(58)【調査した分野】(Int.Cl.,DB名)
前記検査領域抽出工程において、前記半導体発光素子の非発光領域として予め定めておいた領域を除いて前記検査領域を抽出することを特徴とする請求項1に記載の半導体発光素子の検査方法。
前記画像は赤、緑及び青の色成分に色分解されたカラー画像であり、前記光強度として、前記色成分に所定の重み付けをした加重平均として算出される輝度値を用いることを特徴とする請求項1又は請求項2に記載の半導体発光素子の検査方法。
前記画像入力工程において、複数の前記半導体発光素子をまとめて撮影した画像を入力し、前記検査領域抽出工程において、1個単位の前記半導体発光素子の領域の画素データを前記検査領域として順次に抽出することを特徴とする請求項1ないし請求項4の何れか一項に記載の半導体発光素子の検査方法。
前記ばらつき値は、前記検査領域における光強度の分散、標準偏差、平均偏差又は変動係数の何れか1つであることを特徴とする請求項1ないし請求項5の何れか一項に記載の半導体発光素子の検査方法。
【発明を実施するための形態】
【0015】
以下、本発明の実施形態に係る半導体発光素子の検査方法及び半導体発光素子の製造方法について、図面を参照しながら詳細に説明する。なお、以下の説明において参照する図面は、本発明を概略的に示したものであるため、各部材のスケールや間隔、位置関係などが誇張、あるいは、部材の一部の図示が省略されている場合がある。また、以下の説明では、同一の名称及び符号については原則として同一又は同質の部材を示しており、詳細な説明を適宜省略することとする。
【0016】
<第1実施形態>
[検査方法の原理]
まず、
図2を参照して、本発明の第1実施形態に係る半導体発光素子の検査方法(以下、適宜「検査方法」という)の原理について説明する。
なお、
図2に示した例は、検査方法の原理を説明するために、模式的に蛍光画像を示したものである。
【0017】
本発明の第1実施形態に係る検査方法は、検査対象である半導体発光素子(以下、適宜「発光素子」という)に活性層を励起する光を照射し、励起された活性層から放出される蛍光の画像を撮影した蛍光画像を解析することで、発光素子の良否を判定するものである。
【0018】
より詳細には、本実施形態に係る検査方法は、発光領域から発光される平均光強度の大きさに加えて、発光領域中に形成された発光不良領域の有無を検出し、平均光強度が所定値以上であっても、発光不良領域を検出した場合は、不良品であると判定するものである。そして、発光不良領域の検出を、発光領域における光強度のばらつきを示す指標(例えば、分散や標準偏差)の大きさに基づいて行うものである。すなわち、光強度が非常に低い発光不良領域が存在すると、ばらつきが大きくなることを利用して、当該発光不良領域の有無を判定するものである。
【0019】
図2に示したサンプル1〜3は、前記したように、光強度を示す指標として輝度を用いて蛍光画像を示したものである。ここで、輝度は最暗部を「0」、最明部を「255」とする256階調の画素値で表わされているものとする。
各サンプルの検査領域である発光領域における輝度平均は、
図2の「平均」欄に示した通りである。ここで、輝度平均に基づいて良否を判定する判定閾値を「80」とすると、「判定1」の欄に○(良品)及び×(不良品)で示したように、サンプル1,3が良品、サンプル2が不良品と判定される。
前記したように、サンプル3のように、発光領域に、内部の欠陥などにより発光不良領域を有する場合でも、他の領域の輝度が高く、全発光領域の平均として、判定閾値以上となる場合は、不良品として検出することができない。
【0020】
一方、これらのサンプルについての発光領域の画素の輝度の分布を示すヒストグラムを「輝度分布」の欄に示す。ここで、このヒストグラムは、横軸を輝度、縦軸を度数とし、最も頻度が高い輝度の度数に対する相対的な度数を模式的に示したものである。
【0021】
サンプル1では、すべての画素が最高輝度で発光していることを示している。このため、画素間の輝度差がなく、光強度のばらつきの指標である分散は「0」である。
サンプル2では、輝度は低いが画素間の輝度差がなく、分散は「0」である。
サンプル3では、発光領域中に全く発光しないか、又は他の発光領域に比べて著しく輝度レベルの低い発光不良領域があり、輝度分布は、最高輝度と最低輝度とに2極化している。このため、分散は「100」と大きい。
ここで、輝度分散に基づく判定閾値を「10」とすると、「判定2」の欄に○(良品)及び×(不良品)で示したように、サンプル1,2が良品、サンプル3が不良品と判定される。
【0022】
なお、前記した例において、発光不良領域の輝度レベルが他の発光領域に比べて著しく低いとは、良品として許容される輝度ムラの範囲を超えて低レベルであることを意味する。また、
図2に示した輝度平均による判定閾値や輝度分散による判定閾値、輝度分布などの例は、検査方法の原理を説明するために模式的に示したものであり、これらに限定されるものではない。
【0023】
本実施形態に係る検査方法では、輝度平均に基づく判定結果と、輝度分散に基づく判定結果とを総合して判定する。すなわち、少なくとも何れか一方の判定において不良品と判定された場合に、不良品と判定する。言い換えれば、何れの判定においても不良品と判定されない(良品と判定される)場合に、良品と判定する。
従って、
図2に示した例では、「総合判定」の欄に○(良品)及び×(不良品)で示したように、サンプル1が良品、サンプル2,3が不良品と総合判定される。
【0024】
なお、分散を評価する際には、構造的に非発光領域となる画素は除外している。非発光領域となる画素は、常に輝度が「0」又は非常に低い値であるため、キズなどによる発光不良領域と同程度の画素値となる。このため、非発光領域の画素を含めて分散を算出すると、発光不良領域が含まれるときの分散と区別ができなくなる。
そこで、本発明の検査方法では、構造的に非発光領域となる画素を予め除外して分散を算出することとした。なお、構造的に非発光領域がない場合は、発光素子の領域全体の画素値を用いて分散を算出すればよい。
【0025】
また、輝度平均の算出の際は、非発光領域の画素を除外しなくとも、非発光領域による輝度平均の低下を考慮して判定閾値を小さくすれば、非発光領域を除外した場合と同じ基準で良否を判定することができる。但し、輝度平均に基づく判定の際にも、非発光領域の画素を除外して輝度平均を算出することで輝度平均の値が大きくなり、判定精度が向上するため好ましい。
【0026】
なお、前記した輝度平均についての判定閾値及び輝度分散についての判定閾値は、検査方法の原理を説明するために例示したものであり、これらに限定されるものではない。これらの判定閾値は、良品とするサンプル群における輝度平均及び輝度分散の分布と、不良品とするサンプル群における輝度分散及び輝度分散の分布とを実験的に求め、良品と不良品とを適切に判定できるように、予め定めるようにすればよい。
【0027】
また、本実施形態では、下限の閾値のみを用いて、輝度平均に基づく良否の判定を行うようにしたが、上限の閾値を用いた判定を更に行うようにしてもよい。キズなどの欠陥を有する発光素子の中には、本来は不良品であるにも拘らず、隣接する発光素子から伝播してくる蛍光を、欠陥部で光取り出し面方向に回折や散乱することで、見かけ上、良品の発光素子より高輝度に蛍光が観察される場合がある。このような不良品の発光素子が生じる場合には、上限閾値を設定し、輝度平均が当該上限閾値よりも大きい場合にも不良品と判定することで、良否を適切に判定することができる。
【0028】
なお、上限閾値を設ける場合は、良品の発光素子で観察される最高輝度に対応する画素値が、画素値の最高値よりも低くなるように、撮像手段22のゲインを調整するものとする。画素値が8ビットデータの場合には、良品の発光素子の最高輝度に相当する画素値が、例えば「150」となるようにする。そして、「150」を上限閾値とし、輝度平均が「150」を超える発光素子、すなわち、良品の発光素子の輝度平均の最高値を超える発光素子を不良品であると判定するようにすればよい。
【0029】
[検査装置の構成]
次に、
図1を参照して、本発明の第1実施形態に係る検査方法を実施するための検査装置の構成について説明する。
図1に示すように、本実施形態における検査装置1は、撮影装置2と、解析装置3とから構成されている。
【0030】
撮影装置(画像入力手段)2は、発光素子に励起光を照射して活性層から放出される蛍光の画像を撮影するものである。このために、本実施形態における撮影装置2は、照明光源21と、撮像手段22と、ダイクロイックミラー23と、対物レンズ24と、載置台25とを備えている。
【0031】
なお、本実施形態では、検査対象Wは、発光素子が2次元に配列して形成されたウエハ状態のものとして説明するが、これに限定されるものではない。例えば、1個の発光素子であってもよく、ウエハを分割してチップ化された発光素子が支持基板などに再配列されたものであってもよい。また、ウエハ状態の発光素子の成長基板と反対面側に支持基板を貼り合せ、成長基板を剥離することで、支持基板に発光素子を転写した状態のものであってもよい。
【0032】
照明光源21は、検査対象Wを構成する発光素子の活性層を励起可能な波長の光を発生する光源である。この励起光の波長は、検査する発光素子の活性層における発光波長よりも短波長の光が含まれるものであればよい。例えば、緑色に発光する発光素子の場合は、青色ないし紫色の光を励起光として用いることができ、青色に発光する発光素子の場合には、当該青色光よりも短波長の可視光を励起光として用いることができる。
このような照明光源21としては、LED、レーザ、キセノンアークランプ、水銀アークランプなどを用いることができる。
【0033】
なお、発光素子の活性層以外の半導体体層が、フォトルミネッセンス効果により蛍光を発する場合には、活性層を選択的に励起できる波長域の光を励起光とすることが好ましい。例えば、発光素子の半導体材料として窒化ガリウム系半導体を用いる場合は、近紫外光によってGaNが励起され、黄色の蛍光を発する。このため、近紫外光を含まず、活性層を選択的に励起可能な波長域の励起光を用いることが好ましい。これによって、発光素子の活性層による発光品質を適切に検査することができる。
また、光源自体の発光波長域が広い場合は、適宜に光学フィルタや分光器を組み合わせて照明光源21を構成し、活性層を選択的に励起する励起光を生成するようにしてもよい。
【0034】
撮像手段22は、CCDイメージセンサやCMOS(相補型金属酸化物半導体)イメージセンサなどの撮像素子であり、検査対象Wの蛍光画像を撮影するものである。撮像手段22は、撮影した蛍光画像のデータを、解析装置に出力する。
なお、撮像手段22は、検査対象Wからの蛍光の波長に感度を有するものであれば、モノクロイメージセンサを用いることができる。また、撮像手段22として、例えば、R(赤)、G(緑)、B(青)の3色に色分解して撮影可能なカラーイメージセンサを用いるようにしてもよい。カラーイメージセンサを用いる場合は、蛍光の波長に最も感度の高い色成分の画像データを用いるようにすることが好ましいが、これらの色成分を画素毎に重み付け加算したデータを用いるようにしてもよい。
【0035】
ダイクロイックミラー23は、反射する光の波長選択性を有する反射部材であり、照明光源21からの特定波長域の光を励起光として検査対象W側に反射するとともに、検査対象Wからの蛍光を撮像手段22側に透過する。
なお、ダイクロイックミラー23は、検査対象Wに応じて、所望の波長の励起光を反射する特性のものを設けるようにすればよい。
また、照明光源21からの光が、励起光として有効な波長のみの場合は、ダイクロイックミラー23に代えて、ハーフミラーを用いるようにしてもよい。
【0036】
対物レンズ24は、ダイクロイックミラー23を介した照明光源21からの励起光を検査対象Wの撮影対象領域に集光するとともに、検査対象Wからの蛍光の像を、撮像手段22の撮像面に結像するためのレンズである。
なお、本実施形態では、撮像手段22と対物レンズ24との間にダイクロイックミラー23を設けるように構成したがこれに限定されるもではなく、撮像素子と対物レンズとが一体になったカメラを用いるようにしてもよい。
【0037】
載置台25は、検査対象Wを載置して保持するものである。本実施形態では、載置台25は、水平面の2方向に移動可能なXYステージを用いて構成されている。このXYステージを駆動して検査対象Wを水平面内で移動させることで、1回の撮影で撮像手段22に撮影される範囲を適宜変更できるようになっている。これによって、検査対象Wを複数の領域に分けて撮影することができる。
【0038】
解析装置3は、撮影装置2から入力される検査対象Wの蛍光画像を解析し、検査対象Wを構成する個々の発光素子の良否を判定するものである。このために、本実施形態における解析装置3は、検査領域抽出手段31と、検査領域情報記憶手段32と、輝度平均判定手段33と、輝度分散判定手段34と、総合判定手段35と、判定結果記憶手段36と、を備えている。
【0039】
検査領域抽出手段31は、撮影装置2の撮像手段22から検査対象Wの蛍光画像を入力し、この蛍光画像を、発光素子毎の画像領域に分割し、分割した1個単位の発光素子の画像領域について、更に、検査領域情報記憶手段32に予め記憶されている当該発光素子において検査の対象とする検査領域と、検査の対象としない非検査領域とを識別する情報である検査領域情報を参照して、検査領域の画素データのみを検査領域画像として順次に抽出するものである。検査領域抽出手段31は、抽出した検査領域画像を、発光素子毎に、輝度平均判定手段33及び輝度分散判定手段34に出力する。
なお、発光素子における検査領域及び非検査領域の詳細については後記する。
【0040】
検査領域情報記憶手段32は、検査対象となる発光素子において、検査の対象とする検査領域と、検査の対象としない非検査領域とを識別する情報である検査領域情報を記憶するものである。ここで、検査領域とは、発光素子の平面視(撮影される面)において、発光素子の構造上、活性層を有し蛍光が放出される領域(発光領域)を指す。また、非検査領域とは、発光素子の構造上、例えば、n側電極が形成され活性層を有さないために発光しない領域(非発光領域)を指す。検査領域情報記憶手段32に記憶される検査領域情報は、検査領域抽出手段31によって参照される。
なお、検査領域情報は、検査に先立って、予め検査領域情報記憶手段32に記憶(登録)されるものとする。なお、検査領域情報は、本実施形態のように予め登録するのではなく、検査対象の種類に応じて、外部から、例えば通信回線を介して適宜に検査領域抽出手段31に入力するようにしてもよい。
【0041】
輝度平均判定手段(光強度平均判定手段)33は、検査領域抽出手段31から、発光素子毎に、検査領域画像を入力し、発光素子毎の検査領域画像における輝度(光強度)の平均である輝度平均を算出する。そして、輝度平均判定手段33は、予め定められた判定閾値である輝度平均閾値(第1閾値)と算出した輝度平均とを比較し、輝度平均が輝度平均閾値より小さい場合に当該発光素子を不良品であると判定し、輝度平均閾値以上の場合に良品であると判定する。輝度平均判定手段33は、判定結果を総合判定手段35に出力する。
【0042】
なお、本実施形態では、蛍光の光強度を示す指標として、輝度値を用いるがこれに限定されるものではなく、蛍光の光強度を示す指標であれば他のものでもよい。例えば、CIE(国際照明委員会)XYZ表色系におけるY値に相当する輝度値でもよく、RGBに色分解されたカラー画像データについて、R,G,Bに対して比視感度に応じて適宜に重み付け(例えば、0.3:0.6:0.1)をして算出した値であってもよく、蛍光の波長に最も感度の高い何れか1つの色成分の画素値を用いるようにしてもよい。
【0043】
輝度分散判定手段(光強度ばらつき判定手段)34は、検査領域抽出手段31から、発光素子毎に、検査領域画像を入力し、発光素子毎の検査領域画像における輝度(光強度)の分散(ばらつき)である輝度分散を算出する。そして、輝度分散判定手段34は、予め定められた判定閾値である輝度分散閾値(第2閾値)と算出した輝度分散とを比較し、輝度分散が輝度分散閾値より大きい場合に当該発光素子を不良品であると判定し、輝度分散閾値以下の場合に良品であると判定する。輝度分散判定手段34は、判定結果を総合判定手段35に出力する。
【0044】
なお、本実施形態では、蛍光の光強度のばらつきを示す指標として、輝度の分散を用いるがこれに限定されるものではない。光強度としては、前記した輝度平均判定手段33と同様に、蛍光の光強度を示す指標であれば他のものでもよい。また、ばらつきを示す指標としては、式(1)に示した分散に代えて、式(2)に示した標準偏差や式(3)に示した平均偏差を用いるようにしてもよく、式(4)に示したように、標準偏差を平均で除した変動係数(CV;Coefficient of Variation)を用いるようにしてもよい。
【0045】
分散 = Σ(Xi - Xave)
2 / N …式(1)
標準偏差 = √(分散) …式(2)
平均偏差 = Σ|Xi - Xave| / N …式(3)
変動係数 = (標準偏差) / (平均) …式(4)
ここで、Xiはi番目の画素の輝度を示し、Xaveは検査領域の全画素の輝度平均を示し、Nは検査領域の画素数を示し、Σは検査領域の全画素についての右式の和を示す。
【0046】
総合判定手段35は、輝度平均判定手段33及び輝度分散判定手段34から、それぞれ発光素子毎の判定結果を入力し、両者の判定結果から当該発光素子の良否を総合判定するものである。本実施形態における総合判定手段35は、何れの判定結果も不良品でない場合に当該発光素子を良品であると判定し、少なくとも何れか一方で不良品と判定された場合に不良品であると判定する。総合判定手段35は、判定結果を発光素子に対応付けて、判定結果記憶手段36に記憶する。
【0047】
判定結果記憶手段36は、総合判定手段35による判定結果を発光素子に対応付けて記憶するものである。判定結果記憶手段36に記憶される判定結果は、例えば、製造した発光素子の選別に用いられる。
【0048】
なお、本実施形態では、総合判定手段35によって、輝度平均判定手段33及び輝度分散判定手段34による判定結果を用いて総合判定し、総合判定結果を判定結果記憶手段36に記憶するようにしたが、これに限定されるものではない。例えば、総合判定結果に代えて、又は総合判定結果に加えて、輝度平均判定手段33による判定結果及び輝度分散判定手段34による判定結果を、発光素子に対応付けて判定結果記憶手段36に記憶するようにしてもよい。また、判定結果を用いて直ぐに発光素子の選別を行なう場合には、これらの判定結果を判定結果記憶手段36に記憶することなく、この判定結果を用いて発光素子を選別するようにしてもよい。
【0049】
また、輝度平均判定手段33による判定と輝度分散判定手段34による判定とを順次に行い、2つの判定結果のそれぞれに応じて順次に不良品を除外するようにしてもよい。これによって、2つの判定結果の何れかで不良品となった場合に、発光素子を除外することができる。すなわち、総合判定をすることなく、当該総合判定結果に基づく発光素子の選別と等価な選別を行うことができる。また、2つの判定を順次に行う場合には、先に行った方の判定結果が不良品である場合は、当該発光素子は総合判定しても不良品となるため、他方の判定を省略するようにしてもよい。
【0050】
また、本実施形態では、輝度平均による判定閾値及び輝度分散による判定閾値として、予め定めた固定値を用いるようにしたが、これに限定されるものではない。撮影状態の変動やロット間の偏りを考慮して、判定閾値を適宜に補正するようにしてもよい。
例えば、撮影装置2によって1画面に撮影される複数の発光素子について、まず、すべての発光素子の輝度平均を算出し、その輝度平均についての平均の大きさに応じて判定閾値を補正するようにしてもよい。
これによって、撮影装置2の光源21の経時での光量変化や検査対象のロット間の輝度の偏りを補正して、より適切に良否の判定を行うことができる。
【0051】
このために、予め実験的に多数(例えば、数百個から数千個)の発光素子のサンプルについて輝度平均を求め、更に輝度平均の全サンプルについての平均を算出し、標準的な発光素子の輝度平均(基準輝度平均)として、不図示の記憶手段に記憶しておく。また、この標準的な輝度平均のレベルで発光する発光素子群からなる検査対象Wを適切に検査するための判定閾値(輝度平均)及び判定閾値(輝度分散)を基準値(基準判定閾値(輝度平均)及び基準判定閾値(輝度分散))として予め定めておく。
【0052】
そして、検査対象Wを検査する際に、まず撮影装置2で1画面中に撮影された発光素子の輝度平均についての平均(検査対象輝度平均)を算出する。ここで、式(5)に示すように、この検査対象輝度平均と基準輝度平均との比を、基準判定閾値(輝度平均)に乗じた値を、当該検査対象Wの判定閾値(輝度平均)として用いる。輝度分散についても、輝度平均と同様に、式(6)に示すようにして、判定閾値(輝度分散)を検査対象輝度平均の大きさに応じて補正する。
【0053】
判定閾値(輝度平均)
= (基準判定閾値(輝度平均))×(検査対象輝度平均)/(基準輝度平均)
…式(5)
判定閾値(輝度分散)
= (基準判定閾値(輝度分散))×(検査対象輝度平均)/(基準輝度平均)
…式(6)
【0054】
また、判定閾値の補正方法は、検査対象輝度平均の大きさに比例するように判定閾値を補正することに限定されず、検査対象輝度平均の大きさに対して非線形になるように判定閾値を補正するようにしてもよい。また、検査対象輝度平均の大きさに応じたオフセット値を基準判定閾値に加算又は減算することで判定閾値を補正するようにしてもよい。
【0055】
また、前記した判定閾値の補正に代えて、検査対象Wの個々の発光素子についての輝度平均及び輝度分散を補正するようにしてもよい。例えば、式(5)及び式(6)に示した例に対応する輝度平均及び輝度分散の補正方法としては、「基準輝度平均」を「検査対象輝度平均」で除した値を補正係数として輝度平均及び輝度分散に乗じるようにする。そして、固定値である判定閾値と比較して当該発光素子の良否の判定する。これによって、判定閾値を補正する方式と等価な補正効果を得ることができる。
【0056】
なお、この解析装置3は、CPU(Central Processing Unit)、記憶手段(例えば、メモリ、ハードディスク)等のハードウェア資源を備えるコンピュータを、前記した各手段として協調動作させるための検査プログラムによって実現することもできる。このプログラムは、通信回線を介して配布してもよく、光ディスクや磁気ディスク、フラッシュメモリ等の記録媒体に書き込んで配布してもよい。
【0057】
[検査領域及び非検査領域]
次に、
図3を参照して、発光素子における検査領域及び非検査領域について説明する。
本実施形態の検査対象Wは、発光素子10が2次元に配列されたウエハ状態である。従って、撮影された蛍光画像には、
図3(a)に示すように、複数の発光素子10が撮影される。本実施形態では、蛍光画像を発光素子10毎に分割し、更に、1個の発光素子10についての分割画像から予め定めた検査領域の画素を抽出する。
【0058】
(発光素子領域の分割)
図3(a)に示すように、ウエハ状態の検査対象Wには、1枚の成長基板に複数の発光素子10が2次元に配列されている。各発光素子10は、分割領域15で縦横に分割されている。ここで分割領域15は、半導体層が除去されているため、構造的に非発光領域となる。ウエハには、発光素子10が、予め定められた形状及び配列で、規則的に配置されている。そうすると、蛍光画像においては、
図3(a)においてハッチングを施して示したように、分割領域15が暗い縦横の格子線として観察され、発光素子10の発光領域16が、この格子線で区画されているように見える。そこで、例えば、この格子線の中央を境界線15bとして、蛍光画像を個々の発光素子10の画像領域に分割することができる。
なお、
図3(a)において、発光領域16の右辺側にハッチングを施した円形の領域は、n側電極を形成するための領域であって、活性層が除去された半導体層の凹部12bに相当する領域である。なお、発光素子10の構造については後記する。
【0059】
(検査領域の抽出)
本実施形態では、構造的に発光領域となる領域のみを検査領域として、前記した輝度平均及び輝度分散の算出対象とする。そのために、個々の発光素子10の画像から、構造的に非発光領域となる画素を非検査領域として除外し、発光領域の画素のみを検査領域として抽出する。
【0060】
前記したように境界線15bで区画された1つの領域を1つの発光素子10についての画像領域として分割すると、発光素子10は規則的に配列されているため、何れの発光素子10の画像において、例えば、境界線15bの左上の交点を基準点15aとして、同じ形状の構造物が同じ位置に配置される。
【0061】
図3(b)は、1個の発光素子10についての蛍光画像を示したものであるが、基準点15aを基準として、発光素子10の構造に対応して、発光領域16と、非発光領域(ハッチングを施した領域)として分割領域15及び前記した凹部12bとを、予め定めておくことができる。本実施形態では、基準点15aを基準とし、1つの発光素子10についての分割画像内の各画素が検査領域か非検査領域かを識別する地図情報である検査領域情報を予め作成し、検査領域情報記憶手段32(
図1参照)に記憶しておく。そして、検査領域抽出手段31(
図1参照)によって、この検査領域情報を参照して、検査領域の画素のみを抽出する。
【0062】
ここで、
図3(c)を参照して、検査領域である発光領域16及び非検査領域である非発光領域と発光素子10の構造との関係について説明する。なお、ここで説明する発光素子10の構造は一例であり、検査対象とする発光素子10の構造を限定するものではない。
【0063】
例えば、1つの発光素子10の平面視でのサイズは、500μm×300μm程度であるが、更に大きなサイズであってもよく、更に小さなサイズであってもよい。また、平面視の形状も矩形に限定されず、円形、楕円形、多角形など任意の形状の発光素子10に適用することができる。更にまた、非発光領域の個数や形状も特に限定されるものではない。
【0064】
図3(c)に示す発光素子10は、透光性の成長基板11と、n型半導体層12n、活性層12a及びp型半導体層12pが積層された半導体積層体12と、正負のパッド電極であるp側電極13p及びn側電極13nと、p側電極13pからの電流をp型半導体層12pの全面に拡散するための反射性の全面電極13aと、透光性の保護膜14とで構成されている。半導体積層体12は、右端の一部において、上面からp型半導体層12p及び活性層12aの全部と、n型半導体層12nの一部が除去された凹部12bが形成されており、この凹部12bの底面にn型半導体層12nと電気的に接触するようにn側電極13nが設けられている。また、p側電極13pは、全面電極13aを介してp型半導体層12pと電気的に接触するように設けられている。また、発光素子10の外縁領域となる分割領域15は、半導体積層体12が除去されている。
なお、n側電極13n、p側電極13p及び全面電極13aは、例えば、金属層からなり、光を透過しないものとする。
【0065】
この例では、全面電極13aが反射電極であり、この発光素子10は、成長基板11側を光取り出し面とするフェースダウン実装型の素子である。このため、蛍光画像の撮影は、成長基板11側から行われる。ここで、凹部12bは、活性層12aを有さないため、非発光領域である。成長基板11側から観察した場合は、凹部12b及び分割領域15が非発光領域となり、それ以外が発光領域、すなわち検査領域である。
【0066】
なお、全面電極13aが透光性の電極であり、発光素子10がフェースアップ実装型の素子の場合は、半導体積層体12が設けられた面から蛍光画像を撮影するようにしてもよい。この場合は、
図3(b)において、破線で示したように、本来の非発光領域である分割領域15及び凹部12bに加えて、p側電極13pによって光が遮蔽される領域を、非発光領域として非検査領域に追加する。更に、p側電極13pから全面電極13aへの電流拡散性を向上させるために、金属層からなる延伸部13bを設ける場合は、
図3(b)において破線で示した延伸部13bが設けられた領域も非検査領域に追加する。
【0067】
また、フェースアップ実装型の素子であっても、透光性の成長基板11側から撮影する場合は、p側電極13pやその延伸部13bによって蛍光が遮蔽されないため、これらの領域を非検査領域として追加する必要はない。
このように、検査領域は、発光素子10の構造及び撮影方向に応じて定めることができる。
なお、活性層12aを有するすべての領域について発光不良領域の有無を検査するために、前記したp側電極13pや延伸部13bのような遮蔽物がない方向から撮影することが好ましい。
【0068】
[検査装置の動作]
次に、
図4を参照(適宜
図1参照)して、検査装置1の動作について説明する。
図4に示すように、本実施形態において、検査装置1は、撮影位置設定工程S10と、撮影工程S11と、検査領域抽出工程S12と、輝度平均判定工程S13と、輝度分散判定工程S14と、総合判定工程S15とが、発光素子10毎に、検査対象Wであるウエハのすべての領域について行われる。
【0069】
まず、撮影位置設定工程S10において、検査対象Wが撮影装置2の載置台25に載置されると、検査装置1は、XYステージである載置台25を駆動して、検査対象W中の撮影位置を設定する。
次に、撮影工程(画像入力工程)S11において、検査装置1は、撮影装置2によって、検査対象Wの蛍光画像を撮影する。より詳細には、検査装置1は、照明光源21を点灯し、ダイクロイックミラー23及び対物レンズ24を介して、検査対象Wを励起するための照明光を検査対象Wに照射する。これにより、照明光の照射によって励起された検査対象Wから蛍光が放出され、放出された蛍光は、対物レンズ24を介し、更にダイクロイックミラー23を透過して、撮像手段22に入射される。そして、検査装置1は、撮像手段22によって、入射した蛍光を画素毎の光強度の信号に変換した蛍光画像データを生成する。
【0070】
次に、検査領域抽出工程S12において、検査装置1は、検査領域抽出手段31によって、ステップS11で撮影された蛍光画像から1個の発光素子10についての画像を分割し、更に、検査領域情報記憶手段32に記憶されている検査領域情報を参照して、分割された画像から検査領域の画素についての画像データを抽出する。
【0071】
次に、輝度平均判定工程(光強度平均判定工程)S13において、検査装置1は、輝度平均判定手段33によって、ステップS12で抽出された検査領域の画像データについて、輝度を示す画素値の平均である輝度平均を算出する。そして、検査装置1は、輝度平均判定手段33によって、算出した輝度平均と、輝度平均に基づく判定のための所定の判定閾値とを比較し、輝度平均が判定閾値以上の場合は良品と判定し、輝度平均が判定閾値より小さい場合は不良品と判定する。
【0072】
次に、輝度分散判定工程(光強度ばらつき判定工程)S14において、検査装置1は、輝度分散判定手段34によって、ステップS12で抽出された検査領域の画像データについて、輝度を示す画素値の分散である輝度分散を算出する。そして、検査装置1は、輝度分散判定手段34によって、算出した輝度分散と、輝度分散に基づく判定のための所定の判定閾値とを比較し、輝度分散が判定閾値以下の場合は良品と判定し、輝度分散が判定閾値より大きい場合は不良品と判定する。
【0073】
なお、ステップS13の処理と、ステップS14の処理とは、何れを先に行ってもよく、並行して行ってもよい。
【0074】
次に、総合判定工程S15において、検査装置1は、総合判定手段35によって、ステップS13で判定された結果と、ステップS14で判定された結果とを参照し、少なくとも一方において不良品と判定された場合に、当該発光素子10を不良品と判定する。この総合判定の結果は、判定結果記憶手段36に、検査対象となった発光素子10に対応付けて記憶される。
【0075】
次に、検査装置1は、解析装置3によって、ステップS11で撮影された蛍光画像に、未検査の発光素子10の画像があるかどうかを確認し(ステップS16)、ある場合は(ステップS16でYes)、ステップS12に戻り、次の未検査の発光素子10についての画像を解析する。
【0076】
一方、未検査の発光素子10がない場合は(ステップS16でNo)、検査装置1は、解析装置3によって、検査対象Wについて未撮影の領域があるかどうか確認し(ステップS17)、ある場合は(ステップS17でYes)、ステップS10に戻り、撮影装置2によって、次の領域を撮影するように撮影位置を設定する。
また、未撮影の領域がない場合は(ステップS17でNo)、検査装置1は処理を終了する。
【0077】
なお、本実施形態では、複数の発光素子10が配列した検査対象Wを、複数の領域に分割して順次に撮影し、分割領域中の複数の発光素子10の画像を順次に分離して検査を行うようにしたが、これに限定されるものではない。例えば、1回の撮影で検査対象Wの全体を撮影するようにしてもよい。この場合は、ステップS17のループ判定は不要である。また、1つの撮影画像中に1つの発光素子10を撮影するようにしてもよい。この場合は、ステップS16のループ判定は不要である。更にまた、1個の発光素子10を検査対象Wとしてもよい。この場合は、ステップS16及びステップS17のループ判定は不要である。
【0078】
<第2実施形態>
[半導体発光素子の製造方法]
次に、本発明の第2実施形態として、第1実施形態に係る検査方法を検査工程として含む半導体発光素子の製造方法について、
図5を参照(適宜
図1及び
図3参照)して説明する。
なお、製造する半導体発光素子として、
図3(c)に示した構造の発光素子10を例に説明する。また、半導体材料として、窒化物半導体を例として説明する。
【0079】
図5に示すように、第2実施形態に係る半導体発光素子の製造方法は、半導体発光素子形成工程S100と、検査工程S101と、個片化工程S102と、選別工程S103と、が順次行われる。
【0080】
(半導体発光素子形成工程)
半導体発光素子形成工程S100では、
図3(c)に示した構造の半導体発光素子10が、2次元に配列されたウエハ状態で形成される。
【0081】
具体的には、まず、サファイアなどからなる成長基板11上に、n型半導体層12n、活性層12a及びp型半導体層12pを順次積層した半導体積層体12を形成する。
【0082】
n型半導体層12n、活性層12a及びp型半導体層12pの具体的構成は特に限定されず、GaN、GaAs、InGaN、AlInGaP、GaP、SiC、ZnOのように、半導体発光素子に適した材料を用いることができる。特に窒化物系の半導体材料としては、一般式が、In
XAl
YGa
1−X−YN(0≦X、0≦Y、X+Y≦1)で表わされるGaN系化合物半導体を好適に用いることができる。
【0083】
また、これらの半導体層は、それぞれ単層構造でもよいが、組成及び膜厚等の異なる層の積層構造、超格子構造等であってもよい。特に、活性層12aは、量子効果が生ずる薄膜を積層した単一量子井戸又は多重量子井戸構造であることが好ましい。
【0084】
また、通常、このような半導体層は、MIS接合、PIN接合又はPN接合を有したホモ構造、ヘテロ構造又はダブルへテロ構造等として構成されてもよい。GaN系化合物半導体層は、例えば、MOCVD法(有機金属気相成長法)、HVPE法(ハイドライド気相成長法)、MBE法(分子線エピタキシャル成長法)等の公知の技術により形成することができる。また、半導体層の膜厚は特に限定されるものではなく、種々の膜厚のものを適用することができる。
【0085】
なお、半導体層の積層構造としては、例えば、AlGaNよりなるバッファ層、アンドープGaN層、Siドープn型GaNよりなるn側コンタクト層、GaN層とInGaN層とを交互に積層させた超格子層、GaN層とInGaN層とを交互に積層させた多重量子井戸構造の活性層、MgドープAlGaN層とMgドープInGaN層とを交互に積層させた超格子層、MgドープGaNよりなるp側コンタクト層、等が挙げられる。
【0086】
以上のようにして半導体積層体12が形成されると、半導体積層体12の上面の一部の領域について、p型半導体層12p、活性層12a及びn型半導体層12nの一部をエッチングにより除去してn型半導体層12nが底面に露出した凹部12bを形成する。
このとき同時に、各発光素子10を区画する分割領域15についても、半導体積層体12をエッチングにより除去する。なお、分割領域15については、凹部12bと同様に、n型半導体層12nの一部まで除去してもよいし、n型半導体層12nの全部を除去して、成長基板11を露出させるようにしてもよい。
【0087】
次に、凹部12bの底面にパッド電極であるn側電極13nを形成する。また、p型半導体層12p及び活性層12aが除去されなかった発光領域となる領域には、p型半導体層12pの上面の略全面を覆う全面電極13a及び全面電極13aの上面の一部にパッド電極であるp側電極13pを形成する。
更に、ウエハの表面全体に、例えば、スパッタリングにより、絶縁性のSiO
2などの保護膜14を形成する。
以上により、ウエハ状態の半導体発光素子10が形成される。
【0088】
(検査工程)
次に、検査工程S101において、ウエハに形成された半導体発光素子10毎に、発光特性についての良否を判定する。この良否のための検査工程S101は、前記した第1実施形態に係る検査方法によって行うものである。このため、検査工程S101についての説明は省略する。
なお、検査結果である良否の判定結果は、各半導体発光素子10に対応付けて、判定結果記憶手段38に記憶されるものとする。
【0089】
(個片化工程)
次に、個片化工程S102において、ダイシング法、スクライブ法などにより、ウエハを分割領域15で割断し、各半導体発光素子10のチップに個片化する。
【0090】
(選別工程)
最後に、選別工程S103において、個片化された半導体発光素子10のチップについて、検査工程S101で判定された良否の結果で不良品と判定されなかった半導体発光素子10を良品として選別する。これによって、輝度平均の低い不良品とともに、発光不良領域を有し経時劣化により輝度低下又は故障する可能性の高いチップを不良品として除去することができる。
【0091】
ここで、個片化工程S102及び選別工程S103の具体例について詳細に説明する。なお、以下に説明する「表面側粘着シート貼付工程」から「裏面側粘着シート延伸工程」までが個片化工程S102に該当し、「良品抽出工程」が選別工程S103に該当する。
【0092】
(表面側粘着シート貼付工程)
検査工程S101で各半導体発光素子10についての良否の判定が終了すると、半導体発光素子10が2次元に配列されているウエハの表面(半導体層が積層された面)全体に、UV(紫外線)硬化型の粘着剤が塗布された粘着シートを貼付する。この粘着シートは、例えば、ポリオレフィンなどの樹脂からなるシートに、UV照射によって硬化し、粘着力を失う粘着剤が塗布されたシートである。
【0093】
(ダイシング工程)
次に、ウエハの裏面側、すなわち成長基板11側からダイシングすることで、半導体発光素子10を割断する。
【0094】
(裏面側粘着シート貼付工程)
次に、各半導体発光素子10の裏面側に粘着シートを貼付する。裏面側に貼付する粘着シートは、表面側に貼付する粘着シートと同様のものでもよいが、シートが延伸性を有し、粘着剤がUV硬化型でないものが好ましい。
【0095】
(表面側粘着シート剥離工程)
次に、表面側粘着シートにUV光を照射し、粘着剤を硬化させることで粘着力を消失させる。そして、粘着力を失った表面側の粘着シートを剥離する。これによって、各半導体発光素子10の裏面側に粘着シートが貼付された状態となる。
【0096】
(裏面側粘着シート延伸工程)
次に、裏面側粘着シートを、半導体発光素子10の縦横の配列方向に引き延ばす。これによって、ダイシング工程で個片化された半導体発光素子10が、二次元配列の位置関係を維持したまま、互いに離間させることができる。これによって、半導体発光素子10を個々にピックアップし易くなる。
【0097】
(良品抽出工程)
次に、検査工程S101で判定された半導体発光素子10毎の総合判定結果に応じて、良品の半導体発光素子10を抽出する。半導体発光素子10の抽出は、例えば、先端に吸引ノズルを有するコレットをXYZステージに取り付け、順次に、良品と判定された半導体発光素子10が配置された位置にコレットを移動させ、ウエハの表面側から当該半導体発光素子10をコレットで吸引してピックアップするようにすればよい。また、コレットで半導体発光素子10をピックアップする際に、ウエハの裏面側から粘着シートを介して、当該半導体発光素子10をピンで押し上げるようにすることが好ましい。これによって、粘着シートから抽出対象である半導体発光素子10をピックアップし易くすることができる。
【0098】
なお、本実施形態では、良品をピックアップするようにしたが、不良品をピックアップして除去するようにしてもよい。この場合は、すべての不良品を除去した後に残った半導体発光素子10が、良品として選別されたことになる。
【0099】
以上、本発明に係る半導体発光素子の検査方法及びその検査方法を工程として含む半導体発光素子の製造方法について、発明を実施するための形態により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変などしたものも本発明の趣旨に含まれることはいうまでもない。