【実施例】
【0042】
以下、実施例、比較例及び実験例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
【0043】
(実施例1)
直径300mm、結晶方位<100>のSi単結晶ウェーハを用いてSOIウェーハを作製した。その際、ボンドウェーハに150nmの熱酸化膜を熱処理炉で成長させ、このウェーハに水素イオン(H
+イオン)を5×10
16/cm
2のドーズ量で40keVの加速エネルギーでイオン注入した。Si単結晶ウェーハからなるベースウェーハを用意して、ベースウェーハのみに酸素プラズマ処理を行い、その後、イオン注入されたボンドウェーハと貼り合わせを行った。この貼り合わせたウェーハに対し、第一ステップとして200℃、4時間のアニールを行った後、10℃/分の昇温速度で昇温し、第二ステップとして400℃、6時間のアニールを行った。この熱処理によりウェーハは剥離され初期SOIウェーハとなった。
【0044】
(比較例1)(スマートカット法)
直径300mm、結晶方位<100>のSi単結晶ウェーハを用いてSOIウェーハを作製した。その際、ボンドウェーハに150nmの熱酸化膜を熱処理炉で成長させ、このウェーハに水素イオン(H
+イオン)を5×10
16/cm
2のドーズ量で40keVの加速エネルギーでイオン注入した。Si単結晶ウェーハからなるベースウェーハを用意して、イオン注入されたボンドウェーハと貼り合わせを行った(プラズマ処理なし)。この貼り合わせたウェーハに対し、第一ステップとして350℃、2時間のアニールを行った後、10℃/分の昇温速度で昇温し、第二ステップとして500℃、30分のアニールを行った。この熱処理によりウェーハは剥離され初期SOIウェーハとなった。
【0045】
(比較例2)(SiGen法)
直径300mm、結晶方位<100>のSi単結晶ウェーハを用いてSOIウェーハを作製した。その際、ボンドウェーハに150nmの熱酸化膜を熱処理炉で成長させ、このウェーハに水素イオン(H
+イオン)を7.5×10
16/cm
2のドーズ量で40keVの加速エネルギーでイオン注入した。Si単結晶ウェーハからなるベースウェーハを用意してベースウェーハのみに酸素プラズマ処理を行い、その後、イオン注入されたボンドウェーハと貼り合わせを行った。この貼り合わせたウェーハに対し350℃、2時間のアニールのみを行った。この状態ではまだウェーハ分離は行われず、楔を使用して室温でウェーハ剥離を行った。
【0046】
(比較例3)(共注入法)
直径300mm、結晶方位<100>のSi単結晶ウェーハを用いてSOIウェーハを作製した。その際、ボンドウェーハに150nmの熱酸化膜を熱処理炉で成長させ、このウェーハにヘリウムイオン(He
+イオン)を0.9×10
16/cm
2のドーズ量で、水素イオン(H
+イオン)を0.9×10
16/cm
2のドーズ量で40keVの加速エネルギーでイオン注入した。Si単結晶ウェーハからなるベースウェーハを用意して、イオン注入されたボンドウェーハと貼り合わせを行った(プラズマ処理なし)。この貼り合わせたウェーハに対し、第一ステップとして350℃、2時間のアニールを行った後、10℃/分の昇温速度で昇温し、第二ステップとして500℃、30分のアニールを行った。この熱処理によりウェーハは剥離され初期SOIウェーハとなった。
【0047】
実施例1、比較例1〜比較例3のAFMラフネス、SOI層膜厚レンジ、テラス部の形状、欠陥(ボイド、ブリスター)の4項目の評価結果を下記表1にまとめた。
尚、表1のAFMラフネスとは、AFM(原子間力顕微鏡)により測定された30μm角の領域の表面粗さをRMS(Root Mean Square)表わした値である。
【0048】
【表1】
【0049】
AFMラフネスに関しては、比較例1は他の例と比較して2倍程度大きい結果となり、表面粗さが大きく、その後の平坦化プロセスに負荷がかかることが予想できる。
【0050】
膜厚分布に関しては、比較例2のみが大きくなっていた。この原因はウェーハ分離を行う時、楔を入れた瞬間に楔の周りはウェーハ分離が起こり、その後、更にウェーハの中心方向へ楔を進ませてウェーハ分離を行うことにある。この初期ウェーハ分離領域とその後の分離領域の境界で膜厚が急激に変化する。そのことが、膜厚分布が大きい原因となっている。
【0051】
テラス部の形状に関しては、比較例2のみ顕著な凹凸が発生していた(
図2)。これは室温で楔を使い強制的にウェーハ分離を行うことにより機械的な強制力が加わるためと考えられる。それと比較して、他の例のテラス部の形状は良好である(
図1)。これは熱処理により潤滑に剥離が起こることで凹凸形状が発生しないと考えられる。
【0052】
欠陥発生に関しては比較例3のみ発生した。これはHe(ヘリウム)とH(水素)のイオン注入を行うので、製造工程の中で最もパーティクル付着が生じやすい工程で2回の処理を行うことになるため、パーティクル起因であるボイド及びブリスターの発生が他の例より多くなると考えられる。尚、表にはないが、貼り合わせ前にプラズマ処理を行った以外は比較例3と同一条件で行った他の例では、ブリスターの発生は少なくなったが、ボイドの発生は増え、ボイドとブリスターの合計の欠陥数は変わらなかった。
【0053】
<実験例>
(実験例1)
ウェーハ分離(剥離)の第一ステップと第二ステップを組み合わせる実験を下記条件で行った。
ボンドウェーハ及びベースウェーハとして直径300mm、結晶方位<100>のSi単結晶ウェーハを用いてSOIウェーハを作製した。
まず、ボンドウェーハに150nmの熱酸化膜を熱処理炉で成長させた。このウェーハに水素を5×10
16/cm
2のドーズ量で40keVの加速エネルギーでイオン注入を行った。ベースウェーハ(酸化膜なし)を用意して、ベースウェーハに窒素プラズマ処理を行い、その後貼り合わせを行った。この貼り合わせたウェーハに対し、剥離熱処理として、第一ステップとして150〜350℃の範囲で2時間のアニールを行い、10℃/分で昇温し、第二ステップとして350〜500℃のアニールを行った(第一ステップ、第二ステップの熱処理条件は表2参照)。この熱処理によりイオン注入層で剥離され初期SOIウェーハが作製された(熱処理条件によっては剥離できないものもある)。この初期SOIウェーハに対し、900℃、2時間の犠牲酸化処理(熱酸化+酸化膜除去)、1200℃、1時間のAr雰囲気下のアニール、950℃の膜厚調整用犠牲酸化処理を順次行い、SOI層膜厚が88nmのSOIウェーハの完成品を作製し、そのSOI層表面の表面粗さ(RMS)をAFMで30μm×30μmの範囲で測定し比較した。結果を下記表2に示す。
【0054】
【表2】
【0055】
第一ステップとして150℃〜250℃の範囲で2時間熱処理を行い、第二ステップとして400℃〜450℃で30分以上4時間以下の熱処理を行ったときのSOI層表面の表面粗さ(RMS)が極めて小さい。
【0056】
(実験例2)
第一ステップの熱処理時間を4時間とし、第二ステップを350℃,4時間、400℃,0.5時間、450℃,0.5時間の3条件とした以外は実験例1と同一条件でSOIウェーハの完成品を作製し、そのSOI層表面の表面粗さ(RMS)をAFMで30μm×30μmの範囲で測定し比較した。結果を下記表3に示す。
【0057】
【表3】
【0058】
第一ステップとして150℃〜250℃の範囲で4時間熱処理を行い、第二ステップとして400℃〜450℃で30分の熱処理を行ったときのSOI層表面の表面粗さ(RMS)が極めて小さい。尚、第一ステップの熱処理の後の第二ステップの熱処理温度が350℃(400℃未満)であると、4時間熱処理を行っても剥離自体なされなかった。
【0059】
(実験例3)
第一ステップの熱処理時間を1時間とし、第二ステップを350℃,4時間、400℃,0.5時間の2条件とした以外は実験例1と同一条件でSOIウェーハの完成品を作製し、そのSOI層表面の表面粗さ(RMS)をAFMで30μm×30μmの範囲で測定し比較した。結果を下記表4に示す。
【0060】
【表4】
【0061】
第一ステップの熱処理時間が1時間(2時間未満)であると、第二ステップとして400℃で30分熱処理を行っても、ウェーハが一部剥離されないという結果となった。また、第一ステップの熱処理時間が1時間(2時間未満)で、かつ第二ステップの熱処理温度が350℃(400℃未満)であると、4時間熱処理を行っても剥離自体なされなかった。
【0062】
(実験例4)
貼り合わせ前にプラズマ処理を行わないこと以外は実験例1と同一条件(一部の条件は未実施)でSOIウェーハの完成品を作製し、そのSOI層表面の表面粗さ(RMS)をAFMで30μm×30μmの範囲で測定し比較した。結果を下記表5に示す。
【0063】
【表5】
【0064】
貼り合わせ前にプラズマ処理を施さないと、第一ステップとして150℃〜250℃の範囲で2時間熱処理を行い、第二ステップとして400℃で4時間あるいは450℃で1時間熱処理を行っても、ウェーハが剥離されないか、または剥離されてもSOI層表面の表面粗さ(RMS)が大きかった。
【0065】
(実験例5)
プラズマ処理条件の効果を確認するため、下記の条件でSOIウェーハの完成品を作製した。
ボンドウェーハ及びベースウェーハとして直径300mm、結晶方位<100>のSi単結晶ウェーハを用いてSOIを作製した。
まず、ボンドウェーハに150nmの熱酸化膜を熱処理炉で成長させた。このウェーハに水素を5×10
16/cm
2のドーズ量で40keVの加速エネルギーでイオン注入を行った。ベースウェーハ(酸化膜なし)を用意して、両者にプラズマ処理を行い、その後貼り合わせを行った。
【0066】
プラズマ条件は下記表6のとおりとした。
【表6】
【0067】
この貼り合わせたウェーハに対して剥離熱処理として、第一ステップとして200℃4時間のアニールを行った後、10℃/分の昇温速度で昇温し、第二ステップとして400℃4時間のアニールを行った。この熱処理によりイオン注入層で剥離し、初期SOIウェーハが作製された。この初期SOIウェーハに対し、900℃2時間の犠牲酸化処理、1200℃1時間のAr雰囲気下のアニール、950℃の膜厚調整用犠牲酸化処理を行いSOI層膜厚が88nmのSOIウェーハの完成品を作製し、そのSOI層表面の表面粗さ(RMS)をAFMで30μm×30μmの範囲で測定し比較した。
【0068】
表面粗さ(RMS)は以下のようになった。
条件(1) 0.17nm
条件(2) 0.14nm
条件(3) 0.17nm
条件(4) 0.15nm
【0069】
以上のことから酸化膜に窒素プラズマ、酸化膜無しウェーハに酸素プラズマで処理する事により表面粗さ(RMS)が最も小さくなることが分かった。
【0070】
なお、本発明は、上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に含有される。