19)
50ml三角フラスコに撹拌子を入れ、合成例7で得られたポリアミック酸エステル溶液(A−6)を3.0026g、合成例15で得られたポリアミック酸溶液(B−7)を2.0594g取り、NMPを3.0194g、BCSを2.0030g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(IV−4)を得た。
(実施例20)
50ml三角フラスコに撹拌子を入れ、合成例6で得られたポリアミック酸エステル溶液(A−5)を1.2318g、合成例16で得られたポリアミック酸溶液(B−8)を3.2286g取り、NMPを3.6275g、BCSを2.0178g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(IV−5)を得た。
【0112】
(実施例21)
50ml三角フラスコに撹拌子を入れ、合成例8で得られたポリアミック酸エステル溶液(A−7)を4.8328g、合成例17で得られたポリアミック酸溶液(B−9)を2.1984g取り、NMPを1.2268g、BCSを2.0307g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(V−1)を得た。
(比較例8)
50ml三角フラスコに撹拌子を入れ、合成例9で得られたポリアミック酸エステル溶液(A−8)を4.8426g、合成例17で得られたポリアミック酸溶液(B−9)を2.0480g取り、NMPを1.2241g、BCSを2.0380g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(V−2)を得た。
(実施例22)
50ml三角フラスコに撹拌子を入れ、合成例8で得られたポリアミック酸エステル溶液(A−7)を4.8210g、合成例14で得られたポリアミック酸溶液(B−5)を2.4526g取り、NMPを0.8197g、BCSを2.0452g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(V−3)を得た。
(比較例9)
50ml三角フラスコに撹拌子を入れ、合成例9で得られたポリアミック酸エステル溶液(A−8)を4.7940g、合成例14で得られたポリアミック酸溶液(B−5)を2.5558g取り、NMPを0.8545g、BCSを2.0254g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(V−4)を得た。
(実施例23)
50ml三角フラスコに撹拌子を入れ、合成例8で得られたポリアミック酸エステル溶液(A−7)を3.6281g、合成例18で得られたポリアミック酸溶液(B−10)を2.8751g取り、NMPを1.6002g、BCSを2.0514g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(V−5)を得た。
【0113】
(実施例24)
50ml三角フラスコに撹拌子を入れ、合成例9で得られたポリアミック酸エステル溶液(A−8)を3.6507g、合成例18で得られたポリアミック酸溶液(B−10)を2.8195g取り、NMPを1.6288g、BCSを1.9982g加えて、マグネチックスターラーで30分攪拌し、液晶配向剤(V−6)を得た。
(実施例25)
実施例5で得られた液晶配向剤(I−1)を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、温度230℃の温風循環式オーブンで20分間の焼成を経て膜厚100nmのイミド化した膜を得た。このイミド化した膜について、中心線平均粗さ(Ra)を測定した。測定結果については、後述する表4に示す。
(実施例26〜
31、33〜
44及び比較例
11、12)
上記実施例6〜24、比較例8、9で得られたそれぞれの液晶配向剤を用いた以外は、実施例25と同様の方法で各塗膜を形成させた。各塗膜の膜表面をAFMにて観察した。また、各塗膜について、中心線平均粗さ(Ra)を測定した。これらの測定結果を後述する表4に示す。
【0114】
【表4】