(58)【調査した分野】(Int.Cl.,DB名)
中心軸に対して回転対称な形状を有し可視光に対して透明な第1光学素子であって、前記第1光学素子は、第1部分と、前記第1部分に接続する第2部分を有し、前記第1部分は、凹面および平坦な面のうちの一方の形状を有する底面と、前記底面に接続する側面と、を有し、前記第2部分は、上面と、前記上面に接続する側面と、を有し、前記第1部分の前記側面と前記第2部分の前記側面は、接合部を有し、前記接合部は前記底面から前記接合部へ向かって広がる形状を有する、第1光学素子を、備え、
前記中心軸と交差する中心を有する第1領域と、前記第1領域の外側の第2領域と、を有する部材が記第1部分の底面に対向して配置され、かつ前記中心軸を含む平面で前記第1光学素子の断面を取ったとき、前記断面において、前記第1部分の前記側面は、この側面上の第1の点が、前記部材上の点のうち前記中心軸に対して前記第1の点側に位置する点でかつ前記第1領域内の点を第2の点とし、前記第1の点における前記第1部分の外向き法線ベクトルと、前記第1の点から前記第2の点に向かう第1ベクトルとの成す角θPが、前記第1部分における全反射角θCよりも大きくなるように構成され、
前記断面において、前記第2部分の側面は、この側面上の第3の点が、前記部材上の点のうち前記中心軸に対して前記第3の点側に位置する点でかつ前記第2領域内の点を第4の点とし、前記第3の点における前記第2部分の内向き法線ベクトルと、前記第3の点から前記第4の点に向かうベクトルとの成す角θQが、前記第2部分における全反射角θCよりも大きくなるように構成された、広配光レンズ。
前記第1光学素子には、前記中心軸に沿って回転対称な空孔が設けられ、前記空孔の前記中心軸に直交する面によって切断された断面積は、前記第2部分から前記第1部分に向かうにつれて小さくなる請求項1記載の広配光レンズ。
前記第1光学素子の前記接続部材にオスネジが設けられ、前記第2光学素子の前記貫通孔にメスネジが設けられ、前記オスネジと前記メスネジが結合する請求項4記載の広配光レンズ。
前記断面において、前記第2部分の前記側面上の点は、前記中心軸からの距離が、前記第1部分と接続する点から前記第2部分の前記上面に向かうにつれて単調に減少する請求項1記載の広配光レンズ。
前記断面において、前記空孔の内面上の第5の点は、前記部材上の点のうち、前記中心軸に対して前記第5の点の側に位置する点でかつ前記第2領域上の点を第6の点とし、前記第5の点における前記内面の内向き法線ベクトルと、前記第5の点から前記第6の点に向かうベクトルとの成す角θVが、前記第2部分における全反射角よりも大きい請求項5記載の広配光レンズ。
前記第2部分の前記側面の端部のうち、前記部材に近い側の前記中心軸からの距離は、前記第2光学素子の第4部分の前記上面の、前記中心軸からの距離の最大値よりも小さい請求項1記載の広配光レンズ。
前記第2部分の前記側面の端部のうち、前記部材に近い側の前記中心軸からの距離は、前記第2光学素子の前記第4部分の前記上面の端部のうち、前記発光面から遠い側の前記中心軸からの距離に等しい請求項1記載の広配光レンズ。
【発明を実施するための形態】
【0012】
以下、図面を参照して実施形態を説明する。
【0013】
(第1実施形態)
第1実施形態による照明装置は、発光モジュール(発光素子)と、広配光レンズと、を備えている。この広配光レンズの鳥観図を
図1に示す。この広配光レンズ7は、光学素子80と、接合柱82と、基本光学素子90と、を備えている。
【0014】
基本光学素子90は、第1部分91aと、この第1部分に接続する第2部分91bと、を備えている。第1部分91aの底面は平坦で発光素子からの光が入射する入射面となる。第1部分91aの側面は、第2部分91bの側面に接し、同じサイズと形状を有する接合面で接続されており、この接合面は上記入射面よりも大きい。ここで、接合面は、中心軸に直交する平面で切断した断面を意味する。第1部分91aの側面は、第1部分91aの中心軸に向かって凹むような形状を有している。すなわち、第1部分91aは、その底面から接合面に向かうに連れてすなわち下方から上方に向かうに連れて、断面積が増大し、かつ側面が第1部分91aの中心軸に向かって凹むような形状を有している。ここで、「上方」および「下方」とはそれぞれ、中心軸5の正方向および負方向に対応する。正方向は、発光モジュールから光りが取り出される方向とする。また、断面積とは、中心軸に直交する平面で切断した面積を意味する。第2部分91bの上面(全反射面)93は中心軸に向かって凹むような形状を有し、側面は下方から上方に向かうにつれて第2部分91bの断面積が減少するテーパー形状を有している。そして、基本光学素子90の中央部には、中心軸に沿って貫通孔11が設けられている。この貫通孔11は、第1部分91aにおいては入射面92から上方に向かうに連れて断面積が減少する形状を有し、第2部分91bにおいては下方から上方に向かうにつれて断面積が増大する形状を有している。図示しない発光素子から貫通孔11に入射した光は直進し、貫通孔11を通らずに第1部分91aに入射した光は上面(全反射面)93で全反射される。
【0015】
光学素子80は、第1部分81aと、この第1部分81aに接続する第2部分81bと、を備えている。第1部分81aの底面85は凹面であり、側面84は基本光学素子90の全反射面93に接続する接続面となる。また、第1部分81aの側面84と、第2部分81bの側面83は、同じサイズと形状を有する接合面で接続し、この接合面は前記底面よりも大きい。第2部分81bの側面83は、光学素子80を通過してきた光を全反射または屈折透過する全反射/屈折透過面となる。第2部分81bの上面(中心軸の正方向側の面)は、側面83に接続し、中央部に向かって凸となる形状を有している。接合柱82は、第1部分81aの側面に設けられる。この接合柱82により、光学素子80と基本光学素子90は接合される。その際、接合柱82が基本光学素子90に接する面は、接着剤などで接着してもよい。接合柱82の柱の長さは、光学素子80と基本光学素子90の間に空気層ができるように定められる。
【0016】
本実施形態の広配光レンズ7においては、基本光学素子90および光学素子80はいずれも、アクリルで形成される。しかし、かならずしもこの限りではなく、可視光に対して透明な材料であれば何でもよい。例えば、基本光学素子90はガラスとし、光学素子80はポリカーボネートとしてもよい。このように材料を選べば、アクリルを用いるものよりも耐熱性を高くできる。以下では、アクリルの屈折率をnとする。この屈折率nの値は、約1.49である。これに対する全反射角θcは、
【数1】
と表わされる。
【0017】
次に、基本光学素子90および光学素子80の断面形状について、
図2を参照して説明する。
【0018】
まず、本実施形態の照明装置9に用いられる発光素子1およびそれを基準とする座標系について説明する。発光素子1の発光面2は、基本光学素子90の入射面92に対向するように配置される。ここで、発光面2の中心O’を発光面2の重心とする。広配光レンズの中心軸5は、中心O’を通り、発光面2に直交する。中心軸5の原点Oは、中心軸5と入射面92が交わる点とする。
【0019】
発光素子1は面光源であり、発光素子1の発光面2は、例えば直径14mmの円形状である。ただし、発光面2の寸法と形状はこれに限るものではない。発光面2の面積をCとすると、発光面2の面積の半分を有する仮想的な円の半径r
Aは、
【数2】
となる。発光面の直径を14mmとすると、r
Aは約4.9mmとなる。点Aを中心軸5からの距離がr
Aとなる、発光面2上の点とする。ただし、点Aはこれに限るものではなく、中心軸5からの距離がr
A以下となる点ならばなんでもよい。
【0020】
(基本光学素子90の断面形状)
次に、基本光学素子90の断面形状について説明する。基本光学素子90は、中心軸5に沿って貫通穴11が設けられている。
【0021】
原点Oから中心軸5に沿って光が取り出される方向をz方向とし、z方向と直交する方向をx方向とし、入射面上92で中心軸5に対する距離が最短となる点の、中心軸5からの距離をlとする。すると、全反射面93の形状は、
【数3】
で表すことができる。式(3)および式(4)において、媒介変数Θは、
0≦Θ<π (5)
の範囲内に含まれる有限領域である。式(3)および式(4)において、実数定数θ
aは、
【数4】
のとき、全反射面93を最もコンパクトにできる。
【0022】
このとき、全反射面93の有限領域の各点Pは、点Pにおける全反射面93の内向き法線ベクトル、すなわち材料の内部に向かうベクトルを内向き法線ベクトルとすると、点Pと点Aを結ぶベクトルPAとの成す角θ
Pが
θ
P>θ
C (8)
を満たす。
【0023】
式(3)および式(4)において、実数定数lは、
l<r
A (9)
である。また、全反射面93が中心軸5に最も近づく点の座標は、
【数5】
である。このとき、この点における法線ベクトルは中心軸5と直交する。
【0024】
(光学素子80の断面形状)
次に光学素子80の断面形状について説明する。光学素子80は、全反射面93に沿って接続面84が設けられている。接続面84は、全反射/屈折透過面83と繋がっている。接続面84は底面85にも繋がっている。この接続面84は、基本光学素子90の全反射面93に沿った形状を有しているので、全反射面93と同様に(8)式を満たす。底面85は、凹面になっている。
【0025】
これらの面はいずれも、中心軸5に対して回転対称である。ここで回転対称とは、中心軸5に対して対象物を回転したときに、360度回転するまでにもとの形状と一致することを意味する。例えば、円柱や四角柱も回転対称である。
【0026】
接続面84には、接続柱82が3つ設けられている。この接続柱82は、基本光学素子90の全反射面93に設けられた3つの穴(図示せず)に差し込まれる。この接続柱82の接合面は接着剤により上記穴に接着してもよい。接続柱82の柱の長さは、接続面84と全反射面93の面間隔が0.1mmとなるように定められる。ただし、面間隔は、可視光の波長以上であればよく、これに限るものではない。
【0027】
接続面84の、中心軸5からの距離の最大値は、発光素子1の端点の中心軸5からの距離に等しい。つまり、ここでは7mmである。ただし、この限りではない。
【0028】
全反射/屈折透過面83は、中心軸5上において上に凸の頂点86を持つ。全反射/屈折透過面83の面上に点Qをとり、発光面2上の点のうち、中心軸5に対して点Q側の点で、かつ中心軸5からの距離がr
Aよりも大きい点をBとする。ここでは、中心軸5から点Bまでの距離は約5.0mmである。点Qにおける内向き法線ベクトルと、点Qと点Bを結ぶベクトルQBとの成す角をθ
Qとしたとき、θ
Qは、
θ
Q>θ
C (12)
を満たす。ここでは、θ
Qは約53度である。
【0029】
次に、本実施形態の広配光レンズ7の機能について
図3乃至
図5を参照して説明する。
図3乃至
図5は中心軸5を含む断面図である。なお、これらの図に、発光素子1の発光面2から発せられた光の光線を付加している。
【0030】
まず、
図3を参照して説明する。発光面2から、中心軸5に沿った方向に発せられ、かつ貫通孔11を通る光線31は、底面85に入射し、屈折によって光線31は広がる方向に向かう。さらに、全反射/屈折透過面83によって屈折透過され、中心軸5の正方向側に射出される。つまり、前方側(中心軸5の正方向側)の光線はこのようにして作り出される。
【0031】
次に、
図4を参照して説明する。発光面2の、点Aあるいはそれよりも中心軸5に近い領域から発せられ、かつ入射面92に入射した光線32は、全反射面93によって全反射される。そして、基本光学素子の射出面より、中心軸5の負の方向側に最終的に射出される。つまり、後方側(中心軸5の負方向側)の光線32はこのようにして作り出される。
【0032】
点Aの、中心軸5からの距離は、式(2)で表わされる距離に等しい。つまり、発光面2の面積の半分を有する仮想的な円の外縁に位置する。これにより、発光面2から発光される全光線のうち半分近くの光線が、このように後方側に最終的に射出されることになる。
【0033】
最後に、
図5を参照して説明する。発光面2の、点Bよりも中心軸5から遠い領域から発せられ、かつ入射面92に入射した光線33は、全反射面93を透過する。透過した直後の光線33は、接続面84に入射され、光学素子80内を伝搬する。そして、全反射/屈折透過面83によって一旦全反射される。そしてさらに、同じ全反射/屈折透過面83によって、屈折透過される。すなわち、全反射/屈折透過面83は、屈折透過面ともなる。このようにして、光線33は、光学素子80より、中間側(前方側と後方側の間)に最終的に射出される。
【0034】
以上述べたように、発光素子1の発光面2の3つの領域から発せられた光線は、それぞれ前方側、後方側、中間側へと最終的に射出される。このようにして、光線が全方位へと射出され、広配光が実現される。
【0035】
実際、シミュレーションによって配光分布を計算した結果を
図6に示す。この
図6は、各配光角に対する光度(規格化されたもの)をレーダーチャートで示したものである。この
図6より、配光角の1/2が約300度であることがわかる。
【0036】
以上で述べた構成は、この限りではない。また、平行や直交といった記述は、製品の精度も考え、0度より大きく2度以下の角度のずれは誤差の範囲と見なす。
【0037】
全反射/屈折透過面83の、発光面2に近い側の端点の中心軸5からの距離は、基本光学素子90の射出面93の、発光面2から最も遠い側の端点の、中心軸5からの距離よりも小さい。これにより、照明装置9の全体の高さを抑えることができ、コンパクトにすることができる。
【0038】
以上説明したように、第1実施形態によれば、配光角を十分に確保しつつコンパクト化することのできる広配光レンズおよび
照明装置を提供することが可能となる。
【0039】
(第2実施形態)
第2実施形態による照明装置を
図7に示す。この第2実施形態の照明装置9は、発光素子1と、広配光レンズ7と、を備えている。この広配光レンズ7は、光学素子80と、基本光学素子90とを備えている。この広配光レンズ7の光学素子80と基本光学素子90を分離したときの鳥観図を
図8に示す。広配光レンズ7は、
図7に示す中心軸5に対して回転対称な形状を有している。
【0040】
基本光学素子90は、丸い形状の平坦な底面92と、中心に向かって凹む形状の上面93と、側面94とを備えている。基本光学素子90の上面(全反射面)93は、凹面である。底面92は、発光素子1からの光が入射する入射面となる。側面94は、射出面となる。側面94は、中心軸5に対して凸形状を有するとともに底面92から上面93に向かうにつれて断面積が増大する形状を有している。また、基本光学素子90の中央部には、中心軸に沿って貫通孔11が設けられている。この貫通孔11は、入射面92から上面に向かうに連れて断面積が一旦減少し、その後断面積が増大する形状を有している。
【0041】
光学素子80は、第1部分81aと、この第1部分81aに接続する第2部分81bと、第1部分81aの底面85の中央部に接続する接合柱82と、を備えている。接合柱82により、光学素子80と基本光学素子90は接合される。本実施形態においては、接合柱82の先端はオスネジになっており、基本光学素子90の貫通孔11はメスネジになっている。これにより、光学素子80と基本光学素子90は接着剤を用いることなく、簡便に接合可能となる。接合柱82の柱の長さは、光学素子80と基本光学素子90の間に空気層ができるように定められる。このように、光学素子80と、基本光学素子90は、接合柱82によって着脱可能である。なお、接合柱82および貫通孔11をネジ形状にせずに接着剤により接着し固定してもよい。
【0042】
光学素子80の第1部分81aの底面85は平坦であり、側面84は基本光学素子90の全反射面93に接続する接続面となる。また、第1部分81aの側面84と、第2部分81bの側面83は、同じサイズと形状を有する接合面で接続し、この接合面は底面85よりも大きい。第2部分81bの側面83は、光学素子80を通過してきた光を全反射または屈折透過する全反射/屈折透過面となる。第2部分81bの上面88は中心に向かって凹む形状を有している。すなわち、第2部分81bの上面88は凹面となっている。この上面88を内面ともいう。また、光学素子80の中央部には、中心軸5に沿って空孔87が設けられている。この空孔87は、上面88から下方に向かって断面積が減少するが、底面85には達しない形状を有する。
【0043】
本実施形態においては、発光素子1は面光源であり、発光素子1の発光面2は長方形であり、そのサイズは10mm×16mmである。ただし、発光面2の寸法と形状はこれに限るものではない。発光面2の面積をCとすると、発光面2の面積の半分を有する仮想的な円の半径r
Aは、
【数6】
となる。発光面2のサイズを10mm×16mmであるとすると、r
Aは約5.0mmとなる。点Aは中心軸5からの距離がr
Aとなる発光面2上の点とする。
【0044】
(基本光学素子90および光学素子80の断面形状)
次に、基本光学素子90と光学素子80の断面形状について、
図9を参照して説明する。
【0045】
まず、基本光学素子90について説明する。中心軸5からの距離がr
Aで、かつ発光面2上の点をAおよびBとする。つまり、ここでは点Aと点Bは同じものとする。中心軸5を含む平面で断面をとったとき、射出面94上の点Xにおいて、点Xにおける内向き法線ベクトルと、点Xと点Bを結ぶベクトルXBとの成す角をθ
Xとしたとき、θ
Xは、 θ
X>θ
C
を満たす。
【0046】
(光学素子の断面形状)
光学素子80について説明する。光学素子80は、全反射面93に沿って接続面84が設けられている。接続面84は、全反射/屈折透過面83とつながっている。接続面84は底面85にもつながっている。この接続面84は、基本光学素子90の全反射面93に沿った形状を有しているので、全反射面93と同様に(8)式を満たす。底面85は、平坦であり、その中央部において接続柱82が接続されている。全反射/屈折透過面83の、発光素子1の発光面2に近い側の端点の中心軸5からの距離は、基本光学素子90の射出面94の発光面2から最も遠い側の端点の、中心軸5からの距離と等しい。
【0047】
中心軸5を含む平面で断面をとったとき、全反射/屈折透過面83上の点X‘において、点X’における内向き法線ベクトルと、点X‘と点Bを結ぶベクトルX’Bとの成す角をθ
X’としたとき、θ
X’は、
θ
X’>θ
C
を満たす。
【0048】
光学素子80には、上述したように、空孔87が設けられている。中心軸5を含む平面で断面をとったとき、空孔87の内面88上の点をYとする。発光素子1の発光面2上の端点のうち、中心軸5に対して点Y側の点をEとする。このとき、点Yにおける内向き法線ベクトルと、点Yと点Eを結ぶベクトルYEとの成す角をθ
Yとしたとき、θ
Yは、 θ
Y>θ
C
を満たす。
【0049】
次に、第2実施形態の照明装置9の機能について
図10乃至
図13を参照して説明する。
図10乃至
図13は、中心軸5を含む断面図である。なお、これらの図に、発光素子1の発光面2から発せられた光の光線を付加している。
【0050】
まず、
図10を参照して説明する。発光素子1の発光面2上の中心付近から発せられた光線34は、接続柱82に入射し、接続柱82に設けられているネジ部によって、ほぼ拡散透過され、最終的に全方位に射出される。つまり、発光面2の中心付近から発せられた光線34は、第1実施形態と異なり、前方に射出されない。そのため、最終的に前方に射出される成分は他で生み出す必要がある。
【0051】
次に、
図11を参照して説明する。発光素子1の発光面2上の、点Bから点Eの間の領域から発せられ、かつ入射面92に入射する光線35は、射出面94で全反射される。さらに全反射面93を透過し、接続面84に入射し、空孔87の内面88から屈折透過され、前方側に射出される。
【0052】
次に、
図12を参照して説明する。発光面2上の点Eから発せられ、かつ入射面92に入射する光線36は、全反射面93を透過し、接続面84に入射する。その後、空孔87の内面88によって全反射される。さらに、全反射/屈折透過面83より屈折透過され、中心軸5の中間側に射出される。
【0053】
最後に、
図13を参照して説明する。発光面2上の、点Bから点Eの間の領域から発せられ、かつ入射面92に入射する光線37は、全反射面93を透過し、接続面84に入射する。その後、全反射/屈折透過面83で全反射される。さらに空孔87の内面88で屈折透過され、中間側から前方側に射出される。
【0054】
なお、後方側に射出されることについては、第1実施形態の
図4に示す場合と同様となる。すなわち、発光素子1の発光面2から出射され、入射面92に入射し、基本光学素子90の全反射面93によって全反射された光が後方側に射出される。
【0055】
以上説明したように、発光素子1の発光面2から発せられた光線は、それぞれ前方側、中間側、後方側へと最終的に射出される。
【0056】
このようにして、光線が全方位へと射出され、広配光が実現される。また、全反射/屈折透過面83と基本光学素子90の射出面94は、滑らかにつながっている。このようにすることで、最終的に光射出される面が滑らかとなり、配光分布を滑らかにすることができる。
【0057】
以上説明したように、第1実施形態によれば、配光角を十分に確保しつつコンパクト化することのできる広配光レンズおよび照明装置を提供することが可能となる。
【0058】
(第3実施形態)
第3実施形態による照明装置について
図14乃至
図16を参照して説明する。
図14は、第3実施形態による照明装置の鳥観図である。この第3実施形態の照明装置9は、発光素子1と、広配光レンズ7と、を備えている。この広配光レンズ7は、光学素子80と、基本光学素子90とを備えている。この広配光レンズ7の光学素子80と基本光学素子90を分離したときの鳥観図を
図15に示す。広配光レンズ7は、
図14に示す中心軸5に対して回転対称な形状を有している。
図16は、第3実施形態の照明装置9の断面図である。
【0059】
基本光学素子90は、凹部形状を有する底面92と、中心に向かって凹む形状の上面93と、側面94とを備えている。基本光学素子90の上面(全反射面)93は、凹面である。底面92は、発光素子1からの光が入射する入射面となる。側面94は、射出面となる。側面94は、中心軸5に対して凸形状を有するとともに底面92から上面93に向かうにつれて断面積が一旦増大し、その後断面積が減少する形状を有している。また、基本光学素子90の中央部には、中心軸に沿って貫通孔11が設けられている。この貫通孔11は、入射面92から上面に向かうに連れて断面積が一旦減少し、その後断面積が増大する形状を有している。
【0060】
光学素子80は、第1部分81aと、この第1部分81aに接続する第2部分81bと、第1部分81aの底面81a1の中央部に接続する接合柱82と、を備えている。接合柱82により、光学素子80と基本光学素子90は接合される。本実施形態においては、接合柱82の先端はオスネジになっており、基本光学素子90の貫通孔11はメスネジになっている。これにより、光学素子80と基本光学素子90は接着剤を用いることなく、簡便に接合可能となる。接合柱82の柱の長さは、光学素子80と基本光学素子90の間に空気層ができるように定められる。このように、光学素子80と、基本光学素子90は、接合柱82によって着脱可能である。なお、接合柱82および貫通孔11をネジ形状にせずに接着剤により接着し固定してもよい。
【0061】
光学素子80の第1部分81aの側面84は基本光学素子90の全反射面93に接続する接続面となる。また、第1部分81aの側面84と、第2部分81bの側面83は、同じサイズと形状を有する接合面で接続し、この接合面は底面よりも大きい。第2部分81bの側面83は、発光面2から発せられた光を全反射または屈折透過する全反射/屈折透過面となる。第2部分81bの上面88には、中心軸5に沿って第2の部分81bの接合面に通じる空孔87が設けられている。この空孔87の側面88を内面ともいう。この空孔87は、上方から下方に向かって断面積は、ほぼ同じであり、円柱形状を有する。この空孔87は、第1部分81aに続いており、第1部分81aにおいて下方に向かうにつれて断面積が減少する形状を有している。
【0062】
発光素子1は、基板101の上に載置されている。基板101と発光素子1は熱的に接続されている。本実施形態においては、発光素子1は面光源であり、発光素子1の発光面2は、長方形であり、そのサイズは10mm×16mmである。ただし、発光面2の寸法と形状はこれに限るものではない。発光面2の面積をCとすると、発光面2の面積の半分を有する仮想的な円の半径r
Aは、
【数7】
となる。発光面2のサイズを10mm×16mmであるとすると、r
Aは約5.0mmとなる。点Aは中心軸5からの距離がr
Aとなる発光面2上の点とする。ただし、点Aはこれに限るものではなく、中心軸5からの距離がr
A以下となる点ならばなんでもよい。
【0063】
(基本光学素子90および光学素子80の断面形状)
次に、基本光学素子90と光学素子80の断面形状について、
図16を参照して説明する。
【0064】
まず、基本光学素子90について説明する。中心軸5からの距離がr
Aで、かつ発光面2上の点をAおよびBとする。つまり、ここでは点Aと点Bは同じものとする。
【0065】
中心軸5を含む平面で断面をとったとき、射出面94上の点Xにおいて、点Xにおける内向き法線ベクトルと、点Xと点Bを結ぶベクトルXBとの成す角をθ
Xとしたとき、θ
Xは、
θ
X>θ
C
を満たす。
次に、光学素子80について説明する。光学素子80は、全反射面93に沿って接続面84が設けられている。接続面84は、全反射/屈折透過面83とつながっている。接続面84は、底面81a1に接続されており、その底面81a1の中央部において接続柱82が接続されている。接続面84は、基本光学素子90の全反射面93に沿った形状を有しているので、全反射面93と同様に(8)式を満たす。底面81a1は、平坦である。
【0066】
全反射/屈折透過面83の、発光面2に近い側の端点の中心軸5からの距離は、基本光学素子90の射出面94の発光面2から遠い側の端点の、中心軸5からの距離と等しい。
中心軸5を含む平面で断面をとったとき、全反射/屈折透過面83上の点X‘において、点X’における内向き法線ベクトルと、点X‘と点Bを結ぶベクトルX’Bとの成す角をθ
X’としたとき、θ
X’は、
θ
X>θ
C
を満たす。
光学素子80には、上述したように空孔87が設けられている。中心軸5を含む平面で断面をとったとき、空孔87の内面88上の点をYとする。このとき、点Yにおける内向き法線ベクトルと、中心軸5は直交する。つまり、内面88は中心軸5に平行な有限領域を持つ。内面88上の点は、発光面2に近づくほど、中心軸5からの距離が小さくなる。
【0067】
次に、本実施形態の照明装置9の機能について
図17および
図18を参照して説明する。
図17および
図18は、中心軸5を含む断面図である。なお、これらの図に、発光素子1の発光面2から発せられた光の光線を付加している。
【0068】
まず、
図17を参照して説明する。発光面2上の、点Bから点Eの間の領域から発せられ、かつ入射面92に入射する光線38は、基本光学素子90の全反射面93を透過し、光学素子80の接続面84に入射し、全反射/屈折透過面83で全反射される。さらに空孔87の内面88を通り、最終的に全反射/屈折透過面83から中間側に射出される。
【0069】
次に、
図18を参照して説明する。発光面2上の、点Bから点Eの間の領域から発せられ、かつ入射面92に入射する光線39は、射出面94で全反射される。さらに基本光学素子90の全反射面93を透過し、光学素子80の接続面84に入射し、空孔87の内面88で全反射され、最終的に全反射/屈折透過面83から前方側に射出される。
【0070】
このように、空孔87で全反射されて、最終的に射出されることにより、観測者からは空孔87が光るように見える。つまり、光学素子80の内部が光るように見えるため、より点光源に近く、白熱電球のような点光源に近い発光に似せることができる。すなわち、レトロフィット感が増す。
【0071】
なお、発光素子1の発光面2から発せられた光線が後方側に射出されることは、第1実施形態の
図4に示す場合と同様となる。すなわち、発光素子1の発光面2から出射され、入射面92に入射し、基本光学素子90の全反射/屈折透過面93によって全反射された光が後方側に射出される。
【0072】
以上述べたように、発光素子1の発光面2から発せられた光線は、それぞれ前方側、中間側、後方側へと最終的に射出される。このようにして、光線が全方位へと射出され、広配光を実現することができる。
【0073】
また、入射面92は凹部が設けてある。このようにすることにより、入射面92でのフレネル反射を低減し、器具効率を増加することができる。
【0074】
また、内面88は中心軸5に平行な有限領域を持つことにより、中心軸5に沿って光るため、フィラメントが光るように見える、すなわち白熱電球へのレトロフィット感が増すとともに、逆テーパー形状でないために切削しやすく、製造する際に金型で抜きやすいという利点がある。
【0075】
以上説明したように、第3実施形態によれば、配光角を十分に確保しつつコンパクト化することのできる広配光レンズおよび
照明装置を提供することが可能となる。
【0076】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。