特許第6067963号(P6067963)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ テクトロニクス・インコーポレイテッドの特許一覧

<>
  • 特許6067963-試験測定機器及びトリガ方法 図000002
  • 特許6067963-試験測定機器及びトリガ方法 図000003
  • 特許6067963-試験測定機器及びトリガ方法 図000004
  • 特許6067963-試験測定機器及びトリガ方法 図000005
  • 特許6067963-試験測定機器及びトリガ方法 図000006
  • 特許6067963-試験測定機器及びトリガ方法 図000007
  • 特許6067963-試験測定機器及びトリガ方法 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6067963
(24)【登録日】2017年1月6日
(45)【発行日】2017年1月25日
(54)【発明の名称】試験測定機器及びトリガ方法
(51)【国際特許分類】
   G01R 23/16 20060101AFI20170116BHJP
   G01R 23/173 20060101ALI20170116BHJP
   G01R 13/20 20060101ALI20170116BHJP
【FI】
   G01R23/16 D
   G01R23/173 Z
   G01R13/20 N
【請求項の数】2
【全頁数】15
(21)【出願番号】特願2011-169419(P2011-169419)
(22)【出願日】2011年8月2日
(65)【公開番号】特開2012-42462(P2012-42462A)
(43)【公開日】2012年3月1日
【審査請求日】2014年7月16日
(31)【優先権主張番号】12/856,472
(32)【優先日】2010年8月13日
(33)【優先権主張国】US
【前置審査】
(73)【特許権者】
【識別番号】391002340
【氏名又は名称】テクトロニクス・インコーポレイテッド
【氏名又は名称原語表記】TEKTRONIX,INC.
(74)【代理人】
【識別番号】110001209
【氏名又は名称】特許業務法人山口国際特許事務所
(72)【発明者】
【氏名】アルフレッド・ケイ・ヒルマン・ジュニア
(72)【発明者】
【氏名】マーカス・ケイ・ダシルバ
(72)【発明者】
【氏名】キャサリン・エイ・エングホルム
(72)【発明者】
【氏名】ケネス・ピー・ドビンス
【審査官】 續山 浩二
(56)【参考文献】
【文献】 特開2005−331300(JP,A)
【文献】 特表2010−505124(JP,A)
【文献】 特開平09−119950(JP,A)
【文献】 特開2007−304060(JP,A)
【文献】 国際公開第2008/062875(WO,A1)
【文献】 特開2000−004174(JP,A)
【文献】 特開平06−342022(JP,A)
【文献】 特開平08−322952(JP,A)
【文献】 特開平06−034681(JP,A)
【文献】 特開2009−092660(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 23/16
G01R 13/20
G01R 23/173
(57)【特許請求の範囲】
【請求項1】
被試験無線周波数(RF)信号を受ける入力端子と、
上記RF信号をデジタル化するアナログ・デジタル変換器(ADC)と、
デジタル化された上記RF信号からI(同相)及びQ(直交位相)ベースバンド成分情報を発生するデジタル・ダウンコンバータと、
上記I及びQベースバンド成分情報を用いてパワー・レベルを求めるパワー検出器と、
該パワー検出器が求めた上記パワー・レベルが所定パワーしきい値を超えたときにIQベースの時間領域トレースである周波数対時間トレース又は位相対時間トレースを発生する1個以上の復調器と
上記復調器に結合され、上記パワー検出器から受けた上記パワー・レベルと上記所定パワーしきい値とを比較し、1個以上の上記復調器をイネーブルするイネーブル信号であって、トリガ・イネーブル信号も含む上記イネーブル信号を発生する比較器と、
上記トリガ・イネーブル信号に応じて上記周波数対時間トレース又は上記位相対時間トレース中のイベントでトリガをかけるトリガ回路と
を具えた試験測定機器。
【請求項2】
IQベースの時間領域トレースに関連したイベントにてトリガする方法であって、
試験測定機器の端子にて被試験無線周波数(RF)信号を受ける処理と、
アナログ・デジタル変換器(ADC)を用いて上記被試験RF信号をデジタル化する処理と、
デジタル化された上記被試験RF信号をダウンコンバージョンし、I(同相位相)及びQ(直交位相)ベースバンド成分情報を発生する処理と、
該I及びQベースバンド成分情報を用いてパワー・レベルを求める処理と、
該パワー・レベルをユーザ指定パワーしきい値と比較する処理と、
上記パワー・レベルが上記ユーザ指定パワーしきい値を超えたときに、トリガ・イネーブル信号を含むイネーブル信号を発生する処理と
上記イネーブル信号に応じて、位相復調器又は周波数復調器をイネーブルし、IQベースの時間領域トレースである位相対時間トレース又は周波数対時間トレースを生成する処理と、
上記トリガ・イネーブル信号に応じてトリガ回路をイネーブルし、上記位相対時間トレース又は周波数対時間トレース中のイベントを検出する処理と
を具えたトリガ方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、試験測定機器の時間領域トリガを行う試験測定機器及びトリガ方法に関する。
【背景技術】
【0002】
従来、スペクトラム・アナライザには、最小限のトリガ能力があった。例えば、スペクトラム・アナライザにおけるパワー対周波数の通常表示は、普通にはトリガされない。最近、スペクトラム・アナライザがデジタル取込み技術となり、より進歩したトリガ機能が導入されている。
【0003】
今日の通信標準では、周波数ホッピング及び位相変調が益々一般的になってきている。周波数ホッピング・アプリケーションにおいて、周波数が変化しても、無線周波数(RF)信号のパワーは一定である。これは、トリガするのにパワーの変化がないので、従来のパワー・トリガが役に立たなくなっている。特定周波数に達したとき、又は特定の位相値に達したときに、トリガできること(そして、データを取り込めること)がユーザにとって必要である。スペクトラム・アナライザにおけるこれら問題を解決する従来のアプローチは、例えば、周波数マスク・トリガ・アプローチであり、種々の理由により、ユーザに望ましいものではなかった。例えば、時間分解能は、多くのアプリケーションで所望トリガ性能を達成するには、粗すぎる。さらに、周波数マスク・トリガでは、接近した周波数成分を分解する能力が制限される。
【0004】
さらに、RF信号は、しばしばパルス又はRF「バースト」を含んでおり、バーストのアクティブ期間中に情報が伝送され、その後に非アクティブ又はノイズの期間が続く、これは、誤った又は不正確なトリガを導く。現在の技術は、関心のある周波数又は位相のイベント(事象)を容易に分離できるトリガを提供しておらず、関心のあるデータのみをトリガ及び/又は捕捉できない。関心のあるイベントが希にしか生じないと(例えば、1日又は1週間に1回)、イベントを観察し分析するのを確実にする充分な取込みデータを蓄積することが実際的にできない。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−38866号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
そこで、周波数及び位相の情報に対してトリガを発生できる一層柔軟性のある試験測定機器及び方法が望まれている。
【課題を解決するための手段】
【0007】
本発明の態様は、次の通りである。
(1)被試験無線周波数(RF)信号を受ける入力端子と;上記RF信号をデジタル化するアナログ・デジタル変換器(ADC)と;上記デジタル化RF信号からI(同相)及びQ(直交位相)ベースバンド成分情報を発生するデジタル・ダウンコンバータと;上記I及びQベースバンド成分情報を用いてパワー・レベルを求めるパワー検出器と;該パワー検出器が求めた上記パワー・レベルが所定パワーしきい値を超えたときにIQベースの時間領域トレースを発生する1個以上の復調器とを具えた試験測定機器。
(2)上記所定パワーしきい値は、ユーザ指定可能であり;上記試験測定機器は、上記パワー検出器に機能的に結合され、上記ユーザ指定可能なしきい値を上記パワー検出器から受信した上記パワー・レベルを比較する比較器を更に具えた態様1の試験測定機器。
(3)上記比較器は、1個以上の復調器をイネーブルする(動作可能にする)ロジック信号を発生する態様2の試験測定機器。
(4)上記ロジック信号は、トリガ・イネーブル信号を含み;上記試験測定機器は、上記トリガ・イネーブル信号に応答してIQベースの時間領域トレースに関連したイベントでトリガするトリガ回路を更に具える態様3の試験測定機器。
(5)上記パワー・レベルが所定期間だけ上記ユーザ指定しきい値を超えるまで、上記比較器が発生したロジック信号を遅延させる遅延機能を更に具えた態様3の試験測定機器。
(6)上記遅延ロジック信号は、遅延されたトリガ・イネーブル信号を含み;上記遅延トリガ・イネーブル信号に応答して、上記IQベースの時間領域トレースに関連したイベントでトリガするトリガ回路を更に具えた態様5の試験測定機器。
(7)上記1個以上の復調器は、位相復調器及び周波数復調器の少なくとも一方を含む態様1の試験測定機器。
(8)上記IQベースの時間領域トレースは、周波数対時間トレース及び位相対時間トレースの少なくとも一方を含む態様1の試験測定機器。
(9)上記所定パワーしきい値は、ユーザが指定可能であり;上記パワー検出器に機能的に結合され、上記ユーザ指定可能なパワーしきい値を上記パワー検出器から受けた上記パワーと比較し、トリガ・イネーブル信号を発生する比較器と;該比較器が発生した上記トリガ・イネーブル信号を受けた後、上記周波数対時間トレース又は上記位相対時間トレースに関連したイベントにてトリガするトリガ回路を更に具える態様8の試験測定機器。
(10)上記RF信号を中間周波数(IF)信号に変換するRF/IF変換器を更に具え;上記ADCは、上記IF信号をデジタル化し;上記デジタル・ダウンコンバータは、上記デジタル化IF信号から上記I及びQベースバンド成分情報を発生する態様1の試験測定機器。
(11)上記I及びQベースバンド成分情報の1つ以上の記録を蓄積する取込みメモリと;該取込みメモリに機能的に結合された制御器と;該制御器に機能的に結合され、上記IQベースの時間領域トレースを表示する表示ユニットとを具え;上記制御器は、上記パワー検出器が求めた上記パワー・レベルが上記所定パワーしきい値を超えた後に、上記IQベースの時間領域トレースに関連したイベントでトリガするトリガ・セクションを含む態様1の試験測定機器。
(12)被試験無線周波数(RF)信号を受ける入力端子と;上記RF信号を中間周波数(IF)信号に変換するRF/IF変換器と;上記IF信号のパワー・レベルを求め、該パワー・レベルが所定パワーしきい値を超えた後にトリガ・イネーブル信号を発生するアナログ・パワー検出器及び復調器セクションとを具えた試験測定機器。
(13)上記トリガ・イネーブル信号に応答して、少なくとも1つの時間領域トレースに関連したイベントでトリガするトリガ回路を更に具えた態様12の試験測定機器。
(14)上記パワー・レベルが上記所定レベルしきい値を超えた後に、少なくとも1つの時間領域トレースを発生する1個以上のアナログ復調器を更に具えた態様12の試験測定機器。
(15)IQベースの時間領域トレースに関連したイベントにてトリガする方法であって;試験測定機器の端子にて被試験無線周波数(RF)信号を受け;アナログ・デジタル変換器(ADC)を用いて上記被試験RF信号をデジタル化し;上記デジタル化信号をダウンコンバージョンし、I(同相位相)及びQ(直交位相)ベースバンド成分情報を発生し;I及びQベースバンド成分情報を用いてパワー・レベルを求め;該パワー・レベルをユーザ指定パワーしきい値と比較し;上記パワー・レベルが上記ユーザ指定パワーしきい値を超えたときにイネーブル信号を発生するトリガ方法。
(16)更に、上記イネーブル信号に応答して1個以上の復調器をイネーブルし;該1個以上の復調器がIQベースの時間領域トレースを発生し;トリガ回路をイネーブルして、上記イネーブル信号に応答して上記IQベースの時間領域トレース内でトリガ・イベントを検出する態様15の方法。
(17)上記1個以上の復調器は、位相復調器及び周波数復調器の少なくとも一方を含み;上記IQベースの時間領域トレースは、周波数対時間トレース及び位相対時間トレースの少なくとも一方を含む態様16の方法。
(18)上記イネーブル信号は、トリガ・イネーブル信号を含み;更に、上記パワー・レベルが上記ユーザ指定可能なパワーしきい値を所定期間だけ超えるまで、上記トリガ・イネーブル信号の発生を遅延させ;上記遅延したトリガ・イネーブル信号を受けた後に、上記周波数対時間トレース又は上記位相対時間トレース内のイベントにてトリガする態様17の方法。
(19)更に、上記IQベースの時間領域トレースが低しきい値及び高しきい値を超えたときに、上記IQベースの時間領域トレース内のイベントにてトリガする態様16の方法。
(20)更に、上記IQベースの時間領域トレースが低しきい値を超え、高しきい値を超えないとき、上記IQベースの時間領域トレースにてトリガする態様16の方法。
(21)更に、(a)所定期間よりも長い、(b)上記所定期間よりも短い、(c)所定時間レンジ内、(d)上記所定時間レンジ外の少なくとも1つで、上記IQベースの時間領域トレースがしきい値よりも上のとき、上記IQベースの時間領域トレース内のイベントにてトリガする態様16の方法。
(22)更に、(a)所定期間よりも長い、(b)上記所定期間よりも短い、(c)所定時間レンジ内、(d)上記所定時間レンジ外の少なくとも1つで、IQベースの時間領域トレースがしきい値未満の時に、上記IQベースの時間領域トレース内のイベントにてトリガする態様16の方法。
(23)上記IQベースの時間領域トレースが、第1及び第2しきい値の定めたウィンドウ内のときに、上記IQベースの時間領域トレース内のイベントにてトリガする態様16の方法。
(24)更に、上記IQベースの時間領域トレースが、第1及び第2しきい値の定めたウィンドウ外のときに、上記IQベースの時間領域トレース内のイベントにてトリガする態様16の方法。
(25)更に、上記I及びQベースバンド成分情報の組合せが所定のロジック状態に対応するときに、上記IQベースの時間領域トレース内のイベントにてトリガする態様16の方法。
(26)更に、所定の状態シーケンスに応答して上記IQベースの時間領域トレース内のイベントにてトリガし;上記状態は、(a)上記IQベースの時間領域トレースがしきい値よりも上である第1状態と、(b)上記IQベースの時間領域トレースが上記しきい値未満の第2状態を含む態様16の方法。
(27)試験測定機器が態様15のステップを実行する関連インストラクションを蓄積するフロッピー(登録商標)・ディスク、光学ディスク、固定ディスク、揮発性メモリ、不揮発性メモリ、ランダム・アクセス・メモリ、リード・オンリ・メモリ又はフラッシュ・メモリなどのマシン・アクセス可能な媒体。
【発明の効果】
【0008】
よって、本発明は、実時間スペクトラム・アナライザ(RTSA)又はオシロスコープの如き試験測定機器における周波数及び位相のトリガなどのトリガ機能を強調できる。
【0009】
本発明の実施例による試験測定機器は、被試験無線周波数(RF)信号を受ける入力端子と;RF信号をデジタル化するアナログ・デジタル変換器(ADC)と、デジタル化RF信号からI(同相)及びQ(直交位相)のベースバンド成分情報を発生するデジタル・ダウンコンバータと、I及びQベースバンド成分情報を用いてパワー・レベルを求めるパワー検出器と、このパワー検出器が求めたパワー・レベルが所定パワーしきい値を超えたときに、IQベースの時間領域トレースをIQベースの時間領域トレースを発生する1個以上の復調器とを含んでいる。所定パワーしきい値は、ユーザ指定可能である。
【0010】
本発明の実施例による試験測定機器は、パワー検出器に機能的に結合され、このパワー検出器から受けたパワー・レベルとユーザ指定パワーしきい値とを比較する比較器を更に含んでいる。比較器は、1個以上の復調器をイネーブルする(動作可能にする)ロジック信号を発生する。トリガ回路は、イネーブル信号又は遅延されたトリガ・イネーブル信号に応答して、IQベースの時間領域トレースに関連したイベントにてトリガする。
【0011】
本発明のいくつかの実施例において、IQベースの時間領域トレースに関連したイベントにてトリガする方法を提供する。この方法では、試験測定機器の端子にて被試験無線周波数(RF)信号を受け、ADCを用いて被試験RF信号をデジタル化し、デジタル化信号をダウンコンバージョンしてI及びQベースバンド成分情報を発生し、I及びQベースバンド成分情報を用いてパワー・レベルを求め、ユーザ指定可能なパワーしきい値をパワー・レベルと比較し、パワー・レベルがユーザ指定可能なパワーしきい値を超えたときにイネーブル信号を発生する。
【図面の簡単な説明】
【0012】
図1A】本発明の実施例により、RF/IF変換器と、アナログ・デジタル変換器(ADC)と、デジタル・ダウンコンバータと、1つ以上の記録を蓄積する取込みメモリと、パワー検出器/復調器セクションと、トリガ回路と、制御器と、表示ユニットとを含む試験測定機器のブロック図である。
図1B図1Aに示す試験測定機器と類似の本発明の実施例による試験測定機器のブロック図であるが、中間周波数(IF)信号を受けイネーブル信号を発生するアナログ・パワー検出器/復調器セクションを含んでいる。
図2図1Aに示す試験測定機器と類似の本発明の他の実施例による試験測定機器のブロック図であるが、ADC及び取込みメモリの間が直接接続され、パワー検出器/復調器セクション及びトリガ・セクションを有する制御器を含んでいる。
図3】本発明の実施例により、図1A及び2のパワー検出器/復調器セクションのブロック図である。
図4】本発明の実施例により、RF信号、パワー・レベル信号及びIQベースの時間領域トレースを含み、種々のトリガ・イネーブル特性及びトリガ・イベントを有する簡略化された説明図である。
図5】本発明の実施例により、種々の特性及びトリガ技術を示す周波数対時間トレースをプロットした周波数ホッピング信号を示す図である。
図6】本発明の実施例により、周波数又は位相時間領域トレースに関連したイベントでのトリガ発生を説明する流れ図である。
【発明を実施するための形態】
【0013】
本発明の実施例は、実時間スペクトラム・アナライザ(RTSA)又はオシロスコープの如き試験測定機器における周波数又は位相のトリガの如き強化されたトリガ機能を提供する。
【0014】
図1Aは、本発明の実施例による試験測定機器100のブロック図を示す。この試験測定機器100は、RF/IF変換器112と、ADC108と、デジタル・ダウンコンバータ115と、1つ以上の記録135を蓄積する取込みメモリ130と、パワー検出器/復調器セクション145と、トリガ回路147と、制御器140と、表示ユニット150とを含む。
【0015】
試験測定機器100は、好ましくは、RTSAの如きデジタル・スペクトラム・アナライザであるが、オシロスコープ又は他の適切な測定機器でもよい。簡潔さ及び一貫性のために、試験測定機器は、ここでは、一般に信号アナライザと呼ぶが、これに限定されるものではない。
【0016】
信号アナライザ100は、ここで説明する種々に実施例にて用いるのに適する入力端子100の如き複数のチャネル、即ち、入力を有する。入力端子110は、例えば、DCから20+GHzの間の周波数の信号を受ける。信号アナライザ100が単一の入力端子110を有するが、ここで説明する本発明の概念は、2入力、4入力又は任意の数の入力に等しく適用できる。信号アナライザ100のコンポーネントが互いに直接結合しているように示すが、信号アナライザ100は、種々の他の回路やソフトウェア・コンポーネント、入力、出力及び/又はインタフェースを含むことができ、これらを必ずしも図示しないが、信号アナライザ100の図示のコンポーネントの間に又は関連して配置できることが理解できよう。
【0017】
好ましくはRF信号である被試験電気信号を入力端子110で受ける。RF/IF変換器112は、RF信号をアナログ中間周波数(IF)信号に変換する。このRF/IF変換器112は、ADC108がデジタル化する前に、信号を濾波できる。デジタル・ダウンコンバータ115は、デジタル化IF信号からI及びQベースバンド成分情報を発生する。しかし、ここでは、一般に「単一のRF信号」又は「複数のRF信号」を基準とするが、かかる基準は、1つ以上のRF信号、又は、RF信号から導出した1つ以上のIF信号でもよいことが理解できよう。
【0018】
ADC108は、被試験RF信号をデジタル化する。デジタル・ダウンコンバータ115は、ADC108に機能的に結合し、デジタル化RF信号を受け、このデジタル化RF信号からI(同相)及びQ(直交位相)ベースバンド成分情報を発生する。より詳細には、ダウンコンバータ115は、デジタル化RF信号によりサイン及びコサインを数学的に乗算して、I及びQ成分情報を発生する。これらI及びQ成分情報は、元のRF信号内に存在する全ての情報を含む。デジタル・ダウンコンバータ115のインプリメンテーションは、試験測定機器がRTSAかオシロスコープかに応じて変化するが、いかなる場合も、この成分をインプリメンテーションするのに用いるハードウェア又はソフトウェアは、I及びQ成分情報を実時間で提供するのに充分なレートで動作する。
【0019】
I及びQ成分情報をパワー検出器/復調器セクション145に伝送する。パワー検出器/復調器セクション145は、この情報を実時間で処理できる。I及びQ成分情報の各々は、図1Aに示すように、Mビットの情報に対応する複数のラインによって伝送できる。詳細に後述するように、パワー検出器/復調器セクションは、有効なRF入力信号が存在しないときに、ノイズの存在による偽のトリガを防止すると共に、無効データが発生するのを避ける。更に、セクション145は、位相対時間及び/又は周波数対時間のトレースの如きIQベースの時間領域トレースを発生する。このトレースは、トリガ回路147に伝送される。用語「トレース」は、単数又は複数に係わらず、任意の情報又はデータを含むように広く解釈すべきである。トレースは、蓄積され、及び/又は表示器にプロットされる。また、トレースは、受信信号、導出信号又は発生信号に関してユーザに情報を伝える。
【0020】
トリガ回路147は、イネーブルされると、周波数対時間トレース又は位相対時間トレースに関連した1つ以上のイベントにて実時間でトリガする。表示ユニット150を用いて、トリガ・イベントの又はその付近の期間又は領域を表示できるので、信号アナライザのユーザは、関心領域を分析できる。パワー検出器/復調器セクション145及びトリガ回路147がインプリメンテーションした種々のコンポーネント及び技術に関する追加の詳細を以下に説明する。
【0021】
取込みメモリ130は、デジタル・ダウンコンバータ115に機能的に結合され、RF信号に関連したデジタル化I及びQベースバンド成分情報の1つ以上の記録135を取込み、蓄積する。すなわち、取込みメモリ130は、デジタル・ダウンコンバータ115からI及びQベースバンド成分情報を受け、それを蓄積する。信号アナライザの入力端子110の各々は、取込みメモリ130の異なる部分又は異なる記録135に関連し、これらの成分情報が蓄積される。取込みメモリ130は、種々のメモリでよい。例えば、取込みメモリ130は、揮発性メモリ、不揮発性メモリ、ダイナミック・ランダム・アクセス・メモリ、スタティク・メモリなどでよい。
【0022】
信号アナライザ100は、取込みメモリ130に機能的に結合された制御器140を含み、取込みメモリ130からのI及びQベースバンド成分情報にアクセスし及び/又はこの情報を処理する。制御器140は、データの実際の取込み期間又はその後に取込みデータにアクセスし及び/又はこのデータを処理する。制御器140も表示ユニット150に結合され、表示ユニット150での表示用に対応波形又はスペクトラムを発生する。
【0023】
RF/IF変換器112、ADC108、デジタル・ダウンコンバータ115、パワー検出器/復調器セクション145、トリガ回路147、取込みメモリ130、制御器140及び表示ユニット150の任意のものは、ハードウェア、ソフトウェア、ファームウェア、又はこれらの任意の組合せを用いてもよいし実現できる。
【0024】
図1Bは、図1Aに示す試験測定機器100に類似した本発明による試験測定機器105のブロック図であるが、アナログ・パワー検出器/復調器セクション146を含んでいる。このセクション146は、IF信号114を受け、トリガ回路147用のイネーブル信号を発生する。
【0025】
図1Aの信号アナライザ100と同様に、信号アナライザ105は、種々の他の回路又はソフトウェア・コンポーネント、入力、出力、及び/又はインタフェースを含めることが理解できよう。これらは、図示する必要がないが、信号アナライザ105の図示のコンポーネントの間に又は関連して配置される。
【0026】
被試験電気信号、好ましくは、RF信号を入力端子110にて受ける。RF/IF変換器112により、RF信号をIF信号に変換する。このRF/IF変換器112は、入力信号を濾波して、この入力信号内のノイズを低減する。アナログ・パワー検出器/復調器セクション146は、RF/IF変換器112からIF信号を受け、IF信号のパワー・レベルを求める。パワー・レベルが所定の又はユーザ指定可能なパワーしきい値を超えたときに、アナログ・パワー検出器/復調器セクション146は、トリガ・イネーブル信号を発生する。
【0027】
信号アナライザ105は、トリガ回路147を含み、トリガ・イネーブル信号に応答して、少なくとも1つの時間領域トレースに関連したイベントにてトリガを行う。時間領域トレースは、例えば、位相対時間トレース、周波数対時間トレース、又は振幅(パワー対時間)トレースを含む。アナログ位相復調器120又はアナログ周波数復調器125の如き1個以上のアナログ復調器により、時間領域トレースを発生する。いくつかの実施例において、パワー・レベルが所定又はユーザ指定可能なパワーしきい値を超えた後に、1個以上のアナログ復調器は、時間領域トレースを発生する。
【0028】
図2は、図1Aに示す試験測定機器100に類似の本発明の他の実施例の試験測定機器200のブロック図である。しかし、ライン132に留意されたい。このライン132は、図2に示すように、Nビット情報に対応する複数のラインであり、ADC108の出力を取込みメモリ130に直接接続する。ライン132を介して受ける情報は、デジタル化RF信号を含み、この信号は、例えば、ダウンコンバータ115及び/又は制御器140を用いて、後で処理される。
【0029】
さらに、制御器140は、パワー検出器/復調器セクション145及びトリガ・セクション147を含み、取込みメモリ130から受けた情報を処理する。取込みメモリ130で1個以上の記録135に蓄積され、制御器140で処理された情報は、例えば、ライン132を介して受けたI及びQベースバンド成分情報又はデジタル化RF信号情報を含む。トリガ・セクション147は、イネーブルされると、取込みと実時間で又はその後に、周波数対時間トレース又は位相対時間トレースに関連した1つ以上のイベントにてトリガする。信号アナライザのユーザが分析のために表示ユニット150を用いて、トリガ・イベントでの又はその周辺での関心のある期間又は領域を表示できる。
【0030】
ADC108と、デジタル・ダウンコンバータ115と、取込みメモリ130と、パワー検出器/復調器セクション145及びトリガ・セクション147を含む制御器140と、表示ユニット150との任意のものは、ハードウェア、ソフトウェア、ファームウェア又はこれらの任意の組合せを用いたものでも、インプリメンテーションしたものでもよい。
【0031】
図3は、本発明の実施例による図1A及び2のパワー検出器/復調器セクション145のブロック図である。多くの最新の通信システムにおいて、RF信号の如き信号は、全ての時間でオンではない。むしろ、信号をパルス的にオンとなり、情報を通信し、信号をオフにする。他の動作が適切な中でRF信号が存在しないとき、パワー検出器/復調器セクション145は、ノイズの存在により無効データを発生するのを防止する。
【0032】
例えば、パワー検出器300は、I及びQベースバンド成分情報を用いて、パワー・レベルを求める。より限定的には、パワー検出器300は、I^2+Q^2を計算し、即ち、Iの二乗とQの二乗とを加算して、RF信号のエンベロープ・パワーを求める。所定又はユーザ指摘可能なパワーしきい値310を、パワー検出器300が発生したパワー・レベルと比較する。比較器305は、機能的にパワー検出器300に結合され、パワーしきい値310を、パワー検出器300から受けたパワー・レベルと比較する。その結果、比較器305は、ロジック信号315を発生する。ロジック信号315を用いて、位相復調器320及び周波数復調器325の如き1個以上の復調器をイネーブルする。「復調器」は、異なる形式の復調器回路又はソフトウェアを含んでもよく、これには位相、周波数又は振幅の弁別器、及び/又は任意の形式の適切な復調器を含んでもよいことが理解できよう。復調器は、他の可能性の中でも、例えば、直交振幅変調(QAM)、直交位相シフト・キーイング(QPSK)、及び/又はパルス振幅変調(PAM)の要素も含むことができる。
【0033】
いくつかの実施例において、ロジック信号315が高であると、パワー・レベルが所定又はユーザ指定可能なパワーしきい値310を超えて、復調器320及び325がイネーブルされる。1個以上の復調器(例えば、320及び/又は325)は、IQベースの時間領域データ又はトレースを発生する。一例として、位相復調器320は、[IでQを除算]のアークタンジェント、即ち、ARCTAN(Q/I)を計算して、各ダウンコンバージョンのサンプル点の位相を発生する。周波数復調器325は、位相の時間に関する導関数、即ち、d/dt(位相)を計算して、ダウンコンバージョンした各サンプル点にて瞬時周波数を発生する。位相復調器320及び周波数復調器325が位相及び周波数を用いて、位相対時間トレース及び周波数対時間トレースを夫々発生し出力する。パワー検出器300が検出したパワー・レベルが所定又はユーザ指定可能なパワーしきい値を超えたときに、イネーブル・ポート322及び327がイネーブル信号315を受ける。さらに、I及び/又はQ信号の振幅が求まり、これら振幅を用いて、IQベースの時間領域トレース又は情報を発生する。
【0034】
この方法において、位相及び周波数の復調器をイネーブルして、振幅軌跡、位相軌跡、又は周波数軌跡を発生して、かかる軌跡でトリガする。軌跡は、例えば、しきい値を通過するある方向での振幅、位相又は周波数の遷移である。本発明のいくつかの実施例において、有効なRF信号が信号アナライザの入力端子に存在するときに、位相及び周波数の復調器は、イネーブルされてIQベースの時間領域トレースを発生する。また、有効RF信号が存在しないとき又は入力端子にノイズを単に受けたときに、位相及び周波数の復調器は、IQベースの時間領域トレースの発生を阻止される。
【0035】
さらに、ロジック信号315は、トリガ回路147に伝送されるトリガ・イネーブル信号340を含むか又は対応する。用語「トリガ回路」は、図1Aのトリガ回路147又は図2のトリガ回路(セクション)147のいずれかを含むように広く理解すべきものである。トリガ回路147は、トリガ・イネーブル信号340に応答して、IQベースの時間領域トレースに関連したイベントにてトリガするので、特に、有効RF信号のないときに偽のトリガ信号を防げる。これとは異なり、トリガ回路147は、比較器305が発生したトリガ・イネーブル信号340を受けた後に、周波数対時間トレース又は位相対時間トレースに関連したイベントにてトリガする。
【0036】
遅延機能318をパワー検出器/復調器セクション145に含めて、比較器305が発生したロジック信号315を遅延できる。いくつかの実施例において、パワー・レベルがパワーしきい値310を所定期間にわたって超すまで、ロジック信号315を遅延する。この時間遅延により、RF信号又は導出したIQベースの時間領域トレースに存在する遷移イベントに対して、位相又は周波数を求める前に、又はイベントにてトリガする前に、安定させる。遅延機能318を用いるので、遅延したトリガ・イネーブル信号340に応答して又はその受信の後に、トリガ回路147は、IQベースの時間領域トレースに関連したイベントにてトリガする。
【0037】
パワー・レベルがパワーしきい値310の下に下がるまでのある期間、トリガ・イネーブル信号340により、トリガ回路147が継続的にイネーブルされる。代わりに、トリガ・イネーブル信号340により、所定期間又はユーザ指定可能期間中、トリガ回路147をイネーブルできる。イネーブルされると、周波数対時間トレース及び/又は位相対時間トレースの如き周波数又は位相の導出された情報の任意にてトリガを実行できる。すなわち、トリガ回路147がイネーブルされた後に、実際のトリガ・イベントが生じる。
【0038】
別の実施例において、位相及び周波数復調器(例えば、320及び/又は325)は、基本的には常にイネーブルされて(例えば、デフォルトでイネーブルされて)、トリガ回路147は、ロジック信号315又はトリガ・イネーブル信号340に基づいて、単にイネーブルされるか又はされない。すなわち、ロジック信号315を用いて、単にトリガ回路147を制御できる。上述の如く、遅延機能318を用いてトリガ・イネーブル信号340を遅延して、偽トリガを防げる。
【0039】
更に別の実施例において、位相及び周波数の復調器(例えば、320及び/又は325)は、常にイネーブルされる(例えば、デフォルトでイネーブルされる)。しかし、パワー検出器300が求めたパワー・レベルが所定又はユーザ指定可能なパワーしきい値未満のときに、ある条件において、位相及び周波数復調器の出力が抑制されるか分類される。
【0040】
図4は、本発明の実施例により、RF信号415と、パワー・レベル信号420と、種々のトリガ・イネーブル特性(例えば、425及び430)及びトリガ・イベント435を有するIQベースの時間領域トレース405とを含む簡略化した波形図400を示す。図1〜3のいくつかの要素を参照して、図4の種々の信号及びトレースについて説明する。
【0041】
位相及び周波数を正確に分析するために、信号を振幅又はパワーで識別できる。有効なRF信号415が存在しないと、信号アナライザの入力端子に407又は410などのノイズが存在するかもしれない。ノイズの位相も更なるノイズである。同様に、ノイズの周波数も更なるノイズである。したがって、パワー検出器300及び比較器305の如きコンポーネントを用いて、RF信号415を識別する、即ち、有効RF信号415が存在するまで、IQベースの時間領域トレース405又はイベント・トリガ(例えば、435)の発生を阻止する。図4に示すように、パワー・レベル420は、ノイズ407及び410が存在するときに低であり、有効RF信号415が存在するとき高である。パワー・レベル420が高のとき、位相復調器320及び周波数復調器325がイネーブルされて、周波数対時間トレース又は周波数対時間トレースの如きIQベースの時間領域トレース405を発生する。この例において、パワー・レベル420が所定又はユーザ指定可能なパワーしきい値310を超えた時点又はその付近で、IQベースの時間領域トレース405の発生が始まる。さらに、同じ時点又はその付近で、比較器305がトリガ・イネーブル信号425を発生するので、トリガ回路147をイネーブルする。
【0042】
パワー検出器/復調器セクション145に遅延機能318が含まれており、トリガ・イネーブル信号425ではなく遅延トリガ・イネーブル信号430を発生する。トリガ回路147がイネーブルされた後、IQベースの時間領域トレース405内のイベントがあるトリガ条件に合致するとき、トリガ・イベント435が生じ、ユーザによる分析のために、トリガ・イベント435周辺の波形又はスペクトラムを表示ユニット150に表示する。
【0043】
トリガ回路147がイベントにてトリガする条件は、信号アナライザのユーザが設定できる。種々の形式のトリガを構成できる。例えば、周波数対時間トレース又は位相対時間トレースの如きIQベースの時間領域トレース405がしきい値を超えるといつでも、トリガを発生できる。代わりに、IQベースの時間領域トレースが前もってしきい値未満の後にそのしきい値を超えるといつでも、トリガを発生できる。
【0044】
いくつかの実施例において、位相及び周波数の復調器は、ノイズを帯びる傾向があるので、トリガ回路147にヒステリシスを用いる。これにより、IQベースの時間領域トレース405が低しきい値を超えて高しきい値を超えるとき、トリガ・イベント435が生じる。すなわち、低しきい値を単に超えたトレース値をトリガ・イベントと見なさないので、偽トリガを避けることができる。
【0045】
いくつかの実施例において、時間によりトリガ・イベントを識別できる。すなわち、(a)所定期間よりも長い、(b)所定期間よりも短い、(c)所定時間レンジ内、(d)所定時間レンジ外の少なくとも1つに対して、IQベースの時間領域トレースがしきい値よりも上のとき、トリガ回路147は、IQベースの時間領域トレース405内のイベントでトリガできる。同様に、(a)所定期間よりも長い、(b)所定期間よりも短い、(c)所定時間レンジ内、(d)所定時間レンジ外の少なくとも1つに対して、IQベースの時間領域トレースがしきい値よりも下のとき、トリガ回路147は、IQベースの時間領域トレース405内のイベントでトリガできる。
【0046】
他の例として、トリガ・イベント435がラントにより生じる。ラントは、システムが未知状態に入るメタ・ステーブル状態にできる。例えば、IQベースの時間領域トレース405が低しきい値を超えたが、高しきい値を超えないときに、トリガ回路147は、IQベースの時間領域トレース405内のイベントにてトリガできる。ラントの極性は、正、負又はいずれかで選択できる。上述のように、このトリガ・イベント条件は、時間で識別されるトリガ・イベントと組み合わせることができる。
【0047】
いくつかの実施例において、ウィンドウによりトリガ・イベント435を識別できる。すなわち、低しきい値及び高しきい値の如き第1及び第2しきい値で特定されるウィンドウ内にIQベースの時間領域トレース405が入ったとき、トリガ回路147は、IQベースの時間領域トレース405内のイベントでトリガできる。第1及び第2しきい値で特定される、又は低及び高のしきい値で特定されるウィンドウの外部にトレースがなると、トリガ・イベントとなる。ウィンドウ条件を、上述の時間識別条件と組み合わせることもできる。
【0048】
いくつかの実施例において、ロジック状態によりトリガ・イベント435を識別できる。例えば、I及びQベースバンド成分情報の組合せが所定の又はユーザ指定可能なロジック状態に対応したとき、トリガ回路147は、IQベースの時間領域トレース405内のイベントでトリガできる。この条件を上述の時間識別条件と組み合わせることができる。
【0049】
いくつかの実施例において、トリガ・イベント435をシーケンスにより識別できる。例えば、所定の状態シーケンスに応答して、トリガ回路147は、IQベースの時間領域トレース405内のイベントにてトリガできる。この状態は、例えば、IQベースの時間領域トレースがしきい値よりも上の第1状態と、IQベースの時間領域トレースがしきい値よりも下の第2状態とを含む。シーケンスとしてのこの状態は、トリガ条件を定めることができる。
【0050】
これらの及び他のトリガ基準及び/又はトリガ条件を用いて、トリガ回路147は、IQベースの時間領域トレース405内の1つ以上のイベントにてトリガできる。また、本発明の実施例は、ここで特に開示したこれらトリガ基準及び条件に限定されるものではないことが理解できよう。
【0051】
図5は、本発明の実施例により、種々の特性及びトリガ技術を示す周波数対時間のトレース図500にてプロットした周波数ホッピング信号を示す。この例の図において、垂直軸に沿ってメガヘルツ(MHz)の単位での周波数であり、水平軸に沿って時間の単位であって、基準周波数値に関する周波数測定結果を表す。図5において、周波数は、中心周波数に対して示されるが、これは、信号アナライザの表示としては典型的なものである。信号アナライザは、中心周波数設定を制御するので、ユーザが望むならば、この情報を絶対周波数にて提供可能である。
【0052】
この例において、ユーザは、周波数の観点からトリガ・レベルを設定できる。周波数が約+10MHzより上のときにトリガすることにより、ユーザは、周波数ホップピング505の立ち上がりエッジの周囲で取込みデータを収集できる。同様に、+30MHzよりもわずかに上でトリガ・レベルを設定することにより、ユーザは、周波数ホップピングにて小さなオーバーシュート510の周囲でデータを収集できる。
【0053】
この周波数ホップピング期間中のパワー・レベルが一定なので、振幅での機器のトリガは、このイベントを見ることができない。さらに、デジタル・ダウンコンバータ115による変換の前の信号振幅での機器トリガも周波数ホップピング505でのトリガができない。従来の周波数マスク・トリガ・アプローチを用いたのでは、単なるオーバーシュート510でのトリガが困難か不可能であった。その理由は、例えば、点の細かさの限界のためである。すなわち、周波数マスクでは、オーバーシュートが少なくとも数マイクロ秒の時間長であることが必要である。その一方、ここで記載した実施例を用いて、オーバーシュート510をナノ秒のオーダーにでき、依然容易にトリガ可能である。上述のように、同様な特徴及びトリガ技術を位相対時間トレースに適用する。
【0054】
図6は、本発明の実施例により、周波数又は位相時間領域トレースに関連したイベントでのトリガを説明する流れ図600である。動作は、ステップ605で開始し、信号アナライザ又はオシロスコープの如き試験測定機器の端子にて、RF信号を受ける。ステップ610にて、ADCを用いてRF信号をデジタル化する。処理は、ステップ615に進み、デジタル化信号をダウンコンバージョンして、I及びQベースバンド成分情報を発生する。
【0055】
ステップ620にて、I及びQベースバンド成分情報を用いてパワー・レベルを求める。次に、ステップ625にて、所定又はユーザ指定可能なパワーしきい値をパワー・レベルと比較し、このパワー・レベルがパワーしきい値を超えたか否かの判断を行う。ノーの場合、動作が初めに戻り、処理を繰り返す。そうではなくイエスの場合、パワー・レベルがパワーしきい値を超えたときに処理がステップ630及び635に進み、比較器がイネーブル信号を発生する。ステップ630にて、1個以上の周波数又は位相の復調器がイネーブルされて、IQベース時間領域トレース情報の発生を開始する。ステップ635にて、イネーブル信号を遅延できるので、パワー・レベルがパワーしきい値を所定期間だけ超えるまで、遅延機能がトリガ・イネーブル信号を発生する。処理は、ステップ640に進み、トリガ回路をイネーブルしてトリガ・イベントを検出できるようにする。ステップ645にて、トリガ回路は、周波数又は位相のIQベース時間領域トレース内のイベントにてトリガを行う。
【0056】
特定の実施例について上述したが、本発明の原理はこれら実施例に限定されるものではないことが明らかである。例えば、任意の形式のトリガ基準を用いて、IQベースの時間領域トレース内のイベントにて、且つ、トリガ回路がイネーブルされている期間中にてトリガできる。トリガ・イネーブル識別は、他の適切なイネーブル識別の中でも、振幅、パワー、又はI及びQベースバンド成分情報の状態に基づく。いくつかの実施例において、フロッピー(登録商標)ディスク、光ディスク、固定ディスク、揮発性メモリ、不揮発性メモリ、ランダム・アクセス・メモリ、リード・オンリ・メモリ又はフラッシュ・メモリを含む媒体は、関連命令を有するマシン・アクセス可能な媒体であり、これら命令を試験測定機器で実行した際に、上述の本発明の種々の実施例のステップをマシンにて実行できる。本発明の要旨を逸脱することなく、種々の変形変更が可能である。
【符号の説明】
【0057】
100、105、200 試験測定機器
108 アナログ・デジタル変換器(ADC)
110 入力端子
112 RF/IF変換器
115 デジタル・ダウンコンバータ
120 アナログ位相復調器
125 アナログ周波数復調器
130 取込みメモリ
135 記録
140 制御器
145 パワー検出器/復調器セクション
146 アナログ・パワー検出器/変調器セクション
147 トリガ回路(セクション)
150 表示ユニット
300 パワー検出器
305 比較器
318 遅延機能
320 位相復調器
325 周波数復調器
図1A
図1B
図2
図3
図4
図5
図6