(58)【調査した分野】(Int.Cl.,DB名)
前記少なくとも2つの磁石アセンブリ(60、74、82、90、98、106)が、近接する磁石アセンブリ(60、74、82、90、98、106)である、請求項1に記載の装置。
前記少なくとも2つの磁石アセンブリ(60、74、82、90、98、106)の各々の断面が、2つの外側磁石極性(64、68、76、78、84、86、92、94、100、102、108、110)及び1つの内側磁石極性(66、80、88、96、104、112)を有し、前記内側磁石極性が前記外側磁石極性と異なる、請求項1又は2に記載の装置。
前記装置(10; 166; 224)が、少なくとも3つの磁石アセンブリ(60、74、82、90、98、106)を備える、請求項1から3のいずれか一項に記載の装置。
前記同一の磁石極性の隣接する外側磁石極性を有する少なくとも2つの近接する磁石アセンブリが、前記少なくとも2つの近接する磁石アセンブリの前記隣接する外側磁石極性と異なる外側磁石極性を有する少なくとも1つの磁石アセンブリと交互になる、請求項5に記載の装置。
磁石アセンブリ(60、74、82、90、98、106; 216、218、220)の外側磁石極性が、磁石アセンブリ(60、74、82、90、98、106; 216、218、220)から磁石アセンブリ(60、74、82、90、98、106; 216、218、220)へと交互になる、請求項1から4のいずれか一項に記載の装置。
各カソード(16、18、20、22、24、26; 222)が、前記磁石アセンブリ(60、74、82、90、98、106; 216、218、220)のうちの1つに対応する、請求項1から8のいずれか一項に記載の装置。
【発明を実施するための形態】
【0014】
これより、本発明の様々な実施形態が詳細に参照されることになり、その一又は複数の実施例が図示される。図面に関する以下の説明の中で、同じ参照番号は同じ構成要素を指す。一般的に、個々の実施形態に関する違いのみが説明される。各実施例は、本発明を説明する目的で提供されており、本発明を限定するものではない。さらに、1つの実施形態の一部として図示及び説明される特徴は、さらなる実施形態をもたらすために、他の実施形態において用いることができるか、又は他の実施形態と併用することができる。記載がそのような変更及び変形を含むことが意図されている。
【0015】
図1は、堆積システム14の内部の基板12上のスパッタリングされた材料の層をコーティングするための装置10の概略図を示す。詳細には、
図1は装置10及びシステム14を通じる断面を示す。堆積システム14は、基板上にスパッタリングされた材料の層をコーティングするためのシステムである。本発明で使用される「基板」という用語は、例えば、ウエハ、サファイア又は同等物など水晶のスライス、或いはガラス板などの非フレキシブル基板、並びにウェブ又はホイルなどのフレキシブル基板の両方を含むものとする。
【0016】
装置10は、以下でカソード16から26と呼ばれる、6つのターゲット及び/又はカソード16、18、20、22、24及び26を備える。カソード16から26は、負電圧に接続される。カソード16から26の各々は、中空円筒又は管の形状を有し、その長手方向軸の周りで回転可能である。カソード16から26の各々は、スパッタリングプロセスにおいて基板12をコーティングするための材料を提供する、通常はソリッドステートボディであるターゲットに割り当てられる。ここでは、それぞれのターゲットは中空円筒の形状を有する。さらに、磁石アセンブリがカソード16から26の各々に割り当てられる。各磁石アセンブリは、永久磁石の配置又は配列でありうる特定の数の磁石配置を備える。磁石列のうちの少なくとも1つが外側磁石極性を有し、磁石列のうちの少なくとも別の1つが内側磁石極性を有する。磁石アセンブリは、磁場がターゲットを通して浸透するように、ターゲットに近接して、中空筒状カソードの内部に位置決めされる。カソード16から26に割り当てられるターゲット及び磁石アセンブリは、
図1には示されないが、
図2に関連してより詳細に説明される。
【0017】
本明細書に記載の実施形態によると、基板上にスパッタリングされた材料の層をコーティングするための装置が提供される。この装置は、例えば
図3Aで示されるように、少なくとも2つの磁石アセンブリ60を含む。各磁石アセンブリ60は、外側及び内側の磁石極性を有し、少なくとも2つの磁石アセンブリのうちの一方の磁石アセンブリの外側磁石極性が、少なくとも2つの磁石アセンブリのうちの他方の磁石アセンブリの隣接する外側磁石極性と異なる。
図3Bで示されるように、
図3Aの外側磁石アセンブリ364、368、及び365は、基板及び/又はプラズマに向かって面する異なる極性を有し、これは、
図3Aの種々の構造(斜めの線対縦の線)によって示される。外側磁石配置は、内側磁石配置366を囲む測端部356によって閉ループを形成する。例えば、
図3Aの上側の磁石アセンブリ60の内側磁石配置366は、プラズマ及び/又は基板に向かって面するN極を有し、且つ
図3Aの下側の磁石アセンブリ60の内側磁石配置366は、プラズマ及び/又は基板に向かって面するS極を有することができ、
図3Aの上側の磁石アセンブリ60の外側磁石配置364、365、及び368は、プラズマ及び/又は基板に向かって面するS極を有し、且つ
図3Aの下側の磁石アセンブリ60の外側磁石配置364、365、及び368は、プラズマ及び/又は基板に向かって面するN極を有することができる。
【0018】
磁石の配向が交互にならないカソードアレイでは、電子はカソードからカソードへと移動し、これは、効果がカソードからカソードへと積み重なるように、常に同一の方向で行われる。これは、すべてのカソードの間のクロストークに至る。
図3Aに関連して示されるように、これは、隣接するカソードの少なくとも1つのペアに対して、交互する磁石極性を使用することによって、回避することができる。反対の磁石極性によって、マグネトロンの内部の電子のドリフト方向が反転する。ドリフト方向の反転により、主な電子損失の位置は、ターンアラウンドの一方の側から他方の側へと移る。その結果、カソードアレイ全部について、ターゲット全体の長さにわたって均一なターゲットエロ―ジョンをもたらすことによって、ターゲットの使用の効率性を増大させることができる。
【0019】
図1に戻って参照すると、幾つかの実施形態では、アノード28、30、32、34、36、38、及び40をカソード16から26に隣接するように位置決めすることができる。アノード28から40は、円筒形状を有することができる。カソード16から26及びアノード28から40の長手方向軸は、平行に位置決めすることができる。アノード28は、装置10の内部のアノードとカソードの配置の始まりに、アノード40はその終わりに位置決めされる。アノード28から40がカソード16から26と交互になるように、アノード30から38はカソード16から26の間に位置決めされる。したがって、カソード16から26の各々は、2つの隣接するアノードを有する。アノード28から40の各々は、正電圧に接続される。装置10の内部のカソードとアノードの数を、特定用途のために、必要に応じて、変化及び適合させることができることは、明白であるべきである。
【0020】
図1による堆積システム14は、装置10を収容するプロセスチャンバ42を備える。プロセスチャンバ42は、真空チャンバの真空フランジを通して排気されるように構成される真空チャンバであってもよい。イオンと電子を有するプラズマは、カソードに隣接する真空チャンバの内部で生成することができる。イオンは、ターゲットから粒子をはじき出すために使用され、電子は、プラズマをイオン化するために使用される。さらに、堆積システム14は、プロセスチャンバ42を保護するためのチャンバシールド44、プレスパッタシールド46、及びマスクシールド48を備える。幾つかの実装態様では、プレスパッタシールド46は、抵抗器50を介してアノード28から40に接続することができる。チャンバシールド44は、グランドに接続することができる。基板12を保持するための基板支持体52が、堆積システム14内に設けられる。基板支持体52は、ターゲットからはじき出された粒子が基板12上に堆積されるように、カソード28−30に対して位置決めされる。
【0021】
図2は、基板上にスパッタリングされた材料の層をコーティングするための装置10で使用される回転可能なカソード16を通じる断面の概略図を示す。カソード16は、通常同じ構成を有する他のカソード18から26を代表的に表す。カソード16は、管の形状の中空円筒などのバッキング管54を備える。ターゲット56は、バッキング管54の外面に接続される。ターゲット56は、さらに中空円筒形状を有する。ターゲット56及びバッキング管54は、矢印58の方向、すなわち時計回りの方向に回転することができる。しかしながら、これらは、反時計回りの方向に回転することもできる。
【0022】
磁石アセンブリ60は、カソード16の内部に配置される。磁石アセンブリ60は、3つの磁石64、66、及び68が配置される円弧状ヨーク62を含むことができる。磁石64、66、及び68は、複数の単体の磁石からなる磁石配置であることができる。これらの単体の磁石は、適切な態様で共に接続される。有利には、これらの単体の磁石は、永久磁石である。各磁石配置64から68は、特定の磁石極性を有する。詳細には、これらの磁石極性は、ターゲット、プラズマ、及び/又は基板それぞれに対して効果的である。磁石配置64から68は、例えば、プラズマに向かって面する極によって特徴付けられうる。この極は、S極又はN極のいずれかであることができる。さらに、磁石64から68の磁石極性は、ターゲット、プラズマ、及び/又は基板それぞれに向けて方向付けられる結果の磁石極性の種類によって特徴付けられうる。磁石配置64から68は、内側磁石配置66の周りにリングを形成するため、外側磁石配置と呼ばれる。したがって、磁石配置64から68の磁石極性は、外側磁石極性である。磁石配置66は、外側磁石配置64と68の間の磁石アセンブリ60の内部領域に位置決めされるため、内側磁石配置と呼ばれる。したがって、磁石列66の磁石極性は、内側磁石極性である。外側磁石配置64及び68の各々は同一の磁石極性を有し、これは、内側磁石列66の磁石極性と異なる。
図2は、磁石列64から68によって設けられる磁場の磁力線70及び72を示す。
【0023】
図3Bは、基板12上のスパッタリングされた材料の層をコーティングするための装置10の別の概略図を示す。
図3Bは、カソード16から26の断面を示すが、装置10の他の特徴は、全体をより良く見渡すために除外された。単一のカソード16から26の構成は、
図2で説明されるカソード16の構成に対応する。
図3Bで示されるように、カソード16から26は、そのそれぞれの磁石アセンブリの仕様において異なる。
図3Bに関連して説明される実施形態によると、外側磁石配置の磁石極性は、磁石アセンブリから磁石アセンブリへと交互になる。これは、内側磁石列の磁石極性も磁石アセンブリから磁石アセンブリへと交互になることを意味する。
【0024】
本実施形態では、カソード16は、カソード16から26の列の左端における外側カソードである。カソード16は、外側磁石列64及び68並びに内側磁石列66を有する磁石アセンブリ60を備える。外側磁石列64、68は、磁石極性Nである同一の外側磁石極性を有する。内側磁石列66の内側磁石極性は、磁石アセンブリ60の外側磁石極性Nと異なる磁石極性Sである。カソード16から26の列の次のカソードは、カソード18である。カソード18は、カソード16に隣接して左側に位置決めされる。カソード18は、外側磁石列76及び78並びに内側磁石列80を有する磁石アセンブリ74を備える。外側磁石列76は、近接する磁石アセンブリ60の外側磁石列68に隣接して位置決めされる。有利には、外側磁石列76の外側磁石極性は、磁石列68の隣接する外側磁石極性と異なる。したがって、外側磁石列76の外側磁石極性は、磁石極性Sである。外側磁石列78が磁石列76と同じ外側磁石極性を有するため、その外側磁石極性も磁石極性Sである。さらに、磁石アセンブリ74の内側磁石列80の内側磁石極性がその外側磁石極性と異なるため、内側磁石極性は磁石極性Nである。カソード16から26の列の次のカソードは、カソード20である。カソード20は、カソード18に隣接して左側に位置決めされる。カソード20は、外側磁石列84及び86並びに内側磁石列88を有する磁石アセンブリ82を備える。外側磁石列84は、近接する磁石アセンブリ74の外側磁石列78に隣接して位置決めされる。有利には、外側磁石列84の外側磁石極性は、磁石列78の隣接する外側磁石極性と異なる。したがって、外側磁石列84の外側磁石極性は、磁石極性Nである。外側磁石列86が磁石列84と同じ外側磁石極性を有するため、その外側磁石極性も磁石極性Nである。さらに、磁石アセンブリ82の内側磁石列88の内側磁石極性がその外側磁石極性と異なるため、内側磁石極性は磁石極性Sである。カソード16から26の列の次のカソードは、カソード22である。カソード22は、カソード20に隣接して右側に位置決めされる。カソード22は、外側磁石列92及び94並びに内側磁石列96を有する磁石アセンブリ90を備える。外側磁石列92は、近接する磁石アセンブリ82の外側磁石列86に隣接して位置決めされる。有利には、外側磁石列92の外側磁石極性は、磁石列86の隣接する外側磁石極性と異なる。したがって、外側磁石列92の外側磁石極性は、磁石極性Sである。外側磁石列94が磁石列92と同じ外側磁石極性を有するため、その外側磁石極性も磁石極性Sである。さらに、磁石アセンブリ90の内側磁石列96の内側磁石極性がその外側磁石極性と異なるため、内側磁石極性は磁石極性Nである。カソード16から26の列の次のカソードは、カソード24である。カソード24は、カソード22に隣接して右側に位置決めされる。カソード24は、外側磁石列100及び102並びに内側磁石列104を有する磁石アセンブリ98を備える。外側磁石列100は、近接する磁石アセンブリ90の外側磁石列94に隣接して位置決めされる。有利には、外側磁石列100の外側磁石極性は、磁石列94の隣接する外側磁石極性と異なる。したがって、外側磁石列100の外側磁石極性は、磁石極性Nである。外側磁石列102が磁石列100と同じ外側磁石極性を有するため、その外側磁石極性も磁石極性Nである。さらに、磁石アセンブリ98の内側磁石列104の内側磁石極性がその外側磁石極性と異なるため、内側磁石極性は磁石極性Sである。カソード16から26の列の次のカソード及び最後のカソードは、カソード26である。カソード26は、カソード24に隣接して右側に位置決めされる。カソード26は、外側磁石列108及び110並びに内側磁石列112を有する磁石アセンブリ106を備える。外側磁石列108は、近接する磁石アセンブリ98の外側磁石列102に隣接して位置決めされる。有利には、外側磁石列108の外側磁石極性は、磁石列102の隣接する外側磁石極性と異なる。したがって、外側磁石列108の外側磁石極性は、磁石極性Sである。外側磁石列110が磁石列108と同じ外側磁石極性を有するため、その外側磁石極性も磁石極性Sである。さらに、磁石アセンブリ106の内側磁石列112の内側磁石極性がその外側磁石極性と異なるため、内側磁石極性は磁石極性Nである。
【0025】
上述のように、カソードアレイのカソード内の磁石アセンブリの交互する極性は、アレイの内部のカソード間のクロストークを減少し、これは、幾つかの電子損失の回収のため、類似する磁石アセンブリで生じる可能性があり、その結果、アレイの外側カソードに沿って流れ、且つマグネトロンのターンアラウンドにおいてカソードからカソードへとジャンプする、アレイ電子電流(array electron current)が生成される。したがって、本明細書で説明される実施形態は、カソードアレイ全部について、ターゲット全体の長さにわたって均一なターゲットエロ―ジョンをもたらすことによって、ターゲットの使用の効率性を改善する。顧客にとっては、このような代わりの磁石アレイを使用することはカソードの寿命を延長し、ターゲット使用の効率向上により同じセットのターゲットを用いてより多くの基板をコーティングすることができるため、堆積された層のコストが減少する。
【0026】
図4は、基板上にスパッタリングされた材料の層をコーティングするための装置10の近接する磁石アセンブリ60、74、82、90、98及び106の上面の概略図を示す。磁石アセンブリ60、74、82、90、98及び106の配置及び構成は、
図3Bに関連して説明される実施形態に対応する。装置10の他の特徴は、全体をより良く見渡すために除外された。
図4は、平行する磁石アセンブリ60、74、82、90、98及び106の列の左手側に、磁石アセンブリ60とともに、その外側磁石列64及び68並びにその内側磁石列66を示す。外側磁石列64、68はそれぞれ外側磁石極性Nを有し、内側磁石列66は内側磁石極性Sを有する。参照番号114は、磁石アセンブリ60が割り当てられるカソード16の長手方向軸を指す。磁石アセンブリ74は、その外側磁石列76及び78、並びにその内側磁石列80とともに、磁石アセンブリ60に隣接して位置決めされる。外側磁石列76、78はそれぞれ外側磁石極性Sを有し、内側磁石列80は内側磁石極性Nを有する。参照番号116は、磁石アセンブリ74が割り当てられるカソード18の長手方向軸を指す。次に、磁石アセンブリ82は、その外側磁石列84及び86、並びにその内側磁石列88とともに、磁石アセンブリ74に隣接して位置決めされる。外側磁石列84、86はそれぞれ外側磁石極性Nを有し、内側磁石列88は内側磁石極性Sを有する。参照番号118は、磁石アセンブリ82が割り当てられるカソード20の長手方向軸を指す。次に、磁石アセンブリ90は、その外側磁石列92及び94、並びにその内側磁石列96とともに、磁石アセンブリ82に隣接して位置決めされる。外側磁石列92、94はそれぞれ外側磁石極性Sを有し、内側磁石列96は内側磁石極性Nを有する。参照番号120は、磁石アセンブリ90が割り当てられるカソード22の長手方向軸を指す。磁石アセンブリ98は、その外側磁石列100及び102、並びにその内側磁石列104とともに、磁石アセンブリ90に隣接して位置決めされる。外側磁石列100、102はそれぞれ外側磁石極性Nを有し、内側磁石列104は内側磁石極性Sを有する。参照番号122は、磁石アセンブリ98が割り当てられるカソード24の長手方向軸を指す。最後に、磁石アセンブリ106は、その外側磁石列108及び110、並びにその内側磁石列112とともに、磁石アセンブリ98に隣接して位置決めされる。外側磁石列108、110はそれぞれ外側磁石極性Sを有し、内側磁石列112は内側磁石極性Nを有する。参照番号124は、磁石アセンブリ106が割り当てられるカソード26の長手方向軸を指す。
【0027】
装置10は、その磁石アセンブリ60、74、82、90、98、106とともに、プロセスチャンバ42内に位置決めされる。したがって、プラズマは、同様に磁石アセンブリ60、74、82、90、98、106によって閉じ込められる。プラズマは、正電荷を有するイオン及び負電荷を有する電子を備える。電子及びそのドリフトは、プラズマの内部に追加のイオンを生成するために使用され、追加のイオンは、その後ターゲットから材料の粒子をはじき出す。これは、電子がターゲットのエロ―ジョンに影響を与えることを意味する。詳細には、電子のドリフト、ひいては追加のイオンの生成が、磁石アセンブリ60、74、82、90、98、106によって影響される。特にそれぞれの磁石アセンブリ60、74、82、90、98、106又はそれぞれのターゲットエロ―ジョンの中及び周囲でプラズマが流れる通路は、プラズマレーストラックと呼ばれる。例えば、プラズマは、それぞれの磁石アセンブリ60、74、82、90、98、106の構成によって画定される。電子は、電場及び磁場に露出される。電子に作用する力は、いわゆるローレンツ力である。ローレンツ力の定義は、F(ローレンツ)=q*(E+v×B)であり、qは荷電粒子の電荷(電子)、Eは電場の強度、vは荷電粒子の速度、及びBは磁場の磁束密度である。
【0028】
電子に作用する力のため、各磁石アセンブリ60、74、82、90、98、106に対して個別の電子ドリフト流が生成される。個別の電子ドリフト流の方向は、磁石アセンブリ60、74、82、90、98、106それぞれの内側及び外側磁石列の極性、ひいてはそれぞれの磁場の方向によって定義される。詳細には、個別の電子ドリフト電流は、磁石アセンブリ60、74、82、90、98、106それぞれの外側磁石列と内側磁石列の間を流れる。
図4では、このような電子ドリフト電流の例が示される。
図4は、磁石アセンブリ60に関連する電子ドリフト電流126、磁石アセンブリ74に関連する電子ドリフト電流128、磁石アセンブリ82に関連する電子ドリフト電流130、磁石アセンブリ90に関連する電子ドリフト電流132、磁石アセンブリ98に関連する電子ドリフト電流134、及び磁石アセンブリ106に関連する電子ドリフト電流136を示す。電子ドリフト電流126から136が流れる方向は、
図4の矢印によって示される。個々の電子ドリフト電流126から136の方向は、磁石アセンブリから磁石アセンブリへ交互になることに留意されたい。これは、磁石アセンブリから磁石アセンブリへ、外側及び内側の磁石列の磁石極性が交互することの結果である。電子ドリフト電流126、130及び134は反時計回りに流れ、電子ドリフト電流128、132、及び136は時計回りに流れる。
【0029】
個々の電子ドリフト電流の流れに沿ったプラズマの閉じ込めは、2つの平行且つ真っ直ぐな中央部、左中央部138と右中央部140、並びに2つのターンアラウンド、上側ターンアラウンド142と下側ターンアラウンド144を有する。左中央部138は、磁石アセンブリ60、74、82、90、98、106それぞれの、左の細長い外側磁石列と細長い内側磁石列の間を通り、右中央部140は、右の細長い外側磁石列と細長い内側磁石列の間を通る。上側ターンアラウンド142は、その上端において中央部138、140を接続し、下側ターンアラウンド144は、その下端において中央部138、140を接続する。
【0030】
通常、ターンアラウンド142、144内のプラズマ密度は、中央部138、140と異なる。これは、ターゲットの局所的なエロ―ジョンにおける違いに至る場合がある。ターゲットのエロ―ジョンは、スパッタリングプロセスの間に不均一になる。これを避ける手段は、ターンアラウンド142、144内の磁場を弱めることである。例えば、これは、ターンアラウンド142、144内の磁石列にシャントを適用することによって達成することができる。シャントは、例えば強磁性金属シートである。これは、結果としてターンアラウンド142、144内のより低いターゲットエロ―ジョンとなる。しかしながら、ターンアラウンド142、144内のより弱い磁場の副影響は、より弱い局所的なプラズマの閉じ込めであり、これは、結果としてカソードとその磁石アセンブリの周辺部分への電子損失となる。詳細には、電子損失は、電子ドリフト電流の電子が真っ直ぐな中央部138、140に再び入る前に、ターンアラウンド142、144の端部において強い。
【0031】
幾つかの実施形態によると、磁石アセンブリを有する2つ以上のカソードは、2つの隣接するカソードが互いに相互作用を及ぼすように、互いに近接するように位置決めされる。これらのカソードは、カソードアレイを構築する。しかしながら、2つのカソードの間の隣接性は、隣接するカソードの隣接する磁石アセンブリが、電子損失の一部を回収できるという効果に至ることができる。磁石アセンブリの個々の電子ドリフト電流の電子は、ターンアラウンドの端部において、1つの磁石アセンブリから隣接する磁石アセンブリへと流れる。これは、隣接する磁石アセンブリ間のクロストークに至る。1つの磁石アセンブリから隣接する磁石アセンブリへの電子のジャンプの方向及び位置は、特に個々の電子ドリフト電流の方向に依存する。そして、個々の電子ドリフト電流の方向は、磁石アセンブリそれぞれの外側及び内側の磁石列の極性の構成に依存する。したがって、本明細書に記載の実施形態は、カソードアレイ内の、複数のカソード、大部分のカソード、又は全てのカソードの間のクロストークを回避する。これは、少なくとも2つの近接するカソードの磁石アセンブリの間の交互する磁石配向に起因する。
【0032】
図4では、本明細書に記載の幾つかの実施形態について、1つの磁石アセンブリから隣接する磁石アセンブリへの電子のジャンプの効果が示される。
図4に関連して説明される実施形態によると、磁石アセンブリ60の電子ドリフト電流126の方向は反時計回りである。したがって、電子のジャンプ、すなわち、電子クロストークは、電子ドリフト電流126から隣接する磁石アセンブリ74の電子ドリフト電流128へ、磁石アセンブリ60の下側ターンアラウンド144の端部において行われる。このクロストークは、矢印146によって示される。磁石アセンブリ74の電子ドリフト電流128の方向は、時計周りである。したがって、電子のジャンプは、電子ドリフト電流128から隣接する磁石アセンブリ60の電子ドリフト電流126へ、磁石アセンブリ74の下側ターンアラウンド144の端部において行われる。このクロストークは、矢印148によって示される。クロストーク146とクロストーク148は互いに逆になり、それにより、概してこれらの電子ドリフト電流126、128の電子損失が補償される。さらに、電子のジャンプは、電子ドリフト電流128から隣接する磁石アセンブリ82の電子ドリフト電流130へ、磁石アセンブリ74の上側ターンアラウンド142の端部において行われる。このクロストークは、矢印150によって示される。次の磁石アセンブリ82において、電子ドリフト電流130の方向は、再び反時計回りである。電子のジャンプは、電子ドリフト電流130から隣接する磁石アセンブリ74の電子ドリフト電流128へ、磁石アセンブリ82の上側ターンアラウンド142の端部において行われる。このクロストークは、矢印152によって示される。クロストーク150とクロストーク152が互いに逆になるため、電子ドリフト電流128、130の電子損失は、少なくともほぼ補償される。電子のジャンプは、電子ドリフト電流130から隣接する磁石アセンブリ90の電子ドリフト電流132へ、磁石アセンブリ82の下側ターンアラウンド144の端部においてさらに行われる。このクロストークは、矢印154によって示される。磁石アセンブリ90では、電子ドリフト電流132の方向は、再び時計回りである。電子のジャンプは、電子ドリフト電流132から隣接する磁石アセンブリ82の電子ドリフト電流130へ、磁石アセンブリ90の下側ターンアラウンド144の端部において行われる。このクロストークは、矢印156によって示される。クロストーク154とクロストーク156が互いに逆になるため、電子ドリフト電流130、132の電子損失は、少なくともほぼ補償される。さらに、電子のジャンプは、電子ドリフト電流132から隣接する磁石アセンブリ98の電子ドリフト電流134へ、磁石アセンブリ90の上側ターンアラウンド142の端部において行われる。このクロストークは、矢印158によって示される。磁石アセンブリ98では、電子ドリフト電流134の方向は、反時計回りである。電子のジャンプは、電子ドリフト電流134から隣接する磁石アセンブリ90の電子ドリフト電流132へ、磁石アセンブリ98の上側ターンアラウンド142の端部において行われる。このクロストークは、矢印160によって示される。クロストーク158とクロストーク160が互いに逆になるため、これらの電子ドリフト電流132、134の電子損失は、少なくともほぼ補償される。電子のジャンプは、電子ドリフト電流134から隣接する磁石アセンブリ106の電子ドリフト電流136へ、磁石アセンブリ98の下側ターンアラウンド144の端部においてさらに行われる。このクロストークは、矢印162によって示される。磁石アセンブリ106では、電子ドリフト電流136の方向は、時計回りである。電子のジャンプは、電子ドリフト電流136から隣接する磁石アセンブリ98の電子ドリフト電流134へ、磁石アセンブリ106の下側ターンアラウンド144の端部において行われる。このクロストークは、矢印164によって示される。クロストーク162とクロストーク164が互いに逆になるため、これらの電子ドリフト電流134、136の電子損失は、少なくともほぼ補償される。
【0033】
図4による実施形態では、磁石アセンブリから磁石アセンブリへと磁石極性が交互になることは、電子損失が少なくともほぼ補償されることに至ることを明白に示す。交互する磁石極性は、磁石アセンブリから磁石アセンブリへの電子ドリフト電流の方向の反転を引き起す。これは、下側ターンアラウンド144から上側ターンアラウンド142へ、そしてその逆を意味する、ターンアラウンドの一方の側から他方の側への電子損失の位置の移動に至る。
【0034】
有利には、隣接するカソード間のクロストーク、すなわち電子損失は、本発明に従って回避することができる。このクロストークは、類似する磁石アセンブリを有する隣接するカソードのアレイにわたって流れる又はその周囲を流れるアレイの電子ドリフト電流の結果として生じうる。アレイの電子ドリフト電流は、カソードアレイの外側カソードに沿って流れ、磁石アセンブリのターンアラウンド内でカソードからカソードへとジャンプする。アレイの電子ドリフト電流は、カソードの内部の個々の電子ドリフト電流に重なる。アレイの電子ドリフト電流に起因して、プラズマ密度は、主にカソードアレイの内側のカソードの磁石アセンブリのターンアラウンドにおいて増加しうる。これは、特に磁石アセンブリのターンアラウンドの近傍内のターゲット位置において、局所的なターゲットエロ―ジョンの増大に至ることがある。したがって、ターゲットの均一なエロ―ジョン、特に複数の隣接するカソードのアレイの内側のカソードのターゲットの均一なエロ―ジョンは、本発明の利点に従って到達することができる。それゆえ、アレイの電子ドリフト電流の生成が回避される。
【0035】
図5は、基板12上にスパッタリングされた材料の層をコーティングするためのさらなる例示的な装置166の概略図を示す。概して、
図5による装置166の構成は、
図3Bによる装置10の構成に対応する。
図5は、カソード168、170、172、174、176及び178の断面を示すが、装置166の他の特徴は、全体をより良く見渡すために除外された。単一のカソード168から178の構成は、
図2を用いて説明されるカソード16の構成に対応する。
図3Bに関連して説明される実施形態とは違い、
図5による本実施形態は、外側磁石列の磁石極性は、磁石アセンブリから磁石アセンブリへと交互にならない。本実施形態では、同一の磁石極性の隣接する外側磁石極性を有する2つの近接する磁石アセンブリは、2つの近接する磁石アセンブリの隣接する外側磁石極性と異なる外側磁石極性を有する磁石アセンブリと交互になる。したがって、
図5は、2つのN−S−Nカソードアセンブリが互いに隣接して設けられてN−S−Nカソードのペアを形成し、1つのS−N−SカソードがN−S−Nカソードのペアの隣に設けられる、カソードアレイを示す。それにより、アレイ全体に沿った或いはアレイ全体にわたるプラズマ電子の電流ループが遮断される。上記に照らして、本明細書に記載の種々の実施形態によると、カソードアレイは少なくとも2つの磁石アセンブリを含み、少なくとも2つの磁石アセンブリのうちの一方の磁石アセンブリの外側磁石極性は隣接する外側磁石極性と異なる。したがって、2つの隣接するカソードの間の外側(及び内側)磁石極性の磁石極性において少なくとも1つの交互配列が設けられる。通常、
図3B及び
図4に関連して示されているように、各カソードは、近接するカソードに関連して交互する磁石極性を有することができる。2つの近接するカソードにおいて交互配列が設けられる限り、交互配列の選択肢の複数の組み合わせが設けられうることを理解することができる。
【0036】
図6は、基板上12のスパッタリングされた材料の層をコーティングする装置224において使用される単一の平面カソード222に割り当てられる3つの近接する磁石アセンブリ216、218、及び220を通した断面の概略図を示す。カソード222は、ターゲット226に接続される。磁石アセンブリ216は、外側磁石極性Nを有する外側磁石列228及び230を備える。磁石アセンブリ216は、外側磁石列228、230の間に内側磁石極性Sを有する内側磁石列232を備える。内側磁石極性Sは、外側磁石極性Nと異なる。磁石アセンブリ218の外側磁石列234は、外側磁石列230に隣接して位置決めされる。外側磁石列234は、外側磁石列230の外側磁石極性Nと異なる外側磁石極性Sを有する。磁石アセンブリ218の外側磁石列236は、さらに外側磁石極性Sを有し、磁石アセンブリ218の内側磁石列238は、内側磁石極性Nを有する。第3の磁石アセンブリ220の構成は、第1の磁石アセンブリ216の構成に対応する。したがって、外側磁石列240及び242は外側磁石極性Nを有し、内側磁石列244は内側磁石極性Sを有する。
【0037】
図7は、基板12上にスパッタリングされた材料の層をコーティングするための例示的な堆積システム14の概略図を示す。堆積システム14は、装置10を備える。装置10は、すべて平行して位置決めされるカソード16から26及びアノード28から40を保持する。
図7は、カソード16から26の長手方向軸114から124、並びに隣接するカソード間の距離246を示す。有利には、カソードは、2つの隣接するカソードが互いに相互作用を及ぼすほどに互いに近接するように位置決めされる。好ましくは、2つの隣接するカソードの間の距離は500mmを下回る。より好ましくは、2つの隣接するカソードの間の距離は300mmと400mmの間であり、さらにより好ましくは235mmと250mmの間である。
【0038】
有利には、本発明によると、スパッタリングされた材料を用いて基板の均一なコーティングを達成することが可能である。さらに有利には、コーティング用に使用されるターゲットの非常に均一なエロ―ジョンプロファイルを提供することが可能である。これは、ターゲットの使用において高い効率性を保証する。先行技術のシステムに比べて、ターゲットの寿命は増大する。これは、先行技術のシステムに比べて、1つのターゲット及び同一のターゲット又はターゲットのセットを用いてより多くの基板をコーティングすることができるため、コストが減少する。さらに、堆積システムは、保守又は予防保守がなくてもより長く動作することができる。したがって、システムの使用可能時間が向上し、これにより、先行技術のシステムに比べてシステムの使用のより高い効率性が可能になる。
【0039】
詳細には、本発明による堆積システムは、大面積を有する基板をコーティングするためのPVD(物理的気相堆積)大面積堆積システムである。通常、堆積システム、並びに基板上にスパッタリングされた材料の層をコーティングするための装置は、基板が固定されて動かない静的堆積プロセスに適している。しかしながら、基板が動く動的堆積プロセスに本発明を用いることも可能である。さらに、本発明は、様々な異なる種類の基板に適し、例えば、基板は小さな面積を有することができる。本発明は、回転可能なターゲット並びに平面のターゲット、AC(交流)システム及びDC(直流)システムに適用することができる。好ましくは、本発明は、堆積システム及び3つ以上の磁石アセンブリを備える基板上にスパッタリングされた材料の層をコーティングするための装置に適用することができる。さらに好ましくは、これらの磁石アセンブリは並ぶように配置される。
【0040】
本明細書に記載の実施形態によると、当該方法は、静的堆積プロセスのために基板を位置決めするスパッタ堆積を提供する。通常、垂直に配向された大面積基板の処理など、特に大面積基板処理については、静的堆積と動的堆積の間で区別することができる。動的スパッタリング、すなわち、基板が堆積源に沿って連続的又は準連続的に動くインラインプロセスは、基板が堆積領域に移動する前にプロセスを安定化し、次いで、基板が堆積源を通過するにつれて一定に保つことができるため、より簡単である。しかし、動的堆積は、例えば粒子生成などの他の欠点を有することがある。これは、特にTFTバックプレーン堆積(TFT backplane deposition)に適用されうる。本明細書に記載の実施形態によると、例えばTFT処理のために、静的スパッタリングを提供することができ、初期基板上への堆積の前にプラズマを安定化させることができる。したがって、動的堆積プロセスに比べると異なる静的堆積プロセスという用語は、当業者が認識する基板の任意の動きを除外するものではないことに留意するべきである。静的堆積プロセスは、例えば、堆積中の静的基板位置と、堆積中の振動基板位置と、堆積中に実質的に一定である平均基板位置と、堆積中のディザリング基板位置(dithering substrate position)と、堆積中の搖動基板位置と、カソードが1つのチャンバ内に設けられる、すなわち、所定のセットのカソードがチャンバ内に設けられる堆積プロセスと、堆積チャンバが、例えば、層の堆積中にチャンバを隣接するチャンバから分離する弁ユニットを閉じることによって、近接するチャンバに関連して密閉雰囲気を有する基板位置と、又はその組み合わせとを含むことができる。したがって、静的堆積プロセスは、静的位置を有する堆積プロセス、実質的に静的な位置を有する堆積プロセス、又は基板の部分的な静的位置を有する堆積プロセスとして理解することができる。それにより、本明細書に記載の静的堆積プロセスは、静的堆積プロセスのための基板位置が堆積中に任意の動きが全くないという必要性なしに、動的堆積プロセスと明確に区別することができる。
【0041】
本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態によると、本明細書に記載の実施形態は、ディスプレイPVD、すなわち、ディスプレイ市場のための大面積基板上のスパッタ堆積のために利用することができる。幾つかの実施形態によると、大面積基板又は複数の基板を有するそれぞれのキャリアは、少なくとも0.67m
2の大きさを有することができる。典型的には、大きさは、約0.67m
2(0.73m×0.92m−GEN4.5)から約8m
2、より典型的には、約2m
2から約9m
2、又は最大12m
2とすることができる。典型的には、本明細書に記載された実施形態による構造体、カソードアセンブリなどの装置、及び方法が提供される基板又はキャリアは、本明細書に記載された大面積基板である。例えば、大面積基板又はキャリアは、約0.67m
2の基板(0.73m×0.92m)に対応するGEN4.5、約1.4m
2の基板(1.1m×1.3m)に対応するGEN5、約4.29m
2の基板(1.95m×2.2m)に対応するGEN7.5、約5.7m
2の基板(2.2m×2.5m)に対応するGEN8.5、又は約8.7m
2の基板(2.85m×3.05m)に対応するGEN10とすることができる。GEN11及びGEN12などのさらに大きい世代並びに対応する基板面積も、同様に実装することができる。
【0042】
上記に照らして、カソードアレイの少なくとも1つの近接するカソードのペア内の磁石アセンブリが、その極性に関連してカソードからカソードへ交互になる、すなわち、内側及び外側の磁石が、1つのカソード内でN−S−N極性配置、近接するカソード内でS−N−S極性配置を形成する、複数の実施形態が記載される。
図6に示されるように、例えば1つのカソードが2つ以上の磁石アセンブリを有する場合に、類似する交互配列を磁石アセンブリから磁石アセンブリへと設けることができる。
【0043】
さらに、追加で又は互いに交互に、複数の任意の修正を提供することができる。さらなる実施形態によると、少なくとも2つの磁石アセンブリは、近接する磁石アセンブリである。別の実施形態によると、少なくとも2つの磁石アセンブリの各々の断面は、2つの外側磁石極性及び1つの内側磁石極性を有し、内側磁石極性は外側磁石極性と異なる。さらなる実施形態によると、装置は少なくとも3つの磁石アセンブリを備える。好ましくは、装置は少なくとも5つの磁石アセンブリを備える。さらなる実施形態によると、一群の磁石アセンブリの少なくとも2つの近接する磁石アセンブリの隣接する外側磁石極性は同じ磁石極性を有する。さらなる実施形態によると、同じ磁石極性の隣接する外側磁石極性を有する少なくとも2つの近接する磁石アセンブリは、少なくとも2つの近接する磁石アセンブリの隣接する外側磁石極性と異なる外側磁石極性を有する少なくとも1つの磁石アセンブリと交互になる。さらなる実施形態によると、磁石アセンブリの外側磁石極性は、磁石アセンブリから磁石アセンブリへと交互になる。別の実施形態によると、磁石アセンブリは一又は複数のカソードに対応する。さらなる実施形態によると、各カソードは磁石アセンブリのうちの1つに対応する。さらなる実施形態によると、2つの隣接するカソードの間の距離は、2つの隣接するカソードが互いに相互作用を及ぼす距離である。好ましくは、2つの隣接するカソードの間の距離は、500mmを下回る。より好ましくは、2つの隣接するカソードの間の距離は、300mmと400mmの間である。さらに好ましくは、2つの隣接するカソードの間の距離は、235mmと250mmの間である。別の実施形態によると、カソードは平面カソードである。好ましくは、装置は単一の平面カソードを備える。堆積システムの別の実施形態によると、装置は、長手方向軸を有する回転可能なカソードを備える。これらの長手方向軸は平行に位置決めされる。堆積システムのさらなる実施形態によると、堆積システムは、基板上にスパッタリングされた材料の層をコーティングするためのシステムである。
【0044】
以上の説明は本発明の実施形態を対象としているが、本発明の基本的な範囲を逸脱することなく本発明の他の及び追加の実施形態を考案することができ、本発明の範囲は、以下の添付の特許請求の範囲によって定められる。