特許第6065230号(P6065230)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日産化学工業株式会社の特許一覧

特許6065230ケイ素含有EUVレジスト下層膜形成組成物
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6065230
(24)【登録日】2017年1月6日
(45)【発行日】2017年1月25日
(54)【発明の名称】ケイ素含有EUVレジスト下層膜形成組成物
(51)【国際特許分類】
   G03F 7/11 20060101AFI20170116BHJP
   H01L 21/027 20060101ALI20170116BHJP
   C08G 77/18 20060101ALN20170116BHJP
   C08G 77/24 20060101ALN20170116BHJP
【FI】
   G03F7/11 503
   G03F7/11 502
   H01L21/30 573
   H01L21/30 563
   !C08G77/18
   !C08G77/24
【請求項の数】20
【全頁数】30
(21)【出願番号】特願2013-537511(P2013-537511)
(86)(22)【出願日】2012年10月2日
(86)【国際出願番号】JP2012075507
(87)【国際公開番号】WO2013051558
(87)【国際公開日】20130411
【審査請求日】2015年7月14日
(31)【優先権主張番号】特願2011-222120(P2011-222120)
(32)【優先日】2011年10月6日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000003986
【氏名又は名称】日産化学工業株式会社
(74)【代理人】
【識別番号】100068618
【弁理士】
【氏名又は名称】萼 経夫
(74)【代理人】
【識別番号】100104145
【弁理士】
【氏名又は名称】宮崎 嘉夫
(74)【代理人】
【識別番号】100104385
【弁理士】
【氏名又は名称】加藤 勉
(74)【代理人】
【識別番号】100163360
【弁理士】
【氏名又は名称】伴 知篤
(72)【発明者】
【氏名】志垣 修平
(72)【発明者】
【氏名】谷口 博昭
(72)【発明者】
【氏名】坂本 力丸
(72)【発明者】
【氏名】何 邦慶
【審査官】 高橋 純平
(56)【参考文献】
【文献】 特開2009−103831(JP,A)
【文献】 国際公開第2009/104552(WO,A1)
【文献】 特開2013−041140(JP,A)
【文献】 特開2013−083963(JP,A)
【文献】 特開2010−230986(JP,A)
【文献】 特開2013−033187(JP,A)
【文献】 特開2009−237363(JP,A)
【文献】 特開2012−190050(JP,A)
【文献】 特開2012−224770(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03F 7/004−7/18
(57)【特許請求の範囲】
【請求項1】
EUVリソグラフィー用レジスト下層膜形成組成物を半導体基板上に塗布し、焼成しレジスト下層膜を形成する工程、前記レジスト下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜をEUV光で露光する工程、露光後に前記レジスト膜を現像しレジストパターンを得る工程、前記レジストパターンにより前記レジスト下層膜をエッチングする工程、及びパターン化された前記レジスト膜と前記レジスト下層膜により前記半導体基板を加工する工程を含む半導体装置の製造方法であって、
該レジスト下層膜形成組成物は、シランとして、加水分解性シラン、その加水分解物、その加水分解縮合物、又はそれらの混合物を含み、
該加水分解性シランはテトラメトキシシランとアルキルトリメトキシシランとアリールトリアルコキシシランとの組み合わせを含み、
該加水分解性シランは、加水分解性基としてメトキシ基及びエトキシ基を全シラン中でメトキシ基:エトキシ基=100:0乃至80:20の割合(モル比)で含有するものであり、
該アリールトリアルコキシシランは下記式(1):
【化1】
(式(1)中で、Rはベンゼン環若しくはナフタレン環からなる芳香族環又はイソシアヌル酸構造を含む環を示し、Rは芳香族環内の水素原子の置換基であってハロゲン原子、又は炭素数1乃至10のアルコキシ基であり、Xは炭素数1乃至10のアルコキシ基、炭素数2乃至10のアシルオキシ基、又はハロゲン基である。n1は0又は1の整数であり、n2はベンゼン環の場合には1乃至5の整数であり、ナフタレン環の場合には1乃至9の整数である。)である、
半導体装置の製造方法
【請求項2】
前記式(1)のRがベンゼン環である請求項1に記載の半導体装置の製造方法
【請求項3】
前記式(1)のRがメトキシ基、メトキシメトキシ基、フッ素原子、塩素原子、又
は臭素原子である請求項1又は請求項2に記載の半導体装置の製造方法
【請求項4】
前記式(1)のXがメトキシ基である請求項1乃至請求項3のいずれか1項に記載の半導体装置の製造方法
【請求項5】
前記式(1)のn1が0である請求項1乃至請求項4のいずれか1項に記載の半導体装置の製造方法
【請求項6】
前記アルキルトリメトキシシランがメチルトリメトキシシランである請求項1乃至請求項5のいずれか1項に記載の半導体装置の製造方法
【請求項7】
前記加水分解性シランは、テトラメトキシシラン70モルに対して、アルキルトリメトキシシラン10乃至35モル、アリールトリアルコキシシランが2乃至25モルの割合で含む請求項1乃至請求項6のいずれか1項に記載の半導体装置の製造方法
【請求項8】
前記レジスト下層膜形成組成物が、更に酸を含む請求項1乃至請求項7のいずれか1項に記載の半導体装置の製造方法
【請求項9】
前記レジスト下層膜形成組成物が、更に水を含む請求項1乃至請求項8のいずれか1項に記載の半導体装置の製造方法
【請求項10】
前記レジスト下層膜形成組成物が、更にアンモニウム化合物、環状アンモニウム化合物、環状アミン化合物、又はオニウム化合物を含む請求項1乃至請求項9のいずれか1項に記載の半導体装置の製造方法
【請求項11】
半導体基板上に有機下層膜を形成する工程、その上にEUVリソグラフィー用レジスト下層膜形成組成物を塗布し焼成しレジスト下層膜を形成する工程、前記レジスト下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜をEUV光で露光する工程、露光後に前記レジスト膜を現像しレジストパターンを得る工程、前記レジストパターンにより前記レジスト下層膜をエッチングする工程、パターン化された前記レジスト下層膜により前記有機下層膜をエッチングする工程、及びパターン化された前記有機下層膜により前記半導体基板を加工する工程を含む半導体装置の製造方法であって、
該レジスト下層膜形成組成物が、シランとして、加水分解性シラン、その加水分解物、その加水分解縮合物、又はそれらの混合物を含み、
該加水分解性シランはテトラメトキシシランとアルキルトリメトキシシランとアリールトリアルコキシシランとの組み合わせを含み、
該加水分解性シランは加水分解性基としてメトキシ基及びエトキシ基を全シラン中でメトキシ基:エトキシ基=100:0乃至80:20の割合(モル比)で含有するものであり、
該アリールトリアルコキシシランは下記式(1):
【化2】
(式(1)中で、Rはベンゼン環若しくはナフタレン環からなる芳香族環又はイソシアヌル酸構造を含む環を示し、Rは芳香族環内の水素原子の置換基であってハロゲン原子、又は炭素数1乃至10のアルコキシ基であり、Xは炭素数1乃至10のアルコキシ基、炭素数2乃至10のアシルオキシ基、又はハロゲン基である。n1は0又は1の整数であり、n2はベンゼン環の場合には1乃至5の整数であり、ナフタレン環の場合には1乃至9の整数である。)である、
半導体装置の製造方法。
【請求項12】
前記式(1)のRがベンゼン環である請求項11に記載の半導体装置の製造方法
【請求項13】
前記式(1)のRがメトキシ基、メトキシメトキシ基、フッ素原子、塩素原子、又は臭素原子である請求項11又は請求項12に記載の半導体装置の製造方法
【請求項14】
前記式(1)のXがメトキシ基である請求項11乃至請求項13のいずれか1項に記載の半導体装置の製造方法
【請求項15】
前記式(1)のn1が0である請求項11乃至請求項14のいずれか1項に記載の半導体装置の製造方法
【請求項16】
前記アルキルトリメトキシシランがメチルトリメトキシシランである請求項11乃至請求項15のいずれか1項に記載の半導体装置の製造方法
【請求項17】
前記加水分解性シランは、テトラメトキシシラン70モルに対して、アルキルトリメトキシシラン10乃至35モル、アリールトリアルコキシシランが2乃至25モルの割合で含む請求項11乃至請求項16のいずれか1項に記載の半導体装置の製造方法
【請求項18】
前記レジスト下層膜形成組成物が、更に酸を含む請求項11乃至請求項17のいずれか1項に記載の半導体装置の製造方法
【請求項19】
前記レジスト下層膜形成組成物が、更に水を含む請求項11乃至請求項18のいずれか1項に記載の半導体装置の製造方法
【請求項20】
前記レジスト下層膜形成組成物が、更にアンモニウム化合物、環状アンモニウム化合物、環状アミン化合物、又はオニウム化合物を含む請求項11乃至請求項19のいずれか1項に記載の半導体装置の製造方法
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置の製造に使用される基板とレジスト(例えば、EUVレジスト)の間に下層膜を形成するための組成物に関する。詳しくは、半導体装置製造のリソグラフィ−工程においてレジストの下層に使用される下層膜を形成するためのリソグラフィ−用レジスト下層膜形成組成物に関する。また、当該下層膜形成組成物を用いたレジストパタ−ンの形成方法に関する。
【背景技術】
【0002】
従来から半導体装置の製造において、フォトレジストを用いたリソグラフィーによる微細加工が行われている。前記微細加工はシリコンウエハー等の半導体基板上にフォトレジストの薄膜を形成し、その上に半導体デバイスのパターンが描かれたマスクパターンを介して紫外線などの活性光線を照射し、現像し、得られたフォトレジストパターンを保護膜として基板をエッチング処理することにより、基板表面に、前記パターンに対応する微細凹凸を形成する加工法である。ところが、近年、半導体デバイスの高集積度化が進み、使用される活性光線もKrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)、EUV光(13.5nm)へと短波長化される傾向にある。
これまで以上にプロファイル(レジスト形状)の制御や基板との密着性の向上が必要とされる。
【0003】
また、半導体基板とフォトレジストとの間の下層膜として、シリコン等の金属元素を含むハードマスクとして知られる膜を使用することが行なわれている。この場合、レジストとハードマスクでは、その構成成分に大きな違いがあるため、それらのドライエッチングによって除去される速度は、ドライエッチングに使用されるガス種に大きく依存する。そして、ガス種を適切に選択することにより、フォトレジストの膜厚の大きな減少を伴うことなく、ハードマスクをドライエッチングによって除去することが可能となる。このように、近年の半導体装置の製造においては、さまざまな効果を達成するために、半導体基板とフォトレジストの間にレジスト下層膜が配置されるようになってきている(特許文献1、2参照)。
そして、これまでもレジスト下層膜用の組成物の検討が行なわれてきているが、その要求される特性の多様性などから、レジスト下層膜用の新たな材料の開発が望まれている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2008−076889
【特許文献2】特開2010−237667
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の目的は、矩形なレジストパターンを利用し微細な基板加工が可能であり、半導体装置の製造に用いることのできるEUVリソグラフィー用レジスト下層膜形成組成物を提供することにある。本発明の目的は、詳しくは、ハードマスクとして使用できるレジスト下層膜を形成するためのリソグラフィー用レジスト下層膜形成組成物を提供することである。また、本発明の目的は、EUVレジストの露光感度向上や、レジストとのインターミキシングを起こさず、レジストに比較して大きなドライエッチング速度を有し、EUV光で露光時にアウトガス発生が少ないリソグラフィー用レジスト下層膜及び該下層膜を形成するためのレジスト下層膜形成組成物を提供することである。
【課題を解決するための手段】
【0006】
本発明は第1観点として、シランとして、加水分解性シラン、その加水分解物、その加水分解縮合物、又はそれらの混合物を含み、該加水分解性シランがテトラメトキシシランとアルキルトリメトキシシランとアリールトリアルコキシシランとの組み合わせを含み、該アリールトリアルコキシシランは下記式(1):
【化1】
(式(1)中で、R1はベンゼン環若しくはナフタレン環からなる芳香族環又はイソシアヌル酸構造を含む環を示し、R2は芳香族環内の水素原子の置換基であってハロゲン原子、又は炭素原子数1乃至10のアルコキシ基であり、Xは炭素原子数1乃至10のアルコキシ基、炭素原子数2乃至10のアシルオキシ基、又はハロゲン基である。n1は0又は1の整数であり、n2はベンゼン環の場合には1乃至5の整数であり、ナフタレン環の場合には1乃至9の整数である。)であるEUVリソグラフィー用レジスト下層膜形成組成物、
第2観点として、式(1)のR1がベンゼン環である第1観点に記載のレジスト下層膜形成組成物、
第3観点として、式(1)のR2がメトキシ基、メトキシメトキシ基、フッ素原子、塩素原子、又は臭素原子である第1観点又は第2観点に記載のレジスト下層膜形成組成物、
第4観点として、式(1)のXがメトキシ基である第1観点乃至第3観点のいずれか一つに記載のレジスト下層膜形成組成物、
第5観点として、式(1)のn1が0である第1観点乃至第4観点のいずれか一つに記載のレジスト下層膜形成組成物、
第6観点として、アルキルトリメトキシシランがメチルトリメトキシシランである第1観点乃至第5観点のいずれか一つに記載のレジスト下層膜形成組成物、
第7観点として、加水分解性シランは、テトラメトキシシラン70モルに対して、アルキルトリメトキシシラン10乃至35モル、アリールトリアルコキシシランが2乃至25モルの割合で含む第1観点乃至第6観点のいずれか一つに記載のレジスト下層膜形成組成物、
第8観点として、前記シランは、加水分解性基としてメトキシ基及びエトキシ基を全シラン中でメトキシ基:エトキシ基=100:0乃至80:20の割合(モル比)で含有するものである請求項1乃至請求項7のいずれか1項に記載のレジスト下層膜形成組成物、
第9観点として、更に酸を含む第1観点乃至第8観点のいずれか一つに記載のレジスト下層膜形成組成物、
第10観点として、更に水を含む第1観点乃至第9観点のいずれか一つに記載のレジスト下層膜形成組成物、
第11観点として、更にアンモニウム化合物、環状アンモニウム化合物、環状アミン化合物、又はオニウム化合物を含む第1観点乃至第10観点のいずれか一つに記載のレジスト下層膜形成組成物、
第12観点として、第1観点乃至第11観点のいずれか一つに記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成することによって得られるレジスト下層膜、
第13観点として、第1観点乃至第11観点のいずれか一つに記載のレジスト下層膜形成組成物を半導体基板上に塗布し、焼成しレジスト下層膜を形成する工程、前記レジスト下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜を露光する工程、露光後に前記レジスト膜を現像しレジストパターンを得る工程、前記レジストパターンにより前記レジスト下層膜をエッチングする工程、及びパターン化された前記レジスト膜と前記レジスト下層膜により前記半導体基板を加工する工程を含む半導体装置の製造方法、及び
第14観点として、半導体基板上に有機下層膜を形成する工程、その上に第1観点乃至第11観点のいずれか一つに記載のレジスト下層膜形成組成物を塗布し焼成しレジスト下層膜を形成する工程、前記レジスト下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜を露光する工程、露光後に前記レジスト膜を現像しレジストパターンを得る工程、前記レジストパターンにより前記レジスト下層膜をエッチングする工程、パターン化された前記レジスト下層膜により前記有機下層膜をエッチングする工程、及びパターン化された前記有機下層膜により前記半導体基板を加工する工程を含む半導体装置の製造方法である。
【発明の効果】
【0007】
本発明によれば、当該組成物からEUVリソグラフィーによって形成されたレジスト下層膜は、酸素系ドライエッチングガスに対して耐ドライエッチング性を有するハードマスクとして使用でき、基板の微細な加工を容易にする。
また、本発明によれば、当該組成物から形成されたレジスト下層膜は、該下層膜上に設けられたEUVレジストの露光感度を向上させることができる。
また、本発明によれば、EUV光で露光時にアウトガス発生が少なく、レジストとのインターミキシングを起こさず、レジストに比較して大きなドライエッチング速度を有するリソグラフィー用レジスト下層膜を形成できる。
さらに、本発明によれば、当該組成物の適用により、斯様に良好な性能を有するレジスト下層膜を使用した半導体装置の製造が可能となる。
【発明を実施するための形態】
【0008】
本発明では基板上にレジスト下層膜を塗布法により形成するか、又は基板上の有機下層膜を介してその上にレジスト下層膜を塗布法により形成し、そのレジスト下層膜上にレジスト膜(例えば、EUVレジスト)を形成する。そして、露光と現像によりレジストパターンを形成し、そのレジストパターンを用いてレジスト下層膜をドライエッチングしてパターンの転写を行い、そのパターンにより基板を加工するか、又は有機下層膜をエッチングによりパターン転写しその有機下層膜により基板の加工を行う。
【0009】
微細なパターンを形成する上で、パターン倒れを防ぐためにレジスト膜厚が薄くなる傾向がある。レジストの薄膜化によりその下層に存在する膜にパターンを転写するためのドライエッチングは、上層の膜よりもエッチング速度が高くなければパターン転写ができない。本発明では基板上に有機下層膜を介するか、又は有機下層膜を介さず、その上に本願レジスト下層膜(無機系シリコン系化合物含有)を被覆し、その上にレジスト膜(有機レジスト膜)の順で被覆される。有機系成分の膜と無機系成分の膜はエッチングガスの選択によりドライエッチング速度が大きく異なり、有機系成分の膜は酸素系ガスでドライエッチング速度が高くなり、無機系成分の膜はハロゲン含有ガスでドライエッチング速度が高くなる。
【0010】
例えばレジストパターンが形成され、その下層に存在している本願レジスト下層膜をハロゲン含有ガスでドライエッチングしてレジスト下層膜にパターンを転写し、そのレジスト下層膜に転写されたパターンでハロゲン含有ガスを用いて基板加工を行う。あるいは、パターン転写されたレジスト下層膜を用いて、その下層の有機下層膜を酸素系ガスでドライエッチングして有機下層膜にパターン転写を行って、そのパターン転写された有機下層膜で、ハロゲン含有ガスを用いて基板加工を行う。
【0011】
本発明では当該レジスト下層膜がハードマスクとして機能するものであり、構造中のアルコキシ基やアシルオキシ基、ハロゲン基等の加水分解性基は加水分解乃至部分加水分解し、その後にシラノール基の縮合反応によりポリシロキサン構造のポリマーを形成する。このポリオルガノシロキサン構造はハードマスクとしての十分な機能を有している。
そして、ポリオルガノシロキサン構造(中間膜)は、その下に存在する有機下層膜のエッチングや、基板の加工(エッチング)にハードマスクとして有効である。即ち、基板加工時や有機下層膜の酸素系ドライエッチングガスに対して十分な耐ドライエッチング性を有するものである。
【0012】
本発明に用いられるシラン化合物中のアリールトリアルコキシシランのアルコキシアリール基や、ハロゲン化アリール基は上層に存在するEUVレジストをEUV光で露光する際に照射EUVの露光量を低減することが可能であり、即ち低い露光量でパターン形成が可能となる。
【0013】
また、本発明に用いられるシラン化合物中の加水分解性基はメトキシ基を用いることが好ましい。シラン化合物が加水分解し、その加水分解縮合物(ポリシロキサン)をレジスト下層膜形成組成物に用いるが、完全に加水分解せずに部分的にシラノール基やアルコキシ基の状態で存在することがある。
この下層膜中のアルコキシ基は、その後の処理工程で膜中に残留することがある。EUV露光時にこの残留アルコキシ基、又はその成分がアウトガスとなり露光機のミラーに付着するなどして露光機の汚染・故障の原因になることがある。本発明は加水分解性基としてエトキシ基を主体とするものではなく、メトキシ基を主体とするものを用いることによりそれらの問題を解決することができた。
【0014】
本発明は、シランとして、加水分解性シラン、その加水分解物、その加水分解縮合物、又はそれらの混合物を含み、該加水分解性シランがテトラメトキシシランとアルキルトリメトキシシランとアリールトリアルコキシシランとの組み合わせを含み、該アリールトリアルコキシシランは上記式(1)であるEUVリソグラフィー用レジスト下層膜形成組成物に関する。
【0015】
本発明のレジスト下層膜形成組成物は、上記加水分解性シラン、その加水分解物、その加水分解縮合物、又はそれらの混合物を含み、更に溶剤を含む。そして任意成分として酸、水、アルコール、硬化触媒、酸発生剤、他の有機ポリマー、吸光性化合物、及び界面活性剤等を含むことができる。
【0016】
本発明のレジスト下層膜形成組成物における固形分は、例えば0.1乃至50質量%、又は0.1乃至30質量%、0.1乃至25質量%である。ここで固形分とはレジスト下層膜形成組成物の全成分から溶剤成分を除いたものである。
固形分中に占める加水分解性シラン、その加水分解物、及びその加水分解縮合物の割合は、20質量%以上であり、例えば50乃至100質量%、又は60乃至100質量%、又は70乃至99.5質量%である。
【0017】
式(1)中で、R1はベンゼン環若しくはナフタレン環からなる芳香族環又はイソシアヌル酸構造を含む環を示し、R2は芳香族環の水素原子の置換基であってハロゲン原子、又は炭素原子数1乃至10のアルコキシ基であり、Xは炭素原子数1乃至10のアルコキシ基、炭素原子数2乃至10のアシルオキシ基、又はハロゲン基である。n1は0又は1の整数であり、n2は1乃至5の整数である。n1が1である場合はシリコン原子と芳香族環をメチレン基で連結する場合であり、n1が0である場合はシリコン原子と芳香族環が直接結合する場合である。
【0018】
式(1)のR2のハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子である。
【0019】
式(1)のR2のアルコキシ基は炭素原子数1乃至10の直鎖、分岐、環状のアルキル部分を有するアルコキシ基が挙げられ、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、s−ブトキシ基、t−ブトキシ基、n−ペンチロキシ基、1−メチル−n−ブトキシ基、2−メチル−n−ブトキシ基、3−メチル−n−ブトキシ基、1,1−ジメチル−n−プロポキシ基、1,2−ジメチル−n−プロポキシ基、2,2−ジメチル−n−プロポキシ基、1−エチル−n−プロポキシ基、n−ヘキシロキシ基、1−メチル−n−ペンチロキシ基、2−メチル−n−ペンチロキシ基、3−メチル−n−ペンチロキシ基、4−メチル−n−ペンチロキシ基、1,1−ジメチル−n−ブトキシ基、1,2−ジメチル−n−ブトキシ基、1,3−ジメチル−n−ブトキシ基、2,2−ジメチル−n−ブトキシ基、2,3−ジメチル−n−ブトキシ基、3,3−ジメチル−n−ブトキシ基、1−エチル−n−ブトキシ基、2−エチル−n−ブトキシ基、1,1,2−トリメチル−n−プロポキシ基、1,2,2−トリメチル−n−プロポキシ基、1−エチル−1−メチル−n−プロポキシ基及び1−エチル−2−メチル−n−プロポキシ基等が、また環状のアルコキシ基としてはシクロプロポキシ基、シクロブトキシ基、1−メチル−シクロプロポキシ基、2−メチル−シクロプロポキシ基、シクロペンチロキシ基、1−メチル−シクロブトキシ基、2−メチル−シクロブトキシ基、3−メチル−シクロブトキシ基、1,2−ジメチル−シクロプロポキシ基、2,3−ジメチル−シクロプロポキシ基、1−エチル−シクロプロポキシ基、2−エチル−シクロプロポキシ基、シクロヘキシロキシ基、1−メチル−シクロペンチロキシ基、2−メチル−シクロペンチロキシ基、3−メチル−シクロペンチロキシ基、1−エチル−シクロブトキシ基、2−エチル−シクロブトキシ基、3−エチル−シクロブトキシ基、1,2−ジメチル−シクロブトキシ基、1,3−ジメチル−シクロブトキシ基、2,2−ジメチル−シクロブトキシ基、2,3−ジメチル−シクロブトキシ基、2,4−ジメチル−シクロブトキシ基、3,3−ジメチル−シクロブトキシ基、1−n−プロピル−シクロプロポキシ基、2−n−プロピル−シクロプロポキシ基、1−i−プロピル−シクロプロポキシ基、2−i−プロピル−シクロプロポキシ基、1,2,2−トリメチル−シクロプロポキシ基、1,2,3−トリメチル−シクロプロポキシ基、2,2,3−トリメチル−シクロプロポキシ基、1−エチル−2−メチル−シクロプロポキシ基、2−エチル−1−メチル−シクロプロポキシ基、2−エチル−2−メチル−シクロプロポキシ基及び2−エチル−3−メチル−シクロプロポキシ基等が挙げられる。
【0020】
また、式(1)のR2のアルコキシ基はアルコキシアルコキシ基も含まれる。例えばメトキシメトキシ基、エトキシエトキシ基、メトキシエトキシ基、エトキシメトキシ基等が挙げられる。
式(1)のR2のアルコキシ基の中で、メトキシ基、メトキシメトキシ基は好ましく用いることができる。
【0021】
式(1)のXの炭素数1乃至10のアルコキシ基としては、炭素数1乃至10の直鎖、分岐、環状のアルキル部分を有するアルコキシ基が挙げられ、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、s−ブトキシ基、t−ブトキシ基、n−ペンチロキシ基、1−メチル−n−ブトキシ基、2−メチル−n−ブトキシ基、3−メチル−n−ブトキシ基、1,1−ジメチル−n−プロポキシ基、1,2−ジメチル−n−プロポキシ基、2,2−ジメチル−n−プロポキシ基、1−エチル−n−プロポキシ基、n−ヘキシロキシ基、1−メチル−n−ペンチロキシ基、2−メチル−n−ペンチロキシ基、3−メチル−n−ペンチロキシ基、4−メチル−n−ペンチロキシ基、1,1−ジメチル−n−ブトキシ基、1,2−ジメチル−n−ブトキシ基、1,3−ジメチル−n−ブトキシ基、2,2−ジメチル−n−ブトキシ基、2,3−ジメチル−n−ブトキシ基、3,3−ジメチル−n−ブトキシ基、1−エチル−n−ブトキシ基、2−エチル−n−ブトキシ基、1,1,2−トリメチル−n−プロポキシ基、1,2,2−トリメチル−n−プロポキシ基、1−エチル−1−メチル−n−プロポキシ基及び1−エチル−2−メチル−n−プロポキシ基等が、また環状のアルコキシ基としてはシクロプロポキシ基、シクロブトキシ基、1−メチル−シクロプロポキシ基、2−メチル−シクロプロポキシ基、シクロペンチロキシ基、1−メチル−シクロブトキシ基、2−メチル−シクロブトキシ基、3−メチル−シクロブトキシ基、1,2−ジメチル−シクロプロポキシ基、2,3−ジメチル−シクロプロポキシ基、1−エチル−シクロプロポキシ基、2−エチル−シクロプロポキシ基、シクロヘキシロキシ基、1−メチル−シクロペンチロキシ基、2−メチル−シクロペンチロキシ基、3−メチル−シクロペンチロキシ基、1−エチル−シクロブトキシ基、2−エチル−シクロブトキシ基、3−エチル−シクロブトキシ基、1,2−ジメチル−シクロブトキシ基、1,3−ジメチル−シクロブトキシ基、2,2−ジメチル−シクロブトキシ基、2,3−ジメチル−シクロブトキシ基、2,4−ジメチル−シクロブトキシ基、3,3−ジメチル−シクロブトキシ基、1−n−プロピル−シクロプロポキシ基、2−n−プロピル−シクロプロポキシ基、1−i−プロピル−シクロプロポキシ基、2−i−プロピル−シクロプロポキシ基、1,2,2−トリメチル−シクロプロポキシ基、1,2,3−トリメチル−シクロプロポキシ基、2,2,3−トリメチル−シクロプロポキシ基、1−エチル−2−メチル−シクロプロポキシ基、2−エチル−1−メチル−シクロプロポキシ基、2−エチル−2−メチル−シクロプロポキシ基及び2−エチル−3−メチル−シクロプロポキシ基等が挙げられる。
【0022】
式(1)のXの炭素数2乃至10のアシルオキシ基は、例えばメチルカルボニルオキシ基、エチルカルボニルオキシ基、n−プロピルカルボニルオキシ基、i−プロピルカルボニルオキシ基、n−ブチルカルボニルオキシ基、i−ブチルカルボニルオキシ基、s−ブチルカルボニルオキシ基、t−ブチルカルボニルオキシ基、n−ペンチルカルボニルオキシ基、1−メチル−n−ブチルカルボニルオキシ基、2−メチル−n−ブチルカルボニルオキシ基、3−メチル−n−ブチルカルボニルオキシ基、1,1−ジメチル−n−プロピルカルボニルオキシ基、1,2−ジメチル−n−プロピルカルボニルオキシ基、2,2−ジメチル−n−プロピルカルボニルオキシ基、1−エチル−n−プロピルカルボニルオキシ基、n−ヘキシルカルボニルオキシ基、1−メチル−n−ペンチルカルボニルオキシ基、2−メチル−n−ペンチルカルボニルオキシ基、3−メチル−n−ペンチルカルボニルオキシ基、4−メチル−n−ペンチルカルボニルオキシ基、1,1−ジメチル−n−ブチルカルボニルオキシ基、1,2−ジメチル−n−ブチルカルボニルオキシ基、1,3−ジメチル−n−ブチルカルボニルオキシ基、2,2−ジメチル−n−ブチルカルボニルオキシ基、2,3−ジメチル−n−ブチルカルボニルオキシ基、3,3−ジメチル−n−ブチルカルボニルオキシ基、1−エチル−n−ブチルカルボニルオキシ基、2−エチル−n−ブチルカルボニルオキシ基、1,1,2−トリメチル−n−プロピルカルボニルオキシ基、1,2,2−トリメチル−n−プロピルカルボニルオキシ基、1−エチル−1−メチル−n−プロピルカルボニルオキシ基、1−エチル−2−メチル−n−プロピルカルボニルオキシ基、フェニルカルボニルオキシ基、及びトシルカルボニルオキシ基等が挙げられる。
【0023】
式(1)のXのハロゲン基としてはフッ素、塩素、臭素、ヨウ素等が挙げられる。
【0024】
式(1)はR1がベンゼン環である場合、R2がメトキシ基、メトキシメトキシ基、フッ素原子、塩素原子、又は臭素原子である場合、Xがメトキシ基である場合、n1の整数が0である場合が好ましく用いることができる。
【0025】
式(1)の加水分解性シランは例えば以下に例示することができる。
【化2】
【0026】
【化3】
【0027】
上記アルキルトリメトキシシランのアルキル基は、直鎖又は分枝を有する炭素原子数1乃至10のアルキル基であり、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、1−メチル−n−ブチル基、2−メチル−n−ブチル基、3−メチル−n−ブチル基、1,1−ジメチル−n−プロピル基、1,2−ジメチル−n−プロピル基、2,2−ジメチル−n−プロピル基、1−エチル−n−プロピル基、n−ヘキシル基、1−メチル−n−ペンチル基、2−メチル−n−ペンチル基、3−メチル−n−ペンチル基、4−メチル−n−ペンチル基、1,1−ジメチル−n−ブチル基、1,2−ジメチル−n−ブチル基、1,3−ジメチル−n−ブチル基、2,2−ジメチル−n−ブチル基、2,3−ジメチル−n−ブチル基、3,3−ジメチル−n−ブチル基、1−エチル−n−ブチル基、2−エチル−n−ブチル基、1,1,2−トリメチル−n−プロピル基、1,2,2−トリメチル−n−プロピル基、1−エチル−1−メチル−n−プロピル基及び1−エチル−2−メチル−n−プロピル基等が挙げられる。また環状アルキル基を用いることもでき、例えば炭素原子数1乃至10の環状アルキル基としては、シクロプロピル基、シクロブチル基、1−メチル−シクロプロピル基、2−メチル−シクロプロピル基、シクロペンチル基、1−メチル−シクロブチル基、2−メチル−シクロブチル基、3−メチル−シクロブチル基、1,2−ジメチル−シクロプロピル基、2,3−ジメチル−シクロプロピル基、1−エチル−シクロプロピル基、2−エチル−シクロプロピル基、シクロヘキシル基、1−メチル−シクロペンチル基、2−メチル−シクロペンチル基、3−メチル−シクロペンチル基、1−エチル−シクロブチル基、2−エチル−シクロブチル基、3−エチル−シクロブチル基、1,2−ジメチル−シクロブチル基、1,3−ジメチル−シクロブチル基、2,2−ジメチル−シクロブチル基、2,3−ジメチル−シクロブチル基、2,4−ジメチル−シクロブチル基、3,3−ジメチル−シクロブチル基、1−n−プロピル−シクロプロピル基、2−n−プロピル−シクロプロピル基、1−i−プロピル−シクロプロピル基、2−i−プロピル−シクロプロピル基、1,2,2−トリメチル−シクロプロピル基、1,2,3−トリメチル−シクロプロピル基、2,2,3−トリメチル−シクロプロピル基、1−エチル−2−メチル−シクロプロピル基、2−エチル−1−メチル−シクロプロピル基、2−エチル−2−メチル−シクロプロピル基及び2−エチル−3−メチル−シクロプロピル基等が挙げられる。
【0028】
特にメチル基が好ましく用いられ、アルキルトリメトキシシランはメチルトリメトキシシランである場合が好ましい。
【0029】
上記加水分解性シランは、テトラメトキシシラン70モルに対して、アルキルトリメトキシシラン10乃至35モル、アリールトリアルコキシシランが2乃至25モルの割合で含む場合に好ましく用いることができる。
【0030】
加水分解性シランの加水分解縮合物(ポリオルガノシラン)の具体例は以下に例示することができる。
【化4】
【0031】
【化5】
【0032】
加水分解性シランの加水分解縮合物(ポリオルガノシロキサン)は重量平均分子量1000乃至1000000、又は1000乃至100000の縮合物を得ることができる。これらの分子量はGPC分析によるポリスチレン換算で得られる分子量である。
【0033】
GPCの測定条件は、例えばGPC装置(商品名HLC−8220GPC、東ソー株式会社製)、GPCカラム(商品名ShodexKF803L、KF802、KF801、昭和電工製)、カラム温度は40℃、溶離液(溶出溶媒)はテトラヒドロフラン、流量(流速)は1.0ml/min、標準試料はポリスチレン(昭和電工株式会社製)を用いて行うことができる。
【0034】
アルコキシシリル基、アシルオキシシリル基、又はハロゲン化シリル基は加水分解性基であり、該加水分解性基の加水分解には、加水分解性基の1モル当たり、0.5乃至100モル、好ましくは1乃至10モルの水を用いる。
また、加水分解性基の1モル当たり0.001乃至10モル、好ましくは0.001乃至1モルの加水分解触媒を用いることができる。
加水分解と縮合を行う際の反応温度は、通常20乃至90℃である。
加水分解は完全に加水分解を行うことも、部分加水分解することでもよい。即ち、加水分解縮合物中に加水分解物やモノマーが残存していてもよい。
加水分解し縮合させる際に触媒を用いることができる。
加水分解触媒としては、金属キレート化合物、有機酸、無機酸、有機塩基、無機塩基を挙げることができる。
【0035】
加水分解触媒としての金属キレート化合物は、例えばトリエトキシ・モノ(アセチルアセトナート)チタン、トリ−n−プロポキシ・モノ(アセチルアセトナート)チタン、トリ−i−プロポキシ・モノ(アセチルアセトナート)チタン、トリ−n−ブトキシ・モノ(アセチルアセトナート)チタン、トリ−sec−ブトキシ・モノ(アセチルアセトナート)チタン、トリ−t−ブトキシ・モノ(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、ジ−n−プロポキシ・ビス(アセチルアセトナート)チタン、ジ−i−プロポキシ・ビス(アセチルアセトナート)チタン、ジ−n−ブトキシ・ビス(アセチルアセトナート)チタン、ジ−sec−ブトキシ・ビス(アセチルアセトナート)チタン、ジ−t−ブトキシ・ビス(アセチルアセトナート)チタン、モノエトキシ・トリス(アセチルアセトナート)チタン、モノ−n−プロポキシ・トリス(アセチルアセトナート)チタン、モノ−i−プロポキシ・トリス(アセチルアセトナート)チタン、モノ−n−ブトキシ・トリス(アセチルアセトナート)チタン、モノ−sec−ブトキシ・トリス(アセチルアセトナート)チタン、モノ−t−ブトキシ・トリス(アセチルアセトナート)チタン、テトラキス(アセチルアセトナート)チタン、トリエトキシ・モノ(エチルアセトアセテート)チタン、トリ−n−プロポキシ・モノ(エチルアセトアセテート)チタン、トリ−i−プロポキシ・モノ(エチルアセトアセテート)チタン、トリ−n−ブトキシ・モノ(エチルアセトアセテート)チタン、トリ−sec−ブトキシ・モノ(エチルアセトアセテート)チタン、トリ−t−ブトキシ・モノ(エチルアセトアセテート)チタン、ジエトキシ・ビス(エチルアセトアセテート)チタン、ジ−n−プロポキシ・ビス(エチルアセトアセテート)チタン、ジ−i−プロポキシ・ビス(エチルアセトアセテート)チタン、ジ−n−ブトキシ・ビス(エチルアセトアセテート)チタン、ジ−sec−ブトキシ・ビス(エチルアセトアセテート)チタン、ジ−t−ブトキシ・ビス(エチルアセトアセテート)チタン、モノエトキシ・トリス(エチルアセトアセテート)チタン、モノ−n−プロポキシ・トリス(エチルアセトアセテート)チタン、モノ−i−プロポキシ・トリス(エチルアセトアセテート)チタン、モノ−n−ブトキシ・トリス(エチルアセトアセテート)チタン、モノ−sec−ブトキシ・トリス(エチルアセトアセテート)チタン、モノ−t−ブトキシ・トリス(エチルアセトアセテート)チタン、テトラキス(エチルアセトアセテート)チタン、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)チタン、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)チタン、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)チタン、等のチタンキレート化合物;トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−n−プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−i−プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−n−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−sec−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−t−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−n−プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−i−プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−n−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−sec−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−t−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−n−プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−i−プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−n−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−sec−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−t−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−n−プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−i−プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−n−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−sec−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−t−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−n−プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−i−プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−n−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−sec−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−t−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−n−プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−i−プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−n−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−sec−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−t−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム、等のジルコニウムキレート化合物;トリス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム等のアルミニウムキレート化合物;などを挙げることができる。
【0036】
加水分解触媒としての有機酸は、例えば酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、ミキミ酸、2−エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p−アミノ安息香酸、p−トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、酒石酸等を挙げることができる。
【0037】
加水分解触媒としての無機酸は、例えば塩酸、硝酸、硫酸、フッ酸、リン酸等を挙げることができる。
【0038】
加水分解触媒としての有機塩基は、例えばピリジン、ピロール、ピペラジン、ピロリジン、ピペリジン、ピコリン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、ジメチルモノエタノールアミン、モノメチルジエタノールアミン、トリエタノールアミン、ジアザビシクロオクタン、ジアザビシクロノナン、ジアザビシクロウンデセン、テトラメチルアンモニウムハイドロオキサイド等を挙げることができる。無機塩基としては、例えばアンモニア、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウム等を挙げることができる。これら触媒の内、金属キレート化合物、有機酸、無機酸が好ましく、これらは1種あるいは2種以上を同時に使用してもよい。
【0039】
加水分解に用いられる有機溶媒としては、例えばn−ペンタン、i−ペンタン、n−ヘキサン、i−ヘキサン、n−ヘプタン、i−ヘプタン、2,2,4−トリメチルペンタン、n−オクタン、i−オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n−プロピルベンセン、i−プロピルベンセン、ジエチルベンゼン、i−ブチルベンゼン、トリエチルベンゼン、ジ−i−プロピルベンセン、n−アミルナフタレン等の芳香族炭化水素系溶媒;メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、ヘプタノール−3、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、2,6−ジメチルヘプタノール−4、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5−トリメチルシクロヘキサノール、ベンジルアルコール、フェニルメチルカルビノール、ジアセトンアルコール、クレゾール等のモノアルコール系溶媒;エチレングリコール、プロピレングリコール、1,3−ブチレングリコール、ペンタンジオール−2,4、2−メチルペンタンジオール−2,4、ヘキサンジオール−2,5、ヘプタンジオール−2,4、2−エチルヘキサンジオール−1,3、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、グリセリン等の多価アルコール系溶媒;アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−i−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−i−ブチルケトン、トリメチルノナノン、シクロヘキサノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン、フェンチョン等のケトン系溶媒;エチルエーテル、i−プロピルエーテル、n−ブチルエーテル、n−ヘキシルエーテル、2−エチルヘキシルエーテル、エチレンオキシド、1,2−プロピレンオキシド、ジオキソラン、4−メチルジオキソラン、ジオキサン、ジメチルジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノ−n−ブチルエーテル、エチレングリコールモノ−n−ヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ−2−エチルブチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル系溶媒;ジエチルカーボネート、酢酸メチル、酢酸エチル、γ−ブチロラクトン、γ−バレロラクトン、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n−ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等のエステル系溶媒;N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、N−メチルピロリドン等の含窒素系溶媒;硫化ジメチル、硫化ジエチル、チオフェン、テトラヒドロチオフェン、ジメチルスルホキシド、スルホラン、1,3−プロパンスルトン等の含硫黄系溶媒等を挙げることができる。これらの溶剤は1種又は2種以上の組み合わせで用いることができる。
特に、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−i−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−i−ブチルケトン、トリメチルノナノン、シクロヘキサノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン、フェンチョン(1,1,3−トリメチル−2−ノルボルネン)等のケトン系溶媒が溶液の保存安定性の点で好ましい。
【0040】
加水分解性オルガノシランを溶剤中で触媒を用いて加水分解し縮合し、得られた加水分解縮合物(ポリマー)は減圧蒸留等により副生成物のアルコールや用いた加水分解触媒や水を同時に除去することができる。また、加水分解に用いた酸や塩基触媒を中和やイオン交換により取り除くことができる。そして本発明のリソグラフィー用レジスト下層膜形成組成物では、その加水分解縮合物を含むレジスト下層膜形成組成物は安定化のために酸(例えば有機酸)、水、アルコール、又はそれらの組み合わせを添加することができる。
【0041】
上記有機酸としては、例えばシュウ酸、マロン酸、メチルマロン酸、コハク酸、マレイン酸、リンゴ酸、酒石酸、フタル酸、クエン酸、グルタル酸、クエン酸、乳酸、サリチル酸等が挙げられる。中でも、シュウ酸、マレイン酸等が好ましい。加える有機酸は縮合物(ポリオルガノシロキサン)100質量部に対して0.5乃至5.0質量部である。また加える水は純水、超純水、イオン交換水等を用いることができ、その添加量はレジスト下層膜形成組成物100質量部に対して1乃至20質量部とすることができる。
【0042】
また加えるアルコールとしては塗布後の加熱により飛散しやすいものが好ましく、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール等が挙げられる。加えるアルコールはレジスト下層膜形成組成物100質量部に対して1乃至20質量部とすることができる。
【0043】
本発明では架橋性化合物を含有することができる。それらの架橋剤としては少なくとも二つの架橋形成置換基を有する架橋性化合物が好ましく用いられる。例えば、メチロール基、メトキシメチル基といった架橋形成置換基を有するメラミン系化合物や置換尿素系化合物が挙げられる。具体的には、メトキシメチル化グリコールウリル、またはメトキシメチル化メラミンなどの化合物であり、例えば、テトラメトキシメチルグリコールウリル、テトラブトキシメチルグリコールウリル、またはヘキサメトキシメチルメラミンである。また、テトラメトキシメチル尿素、テトラブトキシメチル尿素などの化合物も挙げられる。これらの架橋剤を含む場合は、固形分中で例えば50質量%以下であり、0.01乃至50質量%であり、または10乃至40質量%である。
【0044】
本発明のレジスト下層膜形成組成物は、酸化合物を含むことができる。酸化合物としては、例えば、p−トルエンスルホン酸、トリフルオロメタンスルホン酸、及びピリジニウム−p−トルエンスルホネート等のスルホン酸化合物、サリチル酸、スルホサリチル酸、クエン酸、安息香酸、及びヒドロキシ安息香酸等のカルボン酸化合物を挙げることができる。また、酸化合物としては、例えば、2,4,4,6−テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2−ニトロベンジルトシレート、p−トリフルオロメチルベンゼンスルホン酸−2,4−ジニトロベンジル、フェニル−ビス(トリクロロメチル)−s−トリアジン、及びN−ヒドロキシスクシンイミドトリフルオロメタンスルホネート等の熱または光によって酸を発生する酸発生剤を挙げることができる。酸化合物としては、また、ジフェニルヨードニウムヘキサフルオロホスフエート、ジフェニルヨードニウムトリフルオロメタンスルホネート、及びビス(4−tert−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等のヨードニウム塩系酸発生剤、及びトリフェニルスルホニウムヘキサフルオロアンチモネート、及びトリフェニルスルホニウムトリフルオロメタンスルホネート等のスルホニウム塩系酸発生剤を挙げることができる。酸化合物としては、スルホン酸化合物、ヨードニウム塩系酸発生剤、スルホニウム塩系酸発生剤が好ましく使用される。酸化合物は一種のみを使用してもよく、また二種以上を組み合わせて使用することができる。酸化合物の含有量は固形分中で例えば0.1乃至10質量%であり、または0.1乃至5質量%である。
【0045】
本発明のレジスト下層膜形成組成物は硬化触媒を含有することができる。硬化触媒は、加水分解縮合物からなるポリオルガノシロキサンを含有する塗布膜を加熱し硬化させる時に硬化触媒の働きをする。
更にアンモニウム化合物、環状アンモニウム化合物、環状アミン化合物、又はオニウム化合物を用いることができる。
上記オニウム化合物としてはオニウム塩であり、例えばスルホニウム塩を用いることができる。スルホニウム塩としては、例えば
【化6】
で表されるスルホニウムイオンと
【化7】
で表される陰イオンとの塩が挙げられる。
硬化触媒はポリオルガノシロキサン100質量部に対して、0.01乃至10質量部、または0.01乃至5質量部、または0.01乃至3質量部である。また、炭化水素基を含むスルホン酸イオン、塩化物イオン、硝酸イオン、マレイン酸イオンとオニウムイオンとの塩は、ポリオルガノシロキサン100質量部に対して0.1乃至10質量%であり、または0.1乃至5質量%、または0.1乃至3質量%である。
【0046】
レオロジー調整剤としては、例えば、ジメチルフタレート、ジエチルフタレート、ジイソブチルフタレート、ジヘキシルフタレート、ブチルイソデシルフタレート等のフタル酸化合物、ジノルマルブチルアジペート、ジイソブチルアジペート、ジイソオクチルアジペート、オクチルデシルアジペート等のアジピン酸化合物、ジノルマルブチルマレート、ジエチルマレート、ジノニルマレート等のマレイン酸化合物、メチルオレート、ブチルオレート、テトラヒドロフルフリルオレート等のオレイン酸化合物、及びノルマルブチルステアレート、グリセリルステアレート等のステアリン酸化合物を挙げることができる。レオロジー調整剤が使用される場合、その使用量としては、固形分中で、例えば0.001乃至10質量%である。
【0047】
界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、商品名エフトップEF301、EF303、EF352((株)トーケムプロダクツ製)、商品名メガファックF171、F173、R−08、R−30(大日本インキ化学工業(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、商品名アサヒガードAG710,サーフロンS−382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製)等のフッ素系界面活性剤、及びオルガノシロキサンポリマ−KP341(信越化学工業(株)製)等を挙げることができる。これらの界面活性剤は単独で使用してもよいし、また2種以上の組み合わせで使用することもできる。界面活性剤が使用される場合、その使用量としては、固形分中で、例えば0.0001乃至5質量%である。
【0048】
本発明のレジスト下層膜形成組成物に使用される溶剤としては、前記の固形分を溶解できる溶剤であれば、特に制限無く使用することができる。そのような溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2−ヒドロキシプロピオン酸エチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2−ヒドロキシ−3−メチルブタン酸メチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、及び乳酸ブチル等を挙げることができる。これらの溶剤は単独で、または二種以上の組み合わせで使用される。さらに、プロピレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテルアセテート等の高沸点溶剤を混合して使用することができる。
【0049】
半導体基板(例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、ガラス基板、及びITO基板等)の上に、スピナー、コーター等の適当な塗布方法により本発明のレジスト下層膜形成組成物が塗布され、その後、焼成することによりレジスト下層膜が形成される。
【0050】
焼成する条件としては、焼成温度80℃乃至250℃、焼成時間0.3乃至60分間の中から適宜、選択される。好ましくは、焼成温度130℃乃至250℃、焼成時間0.5乃至5分間である。ここで、形成されるレジスト下層膜の膜厚としては、例えば0.01乃至3.0μmであり、好ましくは、例えば0.01乃至1.0μmであり、または0.01乃至0.5μmであり、または0.01乃至0.05μmである。
【0051】
次いで、レジスト下層膜の上に、EUVレジスト等の高エネルギー線レジストの層が形成される。高エネルギー線レジストの層の形成は、周知の方法、すなわち、高エネルギー線レジスト組成物溶液の下層膜上への塗布及び焼成によって行なうことができる。
EUVレジストとしては例えば、PMMA(ポリメチルメタクリレート)、ポリヒドロキシスチレン、フェノール樹脂等の樹脂を用いたレジスト組成物を用いることができる。
【0052】
次に、所定のマスクを通して露光が行なわれる。露光には、EUV光(13.5nm)、電子線、X線等を使用することができる。露光後、必要に応じて露光後加熱(PEB:Post Exposure Bake)を行うこともできる。露光後加熱は、加熱温度70℃乃至150℃、加熱時間0.3乃至10分間から適宜、選択される。
【0053】
次いで、現像液によって現像が行なわれる。現像液としては、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物の水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、コリンなどの水酸化四級アンモニウムの水溶液、エタノールアミン、プロピルアミン、エチレンジアミンなどのアミン水溶液等のアルカリ性水溶液を例として挙げることができる。さらに、これらの現像液に界面活性剤などを加えることもできる。現像の条件としては、温度5乃至50℃、時間10乃至300秒から適宜選択される。
【0054】
そして、このようにして形成されたフォトレジストのパターンを保護膜として、レジスト下層膜の除去及び半導体基板の加工が行なわれる。レジスト下層膜の除去は、テトラフルオロメタン、パーフルオロシクロブタン(C48)、パーフルオロプロパン(C38)、トリフルオロメタン、一酸化炭素、アルゴン、酸素、窒素、六フッ化硫黄、ジフルオロメタン、三フッ化窒素及び三フッ化塩素等のガスを用いて行われる。
【0055】
半導体基板上に本発明のレジスト下層膜が形成される前に、平坦化膜やギャップフィル材層や有機下層膜が形成されることもできる。大きな段差や、ホールを有する半導体基板が使用される場合には、平坦化膜やギャップフィル材層が形成されていることが好ましい。
【実施例】
【0056】
合成例1
テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、(4−メトキシフェニル)トリメトキシシラン1.62g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2−1)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、(4−メトキシフェニル)トリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
【0057】
合成例2
テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、(4−メトキシベンジル)トリメトキシシラン1.97g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2−2)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、(4−メトキシベンジル)トリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
【0058】
合成例3
テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、[4−(メトキシメトキシ)フェニル]トリメトキシシラン1.82g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2−3)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、[4−(メトキシメトキシ)フェニル]トリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
【0059】
合成例4
テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、{2−[6−(メトキシメトキシ)ナフチル]}トリメトキシシラン2.19g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2−4)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、{2−[6−(メトキシメトキシ)ナフチル]}トリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
【0060】
合成例5
テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、ペンタフルオロフェニルトリエトキシシラン2.03g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、エタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2−5)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、ペンタフルオロフェニルトリエトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
【0061】
合成例6
テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、(4−クロロフェニル)トリエトキシシラン1.62g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、エタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2−6)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、(4−クロロフェニル)トリエトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
【0062】
合成例7
テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、(4−ブロモフェニル)トリメトキシシラン1.75g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2−7)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、(4−ブロモフェニル)トリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
【0063】
合成例8
テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、(4−メトキシフェニル)トリメトキシシラン3.24g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2−1)に相当し、ポリシロキサン中のテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、(4−メトキシフェニル)トリメトキシシランに由来する単位構造のモル比は70:25:15であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
【0064】
合成例9
テトラメトキシシラン7.5g、メチルトリメトキシシラン1.5g、(4−メトキシフェニル)トリメトキシシラン2.5g、アセトン19.5gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸2.7gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート26gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2−1)に相当し、ポリシロキサン中のテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、(4−メトキシフェニル)トリメトキシシランに由来する単位構造のモル比は70:20:10であった。GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
【0065】
合成例10
テトラメトキシシラン7.5g、メチルトリメトキシシラン1.5g、ペンタフルオロフェニルトリエトキシシラン2.5g、アセトン19.5gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸2.7gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート26gを加え、反応副生物であるメタノール、エタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2−5)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、ペンタフルオロフェニルトリエトキシシランに由来する単位構造のモル比は70:20:10であった。GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
【0066】
比較合成例1
テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、フェニルトリメトキシシラン1.41g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(3−1)に相当し、ポリオシロキサン中のテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、フェニルトリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
【化8】
【0067】
比較合成例2
テトラエトキシシラン7.5g、メチルトリメトキシシラン1.5g、フェニルトリメトキシシラン1.2g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(3−1)に相当し、ポリシロキサン中のテトラエトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、フェニルトリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
【0068】
(有機下層膜(A層))
丸善石油化学株式会社製のCNp−PM(成分はモル比としてビニルナフタレン60%:ポリヒドロキシスチレン40%、重量平均分子量:6000)を有機下層膜(A層)として使用した。
【0069】
以下に本発明の薄膜形成組成物による薄膜を、レジスト下層膜として使用した場合の評価結果を以下に示す。
【0070】
合成例1乃至10、比較合成例1乃至2で調製したポリマー溶液を固形分20質量%に調整し、それぞれ実施例1乃至10、及び比較例1乃至2のレジスト下層膜形成組成物とした。
【0071】
(レジスト下層膜の調整)
上記合成例1乃至10及び比較合成例1乃至2で得られたケイ素含有ポリマー、酸、硬化触媒、添加剤、溶媒、水を表1に示す割合となるように混合し、0.1μmのフッ素樹脂製のフィルターで濾過することによって、レジスト下層膜形成用組成物の溶液をそれぞれ調製した。表1中のポリマーの添加割合はポリマー溶液の添加量ではなく、ポリマー自体の添加量を示した。
表1中でマレイン酸はMA、ベンジルトリエチルアンモニウムクロリドはBTAC、N−(3−トリエトキシシリプロピル)−4,5−ジヒドロイミダゾールはIMIDTEOS、ビス(4−ヒドロキシフェニル)スルホンはBPS、プロピレングリコールモノメチルエーテルアセテートはPGMEA、プロピレングリコールモノエチルエーテルはPGEE、プロピレングリコールモノメチルエーテルはPGME、エチルラクテートはELと略した。水は超純水を用いた。各添加量は質量部で示した。
【0072】
【表1】
【0073】
調製したレジスト下層膜形成用組成物の溶液を光学定数の測定に用い、固形分で1質量%に希釈したものをEUV露光によるレジストパターンの形成、アウトガス測定に用いた。
【0074】
(光学定数測定)
スピナーを用いてシリコンウェハー上にそれぞれ上記レジスト下層膜形成組成物を塗布した。ホットプレート上で215℃1分間加熱しレジスト下層膜(膜厚0.05μm)を形成した。そして、これらのレジスト下層膜を分光エリプソメーター(J.A. Woollam社製、VUV−VASE VU−302)を用い、波長193、248nmでの屈折率(n値)及び光学吸光係数(k値、減衰係数とも呼ぶ)を測定した。
【0075】
【表2】
【0076】
〔EUV露光によるレジストパターンの形成〕
上記有機下層膜(A層)形成組成物をシリコンウエハー上に塗布し、ホットプレート上で215℃で60秒間ベークし、膜厚90nmの有機下層膜(A層)を得た。その上に、本発明の実施例1乃至8、比較例1で調製されたレジスト下層膜形成組成物溶液をスピンコートし、215℃で1分間加熱することにより、レジスト下層膜(B)層(25nm)が形成される。その(B)層上に、EUV用レジスト溶液(メタクリレート樹脂系レジスト)をスピンコートし加熱を行い、EUVレジスト層(C)層を形成し、EUV露光装置(Micro Exposure Tool、略称MET)を用い、NA=0.30、σ=0.36/0.68、Quadropoleの条件で露光する。露光後、PEB(露光後加熱、90℃)を行い、クーリングプレート上で室温まで冷却し、現像及びリンス処理をし、レジストパターンを形成した。評価は、26nmのラインアンドスペースの形成可否、パターン断面観察によるパターン形状を評価した。
【0077】
【表3】
【0078】
〔アウトガス発生量試験〕
実施例9及び10、比較例2で調整したレジスト下層膜形成組成物溶液をスピナーを用い、シリコンウェハー上に塗布した。ホットプレート上で205℃1分間加熱し、レジスト下層膜(膜厚0.03μm)を形成した。
これらレジスト下層膜を用いて、Resist Outgassing Exposure(ROX)システムでアウトガス測定を行った。チャンバー内圧力は1.0乃至8.0×10-8の範囲にて、露光量6.0mJ/cm2でEUV露光し発生したアウトガス量をQuadropole MSにて測定した。アウトガスは分子量44を除く35乃至200の範囲で測定を行った。
アウトガス発生量の結果を表4に記載した。
単位は(Number of Molecule/cm2/s)である。
【0079】
【表4】
【0080】
加水分解性基としてメトキシ基のみからなるシラン化合物を用いて得られる合成例9及び10による実施例9及び10は、加水分解性基としてエトキシ基を含むテトラエトキシシランを多く含むシラン化合物を用いて得られる比較合成例2による比較例2よりもアウトガスの発生量が少ない。
実施例9では全シラン中で、シランの加水分解性基がメトキシ基:エトキシ基のモル比が100:0である。
実施例10では全シラン中で、シランの加水分解性基がメトキシ基:エトキシ基のモル比が34:3である。
比較例2では全シラン中で、シランの加水分解性基がメトキシ基:エトキシ基のモル比が28:9である。
本発明では全シラン中で、シランの加水分解性基がメトキシ基:エトキシ基のモル比で100:0乃至80:20の範囲で用いることによりアウトガスの発生が少ないことがわかる。
【産業上の利用可能性】
【0081】
本発明により、矩形なレジストパターンを利用し微細な基板加工が可能であり、半導体装置の製造に用いることのできるEUVリソグラフィー用レジスト下層膜形成組成物を提供することができる。EUVレジストの露光感度向上や、レジストとのインターミキシングを起こさず、レジストに比較して大きなドライエッチング速度を有し、EUV光で露光時にアウトガス発生が少ないリソグラフィー用レジスト下層膜の提供が可能である。