【国等の委託研究の成果に係る記載事項】(出願人による申告)国等の委託研究の成果に係る特許出願(平成22年度 独立行政法人新エネルギー・産業技術総合開発機構 委託研究:最先端PG(Mega−ton Water System)高効率エネルギー回収、産業技術力強化法第19条の適用を受ける特許出願)
(58)【調査した分野】(Int.Cl.,DB名)
ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の圧力エネルギーに変換するエネルギー回収装置であって、
内部に濃縮海水および海水を収容する空間を有し、長手方向を鉛直に配置した円筒形状のチャンバーと、
前記チャンバーの下部に設けられ、濃縮海水の給排水を行う濃縮海水ポートと、
前記チャンバーの上部に設けられ、海水の給排水を行う海水ポートと、
前記チャンバー内において濃縮海水ポート側に配置される流れ抵抗器と、
前記チャンバー内において海水ポート側に配置される流れ抵抗器とを備え、
前記濃縮海水ポート側および前記海水ポート側に配置される流れ抵抗器は、少なくとも1枚の多孔円板であって、該円板の所定の直径より外側の外周領域に孔が形成されてなることを特徴とするエネルギー回収装置。
前記多孔円板は、所定の直径より外側の外周領域に流体が通過する流路を有する多孔板または線材を編みこんだメッシュ板からなることを特徴とする請求項1に記載のエネルギー回収装置。
前記流れ抵抗器は、所定の直径より外側の外周領域に孔が形成された第1多孔板または第1メッシュ板と、第1多孔板または第1メッシュ板より前記ポート側から離間して配置された第2多孔板又は第2メッシュ板とから構成することを特徴とする請求項2に記載のエネルギー回収装置。
前記エネルギー回収装置は、濃縮海水ポートと海水ポートのいずれか又は両方と、前記流れ抵抗器との間に中央に開口を有するドーナツ形状の円板を備えたことを特徴とする請求項1に記載のエネルギー回収装置。
前記第1多孔板または第1メッシュ板は前記所定の直径より内側に円錐状部材を備え、該円錐状部材は前記第2多孔板または第2メッシュ板側に向かって先細になっていることを特徴とする請求項3に記載のエネルギー回収装置。
【背景技術】
【0002】
従来、海水を淡水化するシステムとして、海水を逆浸透膜分離装置に通水して脱塩する海水淡水化システムが知られている。この海水淡水化システムにおいては、取水された海水は、前処理装置により一定水質の条件に整えられたのち、高圧ポンプにより加圧され、逆浸透膜分離装置へと圧送され、逆浸透膜分離装置内の高圧海水の一部は、浸透圧に打ち勝って逆浸透膜を通過し、塩分が除去された淡水として取り出される。その他の海水は、塩濃度が高くなり濃縮された状態で逆浸透膜分離装置から濃縮海水(ブライン)として排出される。ここで、海水淡水化システムにおける最大の運転コストは電力費であり、前処理後の海水を浸透圧に打ち勝てる圧力即ち逆浸透圧まで上昇させるためのエネルギー、つまり高圧ポンプによる加圧エネルギーが大きな割合を占めている。
【0003】
すなわち、海水淡水化プラントにおける電力費の半分以上は、高圧ポンプによる加圧に費やされることが多い。従って、逆浸透膜分離装置から排出される高塩濃度で高圧の濃縮海水が保有する圧力エネルギーを、海水の一部を昇圧するのに利用することが行われている。そして、逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを海水の一部を昇圧するのに利用する手段として、円筒の筒内に移動可能に嵌装されたピストンによって円筒の内部を2つの空間に分離し、2つの空間の一方に濃縮海水の出入りを行う濃縮海水ポートを設け、もう一方に海水の出入りを行う海水ポートを設けたエネルギー回収チャンバーを利用することが行われている。
【0004】
図15は、従来の海水淡水化システムの構成例を示す模式図である。
図15に示すように、取水ポンプ(図示しない)により取水された海水は、前処理装置により浮遊物等が除去されて所定の水質条件に整えられたのち、海水供給ライン1を介してモータMが直結された高圧ポンプ2へ供給される。高圧ポンプ2で昇圧された海水は吐出ライン3を介して逆浸透膜(RO膜)を備えた逆浸透膜分離装置4に供給される。逆浸透膜分離装置4は、海水を塩濃度の高い濃縮海水と塩濃度の低い淡水に分離し海水から淡水を得る。この時、塩濃度の高い濃縮海水が逆浸透膜分離装置4から排出されるが、この濃縮海水は依然高い圧力を有している。逆浸透膜分離装置4から濃縮海水を排出する濃縮海水ライン5は、制御弁6を介してエネルギー回収チャンバー10の濃縮海水ポートP1へ接続している。前処理された低圧の海水を供給する海水供給ライン1は、高圧ポンプ2の上流で分岐してバルブ7を介してエネルギー回収チャンバー10の海水ポートP2へ接続している。エネルギー回収チャンバー10は、内部にピストン16を備え、ピストン16はエネルギー回収チャンバー10内を二つの容積室に分離しながら移動可能に嵌装されている。
【0005】
エネルギー回収チャンバー10において濃縮海水の圧力を利用して昇圧された海水は、バルブ7を介してブースターポンプ8に供給される。制御弁6,バルブ7,エネルギー回収チャンバー10によってエネルギー回収装置11を構成している。そして、ブースターポンプ8によって海水は高圧ポンプ2の吐出ライン3と同じレベルの圧力になるようにさらに昇圧され、昇圧された海水はバルブ9を介して高圧ポンプ2の吐出ライン3に合流して逆浸透膜分離装置4に供給される。
【0006】
図16は、
図15に示すエネルギー回収装置の構成機器である制御弁6,エネルギー回収チャンバー10,バルブ7をそれぞれ2個備えた従来の海水淡水化システムの構成例を示す模式図である。
図16に示すように、エネルギー回収装置11が2個のエネルギー回収チャンバー10,10を備えることにより、2つのエネルギー交換チャンバー10,10の何れか一方へ濃縮海水を供給し同時にもう一方のエネルギー交換チャンバーから濃縮海水を排水するように動作する。したがって、低圧海水の吸込みと、高圧海水の押し出しを交互に行うことにより装置からは常に(連続して)高圧の海水が排出することができるので、逆浸透膜分離装置4へ供給される海水の流量を一定にし、逆浸透膜分離装置4から得る淡水を一定流量で得ることができる。
【0007】
上述した従来のエネルギー回収チャンバーにおいては、エネルギー回収チャンバー内のピストンはシリンダ内壁と摺動することになり、ピストンの摺動部材が摩耗するので定期的な交換が必要であり、また長尺のチャンバーの内径をピストンの外形に合わせて精度よく加工する必要があり、加工コストが非常に高価であった。
そのため、本件出願人は、特許文献1において円筒形長尺のチャンバーをエネルギー交換チャンバーとし、チャンバー内に逆浸透膜(RO膜)から排出される高圧の濃縮海水と海水とを導入し、濃縮海水で直接海水を加圧する方式を採用することにより、ピストンの無い形態のエネルギー回収チャンバーを提案した。
【0008】
図17は、ピストンが無い形態のエネルギー回収チャンバー10を示す断面図である。
図17に示すように、エネルギー回収チャンバー10は、長尺の円筒形状のチャンバー本体11と、チャンバー本体11の両開口端を閉塞する端板12を備えている。チャンバー本体11内にはチャンバーCHが形成され、一方の端板12の位置に濃縮海水ポートP1が形成され、他方の端板12の位置に海水ポートP2が形成されている。濃縮海水ポートP1および海水ポートP2は円筒形状のチャンバー本体11の中心軸上に配置されている。チャンバーCHの内径はφD、濃縮海水ポートP1および海水ポートP2の内径はφdに設定されている。
【0009】
エネルギー回収チャンバー10は縦置きに設置されている。濃縮海水と海水の比重差の影響を考慮し、チャンバーCHを縦配置とし、比重の重い濃縮海水のポートP1を下側に、比重の軽い海水のポートP2を上に配置にしている。すなわち、長尺の円筒形状のチャンバー本体11は、チャンバーの長手方向(軸方向)が垂直方向に配置されており、濃縮海水ポートP1はチャンバーCHの下側で濃縮海水を給排水するようにチャンバーの下側に設けられ、海水ポートP2はチャンバーCHの上側で海水を給排水するようにチャンバーの上側に設けられている。チャンバーCHの全長はLであり、チャンバーCH内には、濃縮海水ポートP1から軸方向にL1だけ離間した位置に流れ抵抗器13を配置し、海水ポートP2から軸方向にL1だけ離間した位置に流れ抵抗器13を配置している。流れ抵抗器13は、1枚の多孔板から構成されている。
【0010】
図17に示すエネルギー回収チャンバー10においては、小径の各ポートP1,P2から流入し、中央部が大きな速度分布を有する流体の流れを流れ抵抗器13によってチャンバーCHの直径方向に分散させて、チャンバーの断面で均一な流れに整流することにより、海水と濃縮海水の界面が水平に維持された状態で二流体を押し引きすることで、チャンバー内において塩濃度の異なる海水と濃縮海水との混合を少ない状態に維持しながらエネルギー伝達を行うものである。
【0011】
図18は、
図17における各ポート近傍に配置した流れ抵抗器として所定の距離だけ離間した2枚の多孔板を各ポートの近傍に配置したエネルギー回収チャンバー10を示す断面図である。
図18に示すように、チャンバーCH内には、濃縮海水ポートP1から軸方向にL1だけ離間した位置に第1多孔板14を配置し、さらに第1多孔板14から軸方向にL2だけ離間した位置に第2多孔板15を配置している。同様に、海水ポートP2から軸方向にL1だけ離間した位置に第1多孔板14を配置し、さらに第1多孔板14から軸方向にL2だけ離間した位置に第2多孔板15を配置している。2枚の多孔板14,15は流れ抵抗器13を構成している。
図18に示すエネルギー回収チャンバー10のその他の構成は、
図17に示すエネルギー回収チャンバー10の構成と同様である。
【発明の概要】
【発明が解決しようとする課題】
【0013】
図
18に示すエネルギー回収チャンバー10においては、小径の各ポートP1,P2から流体がチャンバーCHに流入すると、中央部が高速の速度分布の流れとなり、チャンバーの断面において速度差を有する流れを第1多孔板14によってチャンバー外周に広がるように分散し、さらにL2の区間を流れた後、第2多孔板15によって、さらにチャンバーの断面において均一な流れになるように分散、整流する。
【0014】
ここで「均一な流れ」とは、チャンバー内のある水平断面での流速と方向が一様であることを意味する。チャンバー内のある水平断面内の流速(スカラー)と方向(ベクトル)が水平断面内のどの位置においても同一に分布していることを完全に均一流れという。すなわち、
図19に示すように、水平断面内の任意の点Pn、Pmにおける流れは、流れの大きさがそれぞれVn,Vmである矢印で示される。この場合、矢印と水平断面上の補助線X,Y(XとYは直交している)とのなす角度(α、β)が同一である(α
n=α
m、β
n=β
m)とき点Pn、Pmにおける流れは均一な流れであり、水平断面内のどの位置においても角度α、βが同一であるとき完全に均一な流れとする。このような状態により近いことをここでは均一な流れとする。ここで、水平断面内の外周には円筒状のチャンバー壁が垂直な壁面として存在するため、角度α、βはともに直角になるほど均一な流れとなる。
【0015】
小径の各ポートP1,P2から流体がチャンバーCHに流入すると、その近傍のチャンバーの水平断面では中央部が高速で、外周部が低速な流れとなるが、この中央部の流れを低速に、外周部の流れを高速に均すことで、水平面内における速度分布の分散を小さくすることを「均一な流れにする」「均一化作用」という。また、「整流」とは流速の分布を変化させることを指し、整流して流速の分布を変化させた結果、均一な流れになることを「整流して均一化する」という。
【0016】
海水と濃縮海水の押し引きとは、濃縮海水で海水を昇圧しながらチャンバーから押し出し(押し)、その後、バルブ6を切り換えて海水で濃縮海水を引き込んで排出(引き)する動作を指す。
図17および
図18において、海水と濃縮水は流れ抵抗器13の間のLaで示す長さのチャンバー空間内に海水と濃縮海水が接触する二流体の境界部が形成される。そして、海水と濃縮海水の押し引きによって、この境界部がLa内を往復し、海水が濃縮海水ポートP1から排出されず、濃縮海水が海水ポートP2から排出されないように制御される。チャンバーを縦置きとし、チャンバー下側が濃縮海水、上側が海水となるように構成する場合には、海水と濃縮海水の押し引きとは、海水の押し上げ、濃縮海水の押し下げと同じ意味になる。
海水と濃縮海水の押し引きによって境界部の混合が促進されるが、境界部の上下にある海水と濃縮海水の流れをチャンバー内のLaの領域で均一な流れにすることで、流れの不均一性によって境界面が乱流拡散して混合する現象が抑制されると同時に、境界部を水平に維持することにより仮想的なピストンのように押し引きすることができる。
【0017】
従来のエネルギー回収チャンバーにおいては、小径の各ポートからチャンバーに流入する中央部が高速の速度分布である流体の流れを、チャンバー内に配置した多孔板によって外周方向に広がるように分散させ、多孔板の下流側のチャンバーの水平断面での流れ速度と方向を一様にさせるようにしている。
しかしながら、チャンバーへ流入する流体の流速が高速な場合、または多孔板の寸法・形状、多孔板を配置する位置、すなわち、
図17における距離L1、
図18における距離L1,L2によっては、分散、整流の効果が十分ではなく、依然中央部の流速が速い不均一な流れになることがわかった。
【0018】
図20は、
図17のチャンバー上方近傍の海水ポートから海水が流入した場合のチャンバー内部の流れ解析の結果を示す図である。図中の矢印は流れの速度を矢印の長さで、流れの向きを矢印の向きで示している。
海水は小径のポートP2からチャンバーCHに流入し、チャンバーCHのポート付近の速度分布は中央部が大きな流れになる。流入した中央部が高速の流れは多孔板からなる流れ抵抗器13に向かって流れるが、多孔板の小孔のサイズ、ピッチ、多孔板を設置するポートからの距離L1と、ポートから流入する流速によって、多孔板の中央部の小孔から高速な流れがそのまま抜けてしまい、多孔板から下流の評価面A−Aにおいて、依然中央部の流速が高速な不均一な流れのままとなる。
【0019】
また、
図21は、
図18のチャンバー上方近傍の海水ポートから海水が流入した場合のチャンバー内部の流れ解析の結果を示す図である。図中の矢印は流れの速度を矢印の長さで、流れの向きを矢印の向きで示している。
図18に示すように、チャンバーCH内に多孔板を2枚配置した場合でも、多孔板の小孔のサイズ、ピッチ、多孔板を設置するポートからの距離L1,L2と、ポートから流入する流速によって、多孔板から下流の評価面A−Aにおいて、依然中央部の流速が高速な不均一な流れのままとなる。
【0020】
図20および
図21に示すように、チャンバー内の断面において不均一な流れで海水と濃縮海水を押し引きすると、チャンバー内で乱流拡散による海水と濃縮海水との混合が進み、エネルギー回収装置から塩濃度の高い海水が排出されてしまう。その結果、逆浸透膜分離装置へ供給する海水の塩濃度が上昇し、逆浸透膜分離装置から得られる淡水の量が減少する、もしくは同量の淡水を得るために逆浸透膜分離装置への海水供給圧力を上昇させることになり、単位造水量に対するエネルギーが増大してしまう。
【0021】
本発明は、上記問題点に鑑み、チャンバーの濃縮海水ポート側および海水ポート側にそれぞれ流れ抵抗器を配置した構成であって、ポート径に相当する流れ抵抗器の中央部に高速の流体の流れが衝突した場合でも、流れ抵抗器による流体の流れを整流し、均一な流れにする効果によって2流体が接触する境界部での混合を抑制しながら、高圧の濃縮海水から海水へ圧力伝達を行うことができ、ひいてはエネルギー回収装置内で海水と濃縮海水が混合することにより起こりうる塩濃度の高い海水が排出することを防ぐことができるエネルギー回収装置を提供することを目的とする。
【課題を解決するための手段】
【0022】
上述の目的を達成するため、本発明のエネルギー回収装置は、ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の圧力エネルギーに変換するエネルギー回収装置であって、内部に濃縮海水および海水を収容する空間を有し、長手方向を鉛直に配置した円筒形状のチャンバーと、前記チャンバーの下部に設けられ、濃縮海水の給排水を行う濃縮海水ポートと、前記チャンバーの上部に設けられ、海水の給排水を行う海水ポートと、前記チャンバー内において濃縮海水ポート側に配置される流れ抵抗器と、前記チャンバー内において海水ポート側に配置される流れ抵抗器とを備え、前記濃縮海水ポート側および前記海水ポート側に配置される流れ抵抗器は、少なくとも1枚の多孔円板であって、該円板の所定の直径より外側の外周領域に孔が形成されてなることを特徴とする。
【0023】
本発明によれば、チャンバーの下部に設けられた濃縮海水ポートから濃縮海水をチャンバー内へ給排水し、チャンバーの上部に設けられた海水ポートから海水をチャンバー内へ給排水する。本発明によれば、チャンバーに流入する高速な流れを、所定の直径より外周領域に孔が形成された多孔円板における中心部の孔が形成されていない領域に衝突させ、チャンバー半径方向に分散するととともに流速を落とすように整流し、外周部の孔が形成された領域から下流に流れるようにしたので、流入する中心部の大きな流れを減速、分散してチャンバーの断面においてより均一な流速分布にすることができる。多孔円板で整流された濃縮海水と海水は比重の差から境界部が形成され、押し引きにより下側の濃縮海水は海水を押し上げ、上側の海水は濃縮海水を押し下げ、濃縮海水と海水を上下に分離しつつ2流体の接触する境界部での混合を抑制しながら、高圧の濃縮海水から海水へ圧力伝達を行うことができる。
【0024】
本発明の好ましい態様によれば、前記多孔円板は、所定の直径より外側の外周領域に流体が通過する流路を有する多孔板または線材を編みこんだメッシュ板からなることを特徴とする。
本発明によれば、流れ抵抗器を少なくとも1枚の多孔板又はメッシュ板で構成することにより、チャンバー内において多孔板又はメッシュ板の上流の流れに適切な流れ抵抗を与えることで、多孔板又はメッシュ板の下流の流れをチャンバー全体に均一になるように整流することができる。
【0025】
本発明の好ましい態様によれば、前記流れ抵抗器は、所定の直径より外側の外周領域に孔が形成された第1多孔板または第1メッシュ板と、第1多孔板または第1メッシュ板より前記ポート側から離間して配置された第2多孔板又は第2メッシュ板とから構成することを特徴とする。
本発明によれば、流れ抵抗器として、第1多孔板(第1メッシュ板)と第2多孔板(第2メッシュ板)の配置位置、小孔径、小孔の距離(ピッチ)、開口率を調整することができ、流れを整流する自由度が上がり、均一化作用を調整して高めることができる。
【0026】
本発明の好ましい態様によれば、前記エネルギー回収装置は、濃縮海水ポートと海水ポートのいずれか又は両方と、前記流れ抵抗器との間に中央に開口を有するドーナツ形状の円板を備えたことを特徴とする。
本発明によれば、チャンバーの下部に設けられた濃縮海水ポートから濃縮海水をチャンバー内へ給排水し、チャンバーの上部に設けられた海水ポートから海水をチャンバー内へ給排水する場合、海水ポートと濃縮海水ポートがチャンバーの軸心になくても、チャンバーに流入した流れを、中央に孔を備えた円板の孔から流れ抵抗器の中央部に流れるようにしたため、流れ抵抗器の上流の中央部から偏りなくチャンバー全体に流れを分散し、流れ抵抗器の下流の流れをより均一な流れに整流することができる。流れ抵抗器で整流された濃縮海水と海水は比重の差から境界部が形成され、押し引きにより下側の濃縮海水は海水を押し上げ、上側の海水は濃縮海水を押し下げ、濃縮海水と海水を上下に分離しつつ2流体の接触する境界部での混合を抑制しながら、高圧の濃縮海水から海水へ圧力伝達を行うことができる。
【0027】
本発明の好ましい態様によれば、前記第1多孔板または第1メッシュ板は前記所定の直径より内側に円錐状部材を備え、該円錐状部材は前記第2多孔板または第2メッシュ板側に向かって先細になっていることを特徴とする。
【0028】
本発明の第2の態様は、ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて、前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の圧力エネルギーに利用変換する請求項1乃至5のいずれか一項に記載のエネルギー回収装置を備えたことを特徴とする。
本発明によれば、逆浸透膜分離装置から排出される高圧の濃縮海水の圧力エネルギーを海水に直接伝達することができるとともに、濃縮海水と海水の押し引き時に2つの流体が混合することが抑制されるので、エネルギー回収装置から塩濃度の高い海水が排出されることがなく、ひいては逆浸透圧分離装置への海水供給圧力を高くすることなくシステムを運転することができるので、システムの運転に要する電力を削減することができる。
【発明の効果】
【0029】
本発明によれば、以下に列挙する効果を奏する。
1)チャンバーに流入する高速な流れを、所定の直径より外周領域に孔が形成された多孔円板における中心部の孔が形成されていない領域で、チャンバー半径方向に分散するととともに流速を落とし、外周部の孔が形成された領域から下流に流れるようにしたので、流入する中心部の大きな流れを減速、分散してチャンバーの断面においてより均一な流れにすることができる。多孔円板からなる流れ抵抗器による流体の流れを整流する均一化作用によって2流体の接触する境界部での混合を抑制しながら、高圧の濃縮海水から海水へ圧力伝達を行うことができる。
2)チャンバー内での乱流拡散による濃縮海水と海水の混合を抑制でき、濃度の高い海水を逆浸透膜分離装置に送ってしまうことがないので、逆浸透膜分離装置の性能を十分に発揮することができるとともに、逆浸透膜自体の交換周期を長くすることができる。
【図面の簡単な説明】
【0030】
【
図1】
図1は、本発明の海水淡水化システムの構成例を示す模式図である。
【
図2】
図2は、
図1に示す海水淡水化システムに適用される本発明のエネルギー回収チャンバーの概略断面図である。
【
図3】
図3は、流れ抵抗器の一例を示す平面図である。
【
図4】
図4は、別の流れ抵抗器の一例を示す図であり、1枚のメッシュ板からなる流れ抵抗器を示す平面図である。
【
図5】
図5は、
図2に示すように中央部を閉塞した多孔板からなる流れ抵抗器を水平に配置した場合の海水ポート近傍の流れ解析結果を示す図である。
【
図6】
図6の左側の図は、本発明の別の実施形態に係るエネルギー回収装置のエネルギー回収チャンバーを示す概略断面図であり、
図6の右側の図はエネルギー回収チャンバー内に設置された各多孔板を示す平面図である。
【
図7】
図7は、
図6の右側の図に示す第2多孔板の拡大平面図である。
【
図8】
図8は、
図6のチャンバー上方近傍の海水ポートから海水が流入した場合のチャンバー内部の流れ解析の結果を示す図である。
【
図9】
図9は、本発明のさらに別の実施形態に係るエネルギー回収装置のチャンバーの断面図である。
【
図11】
図11は、
図9に示すようにチャンバーの中心軸から半径方向に離間した位置に設けた海水ポートから海水が流入した場合のチャンバー内部の海水ポート近傍の流れ解析の結果を示す図である。
【
図12】
図12は、本発明のさらに他の実施形態に係るエネルギー回収装置のチャンバーの断面図である。
【
図13】
図13は、
図12に示すように濃縮海水ポートをチャンバー側面に設けた場合におけるチャンバー内部の濃縮海水ポート近傍の流れ解析の結果を示す図である。
【
図14】
図14は、本発明のさらに他の実施形態に係るエネルギー回収装置のチャンバーの断面図である。
【
図15】
図15は、従来の海水淡水化システムの構成例を示す模式図である。
【
図16】
図16は、
図15に示すエネルギー回収装置の構成機器である制御弁,エネルギー回収チャンバー,バルブをそれぞれ2個備えた従来の海水淡水化システムの構成例を示す模式図である。
【
図17】
図17は、ピストンが無い形態のエネルギー回収チャンバーを示す断面図である。
【
図18】
図18は、
図17における各ポート近傍に配置した流れ抵抗器として所定の距離だけ離間した2枚の多孔板を各ポートの近傍に配置したエネルギー回収チャンバーを示す断面図である。
【
図19】
図19は、チャンバー内の水平断面上の点Pn、Pmにおける流れの均一性を示す図である。
【
図20】
図20は、
図17のチャンバー上方近傍の海水ポートから海水が流入した場合のチャンバー内部の流れ解析の結果を示す図である。
【
図21】
図21は、
図18のチャンバー上方近傍の海水ポートから海水が流入した場合のチャンバー内部の流れ解析の結果を示す図である。
【発明を実施するための形態】
【0031】
以下、本発明に係るエネルギー回収装置の実施形態を
図1乃至
図14を参照して説明する。
図1乃至
図14において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
【0032】
図1は、本発明の海水淡水化システムの構成例を示す模式図である。
図1に示すように、取水ポンプ(図示しない)により取水された海水は、前処理装置により前処理されて所定の水質条件に整えられたのち、海水供給ライン1を介してモータMが直結された高圧ポンプ2へ供給される。高圧ポンプ2で昇圧された海水は吐出ライン3を介して逆浸透膜(RO膜)を備えた逆浸透膜分離装置4に供給される。逆浸透膜分離装置4は、海水を塩濃度の高い濃縮海水と塩濃度の低い淡水に分離し、海水から淡水を得る。この時、塩濃度の高い濃縮海水が逆浸透膜分離装置4から排出されるが、この濃縮海水は依然高い圧力を有している。逆浸透膜分離装置4から濃縮海水を排出する濃縮海水ライン5は、制御弁6を介してエネルギー回収チャンバー20の濃縮海水ポートP1へ接続している。前処理された低圧の海水を供給する海水供給ライン1は、高圧ポンプ2の上流で分岐してバルブ7を介してエネルギー回収チャンバー20の海水ポートP2へ接続している。エネルギー回収チャンバー20は、濃縮海水と海水の境界領域によって二流体を分離しながらエネルギー伝達を行うものである。
【0033】
エネルギー回収チャンバー20において濃縮海水の圧力を利用して昇圧された海水は、バルブ7を介してブースターポンプ8に供給される。そして、ブースターポンプ8によって海水は高圧ポンプ2の吐出ライン3と同じレベルの圧力になるようにさらに昇圧され、昇圧された海水はバルブ9を介して高圧ポンプ2の吐出ライン3に合流して逆浸透膜分離装置4に供給される。一方、海水を昇圧してエネルギーを失った濃縮海水は、エネルギー回収チャンバー20から制御弁6を介して濃縮海水排出ライン17に排出される。
高圧ポンプ2の吐出ライン3の圧力が例えば6.5MPAとすると、逆浸透膜分離装置4のRO膜モジュールの圧力損失で僅かに圧力が低下し6.4MPAの濃縮海水が逆浸透膜分離装置4から排出される。この濃縮海水の圧力を海水に作用すると海水が等圧(6.4MPA)に昇圧されるが、エネルギー回収装置を流れる際にエネルギー回収装置自体の圧力損失分が低下し、例えば6.3MPAの海水がエネルギー回収装置から排出される。ブースターポンプ8は6.3MPAの海水を6.5MPAの圧力に僅かに昇圧して高圧ポンプ2の吐出ライン3に合流して逆浸透膜分離装置4に供給される。ブースターポンプ8はこのように僅かな圧力損失分を昇圧するだけでよく、ここで消費されるエネルギーは僅かである。
【0034】
逆浸透膜分離装置4に10割の量の海水を供給した場合、淡水が得られる割合は4割程度である。他の6割が濃縮海水として逆浸透膜分離装置4から排出されるが、この6割の濃縮海水の圧力をエネルギー回収装置によって海水に圧力伝達して排出することで、ブースターポンプの僅かな消費エネルギーで高圧ポンプ相当量の海水を得ることができる。このため、エネルギー回収装置が無い場合に対して同じ量の淡水を得るための高圧ポンプのエネルギーをほぼ半分にすることができる。
【0035】
図2は、
図1に示す海水淡水化システムに適用される本発明のエネルギー回収チャンバーの概略断面図である。
図2に示すように、エネルギー回収チャンバー20は、長尺の円筒形状のチャンバー本体21と、チャンバー本体21の両開口端を閉塞する端板22を備えている。チャンバー本体21内にはチャンバーCHが形成され、一方の端板22の位置に濃縮海水ポートP1が形成され、他方の端板22の位置に海水ポートP2が形成されている。
【0036】
エネルギー回収チャンバー20は縦置きに設置されている。濃縮海水と海水の比重差の影響を考慮し、チャンバーCHを縦配置とし、比重の重い濃縮海水のポートP1を下側に、比重の軽い海水のポートP2を上に配置にしている。すなわち、長尺の円筒形状のチャンバー本体21は、チャンバーの長手方向(軸方向)が垂直方向に配置されており、濃縮海水ポートP1はチャンバーCHの下側で濃縮海水を給排水するようにチャンバーの下側に設けられ、海水ポートP2はチャンバーCHの上側で海水を給排水するようにチャンバーの上側に設けられている。チャンバーCHの全長はLであり、チャンバーCH内には、濃縮海水ポートP1から軸方向にL1だけ離間した位置に流れ抵抗器23を配置し、海水ポートP2から軸方向にL1だけ離間した位置に流れ抵抗器23を配置している。
【0037】
図3は、流れ抵抗器の一例を示す平面図である。
図3に示すように、流れ抵抗器23はチャンバーの内径と等しい外径(φD)の円板形状をなし、中央部の仮想円(φdc)の外側には、直径φdk1の複数の小孔23hが形成され、仮想円の内側(中心側)には小孔が形成されていない1枚の多孔板で構成されている。すなわち、中央部を閉塞した多孔板である。
多孔板の中央部を閉塞する仮想円(φdc)の径は、
図2における海水ポートの内径φds、濃縮海水ポートの内径φdbと同じ径、あるいはそれより僅かに大きな径とすることで、各ポートから流入する高速な流れを閉塞部に衝突させて流れを遅くするようにする。しかし、閉塞部を各ポートより大きくしすぎると、外周側に設けた複数の小孔23hを通過する流れが外周側に偏り、均一化作用が逆に小さくなるため、各ポートの内径とほぼ同じ径の仮想円とする。
中央部を閉塞した多孔板で構成される流れ抵抗器23は、チャンバーCH内において本流れ抵抗器の上流の流れに適切な流れ抵抗を与えることで、本流れ抵抗器の下流の流れをチャンバー全体に均一になるように整流する機能を有する。
【0038】
図4は、別の流れ抵抗器の一例を示す図であり、1枚のメッシュ板からなる流れ抵抗器を示す平面図である。
図4に示すように、流れ抵抗器23は、線材を編み込んで外径φDの円板状に形成したメッシュ材から構成されている。メッシュ材からなる円板の中央部にφdcの小径の別の円板30が取り付けられている。メッシュ材からなる円環状の部分は流体が流通し、中央部の小径の円板30の部分は流体が流通しないようになっており、すなわち中央部を閉塞した多孔質板からなるメッシュ板である。
中央部を閉塞した多孔質板で構成される流れ抵抗器23は、チャンバーCH内において本流れ抵抗器の上流の流れに適切な流れ抵抗を与えることで、本流れ抵抗器の下流の流れをチャンバー全体に均一になるように整流する機能を有する。
図3に示す多孔板および
図4に示すメッシュ板を総称して多孔円板という。
【0039】
図5は、
図2に示すように中央部を閉塞した多孔板からなる流れ抵抗器23を水平に配置した場合の海水ポート近傍の流れ解析結果を示す図である。図中の矢印は流れの速度を矢印の長さで、流れの向きを矢印の向きで示している。
海水ポートP2からチャンバーCHに流入した流れは、小径のポートからチャンバーに流入するので、チャンバーのポート付近の速度分布は中央部が大きな流れになる。この中央部の高速な流れは、ポートと対向する多孔板の閉塞部に衝突し、板に沿って水平にチャンバー外周に向かう流れとなる。流体は多孔板外周部に形成した小孔からのみ多孔板を通過して下流に流れ、一部の水平な流れはチャンバー側面に沿って上向きに流れ、外周部で大きな渦が生じる。この時、多孔板の閉塞部に衝突して外周へ流れるとともに、ポートから流入する高速な流れの速度が遅くなる。そして外周部から小孔を通過した流れは、中央部が一旦外周側に流れた後、再び中央部に集まるように流れる。多孔板の閉塞部の下流には渦が生じるが、
図5における多孔板からチャンバー中央へ所定の距離だけ離間したA−A断面において、流れの速度と、向きが均一な流れとすることができる。
【0040】
チャンバー下側に配置した濃縮海水ポートP1から流入する流れも同様に、流入時に多孔板の中央の閉塞板に衝突して流れが遅くなり、外周部の小孔からチャンバー全面に均一な流れが形成されるので、多孔板間にある流体はチャンバーの水平断面において均一な流れで流入および流出することになり、断面全体で一様な押し引きがなされる。この作用により、海水と濃縮海水を押し引きした場合、塩濃度の異なる海水と濃縮海水の混合を抑制することができる。
【0041】
ここで、本発明のエネルギー回収装置は、海水と濃縮海水との混合領域を、チャンバー内の海水ポートP2側と濃縮海水ポートP1側にそれぞれ配置した流れ抵抗器との間を行き来するように押し引きを切り換える。したがって、海水と濃縮海水の混合領域は
図2において流れ抵抗器23,23の間のLaで示される部分に存在する。チャンバーの上方に設けた海水ポートP2から流入する海水は、流れ抵抗器23によってその下流のチャンバーの水平断面において均一な流れとなるのであるが、これは排出側である濃縮海水ポートP1側から流出する流れの抵抗によっても変化する。すなわち、濃縮海水ポート側に配置した流れ抵抗器23との組み合わせによっても変化する。このため、
図5に示した流入時の流れ解析は、流出側の流れ抵抗器23の抵抗を考慮している。
このように、本発明における流入側の流れ抵抗器による流れの均一化作用は、流出側の流れ抵抗器やポートの配置によっても変化する。エネルギー回収装置は、海水と濃縮海水が交互に流入と流出を繰り返すため、一方向の流れを均一にすることに加え、逆向きに流れた場合の流出の流れにも配慮しなければならない。
【0042】
図6の左側の図は、本発明の別の実施形態に係るエネルギー回収装置のエネルギー回収チャンバーを示す概略断面図であり、
図6の右側の図は多孔板を示す平面図である。
図6の左側に示すように、チャンバー内部には、海水ポートP2から距離L1だけ離間した位置に水平に第1多孔板24が配置されており、同様に濃縮海水ポートP1からL1だけ離間した位置に水平に第1多孔板24が配置され、さらにそれぞれの第1多孔板24からL2だけ離間した位置に水平に第2多孔板25が配置されている。第1多孔板24と第2多孔板25により流れ抵抗器23が構成されている。
図6右側の平面図は、
図6に示すエネルギー回収チャンバー内に設置された各多孔板を示す平面図であり、上から下に向かって、海水ポート側の第1多孔板24,第2多孔板25、濃縮海水ポート側の第2多孔板25,第1多孔板24を示している。
図6に示すエネルギー回収チャンバーに配置した流れ抵抗器を構成する第1多孔板24は、中央部が閉塞し外周部に複数の小孔が形成された多孔板からなっており、
図3に示したものと同様の構成である。第1多孔板24を
図4に示すような中央部が閉塞し外周部がメッシュ材である多孔質板としてもよい。また、第2多孔板25は全面に小孔が等間隔に形成された円板からなっている。第2多孔板25をメッシュ材からなる円板としてもよい。
【0043】
図7は、
図6右側に示す第2多孔板25の拡大平面図である。
図7に示すように、第2多孔板25は、チャンバーの内径と等しいφDの外径を有する円板からなり、円板の全面に直径φdk2の小孔25hが等間隔に形成されている。
【0044】
図8は、
図6のチャンバー上方近傍の海水ポートから海水が流入した場合のチャンバー内部の流れ解析の結果を示す図である。図中の矢印は流れの速度を矢印の長さで、流れの向きを矢印の向きで示している。
海水は小径のポートP2からチャンバーCHに流入するので、チャンバーCHのポート付近の速度分布は中央部が大きな流れになり、第1多孔板24または多孔質板の作用は、第1多孔板24の中央の閉塞部で外周に分散され、第1多孔板24を通過した後の流れを均一にしようとする作用であり、
図5で説明したものと同様である。さらに、第1多孔板24からL2だけ離間した位置に第2多孔板25を配置することによって、第1多孔板24により整流された流れを全面に小孔が形成された第2多孔板25を通過させることで、第2多孔板25の下流の流れがより均一な流れに整流され、第2多孔板25からチャンバー中央へ所定の距離だけ離間したA−A断面において、流れの速度と方向が同一な流れに近づき、均一な流れとすることができる。
【0045】
図9は、本発明のさらに別の実施形態に係るエネルギー回収装置のチャンバーの断面図である。本実施形態のチャンバーは、上方の海水ポートを海水流入ポートP2
INと海水流出ポートP2
OUTの2つのポートに分けた構成を備え、それぞれがチャンバーの中心軸から半径方向に離間した位置に設けられている。そして、ポートP2
IN,P2
OUTからLpだけ離間した位置に、中央部に孔を形成した孔付き円板31を配置している。そして、孔付き円板31からL1だけ離間した位置に中央部を閉塞した第1多孔板24を、さらにL2だけ離間した位置に全面に孔を均一に形成した第2多孔板25を配置している。
【0046】
図10は孔付き円板31の平面図である。孔付き円板31は、チャンバーの内径(φD)と等しい外径を有し、円板の中央部に直径(φdp)の円形孔を有している。孔付き円板31を配置することにより、ポートから流入した流れは外周部からは流れず、中央部の直径φdpの孔から流れ抵抗器23に向けて流れるように規制されるため、ポートの配置が中央部にない構成であっても、チャンバー中央部の流れに一旦した後に、この流れを下流の流れ抵抗器23により均一に外周方向へ拡散、整流することができる。したがって、円筒形状のチャンバー内に均一な流れを形成することができる。
【0047】
図11は、
図9に示すようにチャンバーの中心軸から半径方向に離間した位置に設けた海水ポートから海水が流入した場合のチャンバー内部の海水ポート近傍の流れ解析の結果を示す図である。
図11においては海水流出ポートP2
OUTは図示を省略している。図中の矢印は流れの速度を矢印の長さで、流れの向きを矢印の向きで示している。
チャンバー軸心から偏心した位置に配置された海水流入ポートP2
INから高速の海水の流れがチャンバーCH内に流入すると、孔付き円板31の外周部の孔が空いていない板部に衝突し、孔付き円板31で区画される海水ポート側の空間内に分散し、孔付き円板31の中央部に形成した孔から海水が第1多孔板24の中央部に向かって高速で流れる。そして、第1多孔板24の中央部にある孔が形成されていない閉塞部に流れが衝突し、チャンバー外周へ向かう流れに分散するとともに、速度が減速される。この第1多孔板24以降の下流の流れは、
図8で示し説明した流れと同様の流れとなる。
【0048】
図12は、本発明のさらに他の実施形態に係るエネルギー回収装置のチャンバーの断面図である。
図12のチャンバーの海水ポート側の構成は、
図9で示した実施形態と同様であるが、本実施形態のチャンバーは、チャンバー下側の濃縮海水ポートがチャンバー側面に形成されている点が異なる。すなわち、濃縮海水ポートP1はチャンバー側面に形成されているため、濃縮海水はチャンバーの軸方向とは直角の方向(半径方向)に給排水される。そして、濃縮海水ポート側のチャンバー端面からLpだけ離間した位置に中央部に孔を形成した孔付き円板31を配置し、孔付き円板31からL1だけ離間した位置に第1多孔板24を配置し、さらに第1多孔板24からL2だけ離間した位置に第2多孔板25を配置している。
孔付き円板31は
図10に示したものと同様の構成であり、第1多孔板24は
図3又は
図4に示したものと同様の構成であり、第2多孔板25は
図7に示したものと同様の構成である。
【0049】
図12において、チャンバー側面の濃縮海水ポートP1から流入した流れは、孔付き円板31により中央部の直径(φdp)の孔から流れ抵抗器23に向けて流れるように規制されるため、ポートの配置を側面にしても、チャンバー中央部の流れに一旦した後に、この流れを下流の流れ抵抗器23により均一に外周方向へ拡散、整流することができる。したがって、円筒形状のチャンバー内に均一な流れを形成することができる。
【0050】
図13は、
図12に示すように濃縮海水ポートP1をチャンバー側面に設けた場合におけるチャンバー内部の濃縮海水ポート近傍の流れ解析の結果を示す図である。図中の矢印は流れの速度を矢印の長さで、流れの向きを矢印の向きで示している。
チャンバーの側面に配置された濃縮海水ポートP1からチャンバー軸心と直角な向きに高速な流れがチャンバーCH内に流入すると、孔付き円板31で区画される濃縮海水ポート側の空間内で、一部は孔付き円板31の中央部に形成した孔から流出し、一部はその空間で渦となって空間内に広がった後に、孔付き円板31の中央部に形成した孔から流出する。そして、濃縮海水は孔付き円板31から第1多孔板24の中央部に向かって高速で流れ、第1多孔板24の中央部にある孔が形成されていない閉塞部に流れが衝突し、チャンバー外周へ向かう流れに分散するとともに、速度が減速される。この第1多孔板24以降の下流の流れは、
図8で示し説明した流れが上下逆になった流れとなる。
【0051】
図14は、本発明の別の実施形態に係るエネルギー回収装置のエネルギー回収チャンバーを示す概略断面図である。
図14に示すように、チャンバー内部には、海水ポートP2から距離L1だけ離間した位置に水平に第1多孔板24が配置されており、同様に濃縮海水ポートP1からL1だけ離間した位置に水平に第1多孔板24が配置され、さらにそれぞれの第1多孔板24からL2だけ離間した位置に水平に第2多孔板25が配置されている。第1多孔板24と第2多孔板25により流れ抵抗器23が構成されている。
エネルギー回収チャンバーに配置した流れ抵抗器23を構成する第1多孔板24は、中央部が閉塞し外周部に複数の小孔が形成された多孔板であり、本多孔板の中央部の閉塞部には第2多孔板25に向かって円錐状のコーン26が形成されている。
図8で示した流れ解析の結果のように、第1多孔板の外周部から小孔を通過した流れは、多孔板の閉塞部の下流には渦が生じるが、円錐状のコーン26を設けることで渦を発生させずコーン26の壁面に沿った下向きの流れにすることができ、第1多孔板24から第2多孔板25への流れが均一になり、第2多孔板25による整流作用によってさらにその下流の流れを均一にすることができる。
【0052】
前述したように、流入側の流れ抵抗器による流れの均一化作用は、流出側の流れ抵抗器23やポートの配置によっても変化する。中央部に孔を形成した孔付き円板31を配置することにより、ポートの配置にかかわらず流れ抵抗器23への流入位置がチャンバー中心となる。
図9および
図12で示した実施形態のように、実際の海水ポートおよび濃縮海水ポートの位置が中心にない場合でも、各ポートと流れ抵抗器23との間に配置した孔付き円板31の中央部に形成した孔をチャンバー内部の仮想の海水ポートと濃縮海水ポートと見ることができるので、
図2および
図6で示した実施形態の発明と同等の作用・効果を得ることができる。
【0053】
このように、海水と濃縮水が押し引きされるチャンバー空間(
図2、
図6、
図9、
図12、
図14におけるLaの部分)で均一な流れを形成するために本発明は、チャンバー中心位置の流入・流出ポート(又は孔)、流れ抵抗器、海水と濃縮海水が押し引きされるチャンバー空間、流れ抵抗器、チャンバー中心位置の流入・流出ポート(又は孔)という構成になっており、流れが逆向きになっても、同様の構成・順番の流れとなる。このように流入と流出において、チャンバー内に構成した流れ抵抗が対称性を有する。
また、各ポート間のチャンバー内に構成した流れ抵抗器は、チャンバー中心軸まわりに回転対称となっており、チャンバーの半径方向における流入、流出の流れ抵抗が回転対称となるようにしている。
図9の実施形態のように、一方のポート位置がチャンバー中心に無い場合は、孔付き円板31の中央部の孔と中央のポートの間でチャンバーの内部構成がチャンバー中心軸まわりに回転対称となっている。
図12の実施形態のように、両方のポート位置がチャンバー中心に無い場合は、両方の孔付き円板31の中央部の孔の間のチャンバーの内部構成がチャンバー中心軸まわりに回転対称となっている。
【0054】
図12において濃縮海水側に設けた孔付き円板31が無い場合の濃縮海水の流出を考えると、濃縮海水は濃縮海水ポート側の流れ抵抗器23から下流の左側面のポートP1側に流出しやすくなるため半径方向に偏った流れになる。この結果、海水流入として見た場合、海水側の流れ抵抗器23による作用が、その下流の流れ抵抗の不均一性の影響を受け、均一化作用が失われてしまう。これは、
図12の実施形態の孔付き円板31が無い場合は、ポート間の構成においてチャンバー中心軸まわりの回転対称性が失われ、本発明の構成的な対称性という特徴を欠いてしまうためである。このように、本発明は、各ポート(孔)間のチャンバー内に構成した流れ抵抗器の作用を、チャンバー中心軸まわりに回転対称とすることで、チャンバー半径方向の流れ抵抗も回転対称となり、流れ抵抗器間の押し引き空間において均一な流れとなる。
【0055】
これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。