(58)【調査した分野】(Int.Cl.,DB名)
Tiを2.0〜4.0質量%含有し、第三元素としてFe、Co、Mg、Si、Ni、Cr、Zr、Mo、V、Nb、Mn、B、及びPからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなる電子部品用チタン銅であって、圧延方向に平行な断面の母相において透過電子顕微鏡により加速電圧を200kVとして観察される電子線回折像におけるサテライトの回折斑点の輝度が0.05〜0.35、圧延方向に平行な断面の組織観察における平均結晶粒径が2〜30μmであるチタン銅。
圧延方向に平行な方向での0.2%耐力が900MPa以上であり、且つ、板幅(w)/板厚(t)=3.0となる曲げ幅で曲げ半径(R)/板厚(t)=0としてBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験を実施したときに屈曲部にクラックを生じない請求項1に記載のチタン銅。
【発明を実施するための形態】
【0016】
(1)Ti濃度
本発明に係るチタン銅においては、Ti濃度を2.0〜4.0質量%とする。チタン銅は、溶体化処理によりCuマトリックス中へTiを固溶させ、時効処理により微細な析出物を合金中に分散させることにより、強度及び導電率を上昇させる。
Ti濃度が2.0質量%未満になると、Ti濃度の幅が生じないか又は小さくなると共に析出物の析出が不充分となり所望の強度が得られない。Ti濃度が4.0質量%を超えると、曲げ加工性が劣化し、圧延の際に材料が割れやすくなる。強度及び曲げ加工性のバランスを考慮すると、好ましいTi濃度は2.5〜3.5質量%である。
【0017】
(2)第三元素
本発明に係るチタン銅においては、Fe、Co、Mg、Si、Ni、Cr、Zr、Mo、V、Nb、Mn、B、及びPからなる群から選択される第三元素の1種以上を含有させることにより、強度を更に向上させることができる。但し、第三元素の合計濃度が0.5質量%を超えると、曲げ加工性が劣化し、圧延の際に材料が割れやすくなる。そこで、これら第三元素は合計で0〜0.5質量%含有することができ、強度及び曲げ加工性のバランスを考慮すると、上記元素の1種以上を総量で0.1〜0.4質量%含有させることが好ましい。
【0018】
(3)輝度
本発明においては、電子線回折におけるサテライトの回折斑点の輝度を規定する。輝度の測定は、圧延方向に平行な断面における母相に対して行う。サテライトの回折斑点はCu
4Tiと考えられ、変調構造の発達度合によってα−Cu
4Ti又はβ−Cu
4Tiを示す。すなわち、サテライトの回折斑点の輝度はスピノーダル分解による変調構造の発達度合いを反映する。
図1はサテライトの回折斑点を捉えた電子線回折写真の例である。サテライトの回折斑点は、写真中、Cuを表す中心の大きな円の周辺に現れる8つの小さな点のことである。
図1の矢印の方向に回折斑点の輝度をライン分析したときの測定結果の例を
図2に示す。本発明において、輝度は以下に示す式より算出することとする。
輝度=(Peak−Bottom)/Bottom
Bottom=(Bottom(A)+Bottom(B))/2
“Peak”は各サテライトの回折斑点の最大輝度を示す。
横軸を「位置」、縦軸を「輝度」とするグラフの右肩あがりの輝度曲線において、Peakの左側にBottom(A)を、Peakの右側にBottom(B)を(1)、(2)の順で決める。
(1)Peakの右側の領域で「輝度」が最小となる「位置」の「輝度」をBottom(B)とする。
(2)PeakとBottom(B)の横軸方向の距離d(B)(それぞれの「位置」の差)と、PeakとBottom(A)の横軸方向の距離d(A)(それぞれの「位置」の差)とが等しくなる「位置」の「輝度」をBottom(A)とする。
Peakの高さをBottomで割ることで測定条件によらず標準化することができる。回折斑点の輝度をライン分析する際のラインは、大きな円の中心に向かって、回折斑点の中心を通るように引く。
本発明においては、任意の10点におけるサテライトの輝度を測定し、平均値を測定値とする。
【0019】
本発明においてはチタン銅の輝度を調節することで、強度及び曲げ加工性のバランスを向上させる。輝度を調節することによって強度及び曲げ加工性のバランスが向上するメカニズムは必ずしも明らかになっていない。理論によって本発明が限定されることを意図するものではないが、以下のように考えられる。輝度の値は変調構造の発達度合いを示す。輝度が低いと変調構造の発達が不十分であり、強度の上昇が不十分となる。一方、輝度が高いと変調構造が発達するが、過剰に高くなるとα−Cu
4Tiからβ-Cu
4Tiとなり、曲げ性を損ねる。
【0020】
本発明者の研究によれば、強度及び曲げ加工性のバランスに対して好ましい輝度は、0.05〜0.35であり、より好ましくは0.08〜0.30であり、更により好ましくは0.10〜0.25であり、更により好ましくは0.12〜0.20である。
【0021】
(4)0.2%耐力及び曲げ加工性
本発明に係るチタン銅は一実施形態において、JIS−Z2241に従う引張試験を行ったときに圧延方向に平行な方向での0.2%耐力が900MPa以上であり、且つ、板幅(w)/板厚(t)=3.0となる曲げ幅で曲げ半径(R)/板厚(t)=0としてBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験をJIS−H3130に従って実施したときに屈曲部にクラックを生じない。
【0022】
本発明に係るチタン銅は好ましい一実施形態において、JIS−Z2241に従う引張試験を行ったときに圧延方向に平行な方向での0.2%耐力が1000MPa以上であり、且つ、板幅(w)/板厚(t)=3.0となる曲げ幅で曲げ半径(R)/板厚(t)=0としてBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験をJIS−H3130に従って実施したときに屈曲部にクラックを生じない。
【0023】
本発明に係るチタン銅はより好ましい一実施形態において、JIS−Z2241に従う引張試験を行ったときに圧延方向に平行な方向での0.2%耐力が1050MPa以上であり、且つ、板幅(w)/板厚(t)=3.0となる曲げ幅で曲げ半径(R)/板厚(t)=0としてBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験をJIS−H3130に従って実施したときに屈曲部にクラックを生じない。
【0024】
本発明に係るチタン銅は更により好ましい一実施形態において、JIS−Z2241に従う引張試験を行ったときに圧延方向に平行な方向での0.2%耐力が1100MPa以上であり、且つ、板幅(w)/板厚(t)=3.0となる曲げ幅で曲げ半径(R)/板厚(t)=0としてBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験をJIS−H3130に従って実施したときに屈曲部にクラックを生じない。
【0025】
0.2%耐力の上限値は、本発明が目的とする強度の点からは特に規制されないが、手間及び費用がかかる上、高強度を得るためにTi濃度を高めると熱間圧延時に割れる危険性があるため、本発明に係るチタン銅の0.2%耐力は一般には1400MPa以下であり、典型的には1300MPa以下であり、より典型的には1200MPa以下である。
【0026】
(5)結晶粒径
チタン銅の強度及び曲げ加工性を向上させるためには、結晶粒が小さいほどよい。そこで、好ましい平均結晶粒径は30μm以下、より好ましくは20μm以下、更により好ましくは10μm以下である。下限については特に制限はないが、結晶粒径の判別が困難となるほど微細化しようとすると未済結晶粒が存在する混粒となるために却って曲げ加工性が悪化しやすい。そこで、平均結晶粒径は2μm以上が好ましい。本発明において、平均結晶粒径は光学顕微鏡か電子顕微鏡による観察で圧延方向に平行な断面の組織観察における円相当径で表す。
【0027】
(6)チタン銅の板厚
本発明に係るチタン銅の一実施形態においては、板厚を0.5mm以下とすることができ、典型的な実施形態においては厚みを0.03〜0.3mmとすることができ、より典型的な実施形態においては厚みを0.08〜0.2mmとすることができる。
【0028】
(7)用途
本発明に係るチタン銅は種々の伸銅品、例えば板、条、管、棒及び線に加工することができる。本発明に係るチタン銅は、限定的ではないが、コネクタ、スイッチ、オートフォーカスカメラモジュール、ジャック、端子(例えばバッテリー端子)、リレー等の電子部品の材料として好適に使用することができる。
【0029】
(8)製造方法
本発明に係るチタン銅は、特に最終の溶体化処理及びそれ以降の工程で適切な熱処理及び冷間圧延を実施することにより製造可能である。以下に、好適な製造例を工程毎に順次説明する。
【0030】
<インゴット製造>
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない。よって、溶け残りをなくすため、FeやCr等の高融点の第三元素は、添加してから十分に攪拌したうえで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第三元素の溶解後に添加すればよい。従って、Cuに、Fe、Co、Mg、Si、Ni、Cr、Zr、Mo、V、Nb、Mn、B、及びPからなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有するように添加し、次いでTiを2.0〜4.0質量%含有するように添加してインゴットを製造することが望ましい。
【0031】
<均質化焼鈍及び熱間圧延>
インゴット製造時に生じた凝固偏析や晶出物は粗大なので均質化焼鈍でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これは曲げ割れの防止に効果があるからである。具体的には、インゴット製造工程後には、900〜970℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。液体金属脆性を防止するために、熱延前及び熱延中は960℃以下とし、且つ、元厚から全体の圧下率が90%までのパスは900℃以上とするのが好ましい。
【0032】
<第一溶体化処理>
その後、冷延と焼鈍を適宜繰り返してから第一溶体化処理を行うのが好ましい。ここで予め溶体化を行っておく理由は、最終の溶体化処理での負担を軽減させるためである。すなわち、最終の溶体化処理では、第二相粒子を固溶させるための熱処理ではなく、既に溶体化されてあるのだから、その状態を維持しつつ再結晶のみ起こさせればよいので、軽めの熱処理で済む。具体的には、第一溶体化処理は加熱温度を850〜900℃とし、2〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、ここでは第二相粒子が析出しないようにするのが好ましい。なお、第一溶体化処理は行わなくても良い。
【0033】
<中間圧延>
最終の溶体化処理前の中間圧延における圧下率を高くするほど、最終の溶体化処理における再結晶粒を均一かつ微細に制御できる。従って、中間圧延の圧下率は好ましくは70〜99%である。圧下率は{((圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100%}で定義される。
【0034】
<最終の溶体化処理>
最終の溶体化処理では、析出物を完全に固溶させることが望ましいが、完全に無くすまで高温に加熱すると、結晶粒が粗大化しやすいので、加熱温度は第二相粒子組成の固溶限付近の温度とする(Tiの添加量が2.0〜4.0質量%の範囲でTiの固溶限が添加量と等しくなる温度は730〜840℃程度であり、例えばTiの添加量が3.0質量%では800℃程度)。そしてこの温度まで急速に加熱し、水冷等によって冷却速度も速くすれば粗大な第二相粒子の発生が抑制される。従って、典型的には、730〜840℃のTiの固溶限が添加量と同じになる温度に対して−20℃〜+50℃の温度に加熱し、より典型的には730〜8
40℃のTiの固溶限が添加量と同じになる温度に比べて0〜30℃高い温度、好ましくは0〜20℃高い温度に加熱する。
【0035】
また、最終の溶体化処理での加熱時間は短いほうが結晶粒の粗大化を抑制できる。加熱時間は例えば30秒〜10分とすることができ、典型的には1分〜8分とすることができる。この時点で第二相粒子が発生しても微細かつ均一に分散していれば、強度と曲げ加工性に対してほとんど無害である。しかし粗大なものは最終の時効処理で更に成長する傾向にあるので、この時点での第二相粒子は生成してもなるべく少なく、小さくしなければならない。
【0036】
<予備時効>
最終の溶体化処理に引き続いて、予備時効処理を行う。従来は最終の溶体化処理の後は冷間圧延を行うことが通例であったが、本発明に係るチタン銅を得る上では最終の溶体化処理の後、冷間圧延を行わずに直ちに予備時効処理を行うことが重要である。予備時効処理は次工程の時効処理よりも低温で行われる熱処理であり、予備時効処理及び後述する時効処理を連続して行うことによりチタン銅の輝度を適正範囲に調整することが可能となる。予備時効処理は表面酸化皮膜の発生を抑制するためにAr、N
2、H
2等の不活性雰囲気で行うことが好ましい。
【0037】
予備時効処理における加熱温度が低すぎても高すぎても上記利点を得るのは困難である。本発明者による検討結果によれば、材料温度150〜250℃で10〜20時間加熱することが好ましく、材料温度160〜230℃で10〜18時間加熱することがより好ましく、170〜200℃で12〜16時間加熱することが更により好ましい。
【0038】
<時効処理>
予備時効処理に引き続いて、時効処理を行う。予備時効処理後、いったん室温まで冷却してもよい。製造効率を考えると、予備時効処理の後、冷却せずに時効処理温度まで昇温して、連続して時効処理を実施することが望ましい。何れの方法であっても得られるチタン銅の特性に違いはない。但し、予備時効はその後の時効処理で均一に第二相粒子を析出させることを目的としているため、予備時効処理と時効処理の間には冷間圧延は実施するべきではない。
【0039】
予備時効処理によって溶体化処理で固溶させたTiが少し析出していることから、時効処理は慣例の時効処理よりもやや低温で実施するべきであり、材料温度300〜450℃で0.5〜20時間加熱することが好ましく、材料温度350〜440℃で2〜18時間加熱することがより好ましく、材料温度375〜430℃で3〜15時間加熱することが更により好ましい。時効処理は予備時効処理と同様の理由により、Ar、N
2、H
2等の不活性雰囲気で行うことが好ましい。
【0040】
<最終の冷間圧延>
上記時効処理後、最終の冷間圧延を行う。最終の冷間加工によってチタン銅の強度を高めることができるが、本発明が意図するような高強度と曲げ加工性の良好なバランスを得るためには圧下率を10〜50%、好ましくは20〜40%とすることが望ましい。
【0041】
<歪取焼鈍>
高温暴露時の耐へたり性を向上する観点からは、最終の冷間圧延後に歪取焼鈍を実施することが望まれる。歪取焼鈍を行うことで転位が再配列するからである。歪取焼鈍の条件は慣用の条件でよいが、過度の歪取焼鈍を行うと粗大粒子が析出して強度が低下するため好ましくない。歪取焼鈍は材料温度200〜600℃で10〜600秒行うことが好ましく、250〜550℃で10〜400秒行うことがより好ましく、300〜500℃で10〜200秒行うことが更により好ましい。
【0042】
なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できるだろう。
【実施例】
【0043】
以下に本発明の実施例(発明例)を比較例と共に示すが、これらは本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
【0044】
表1(表1−1および1−2)に示す合金成分を含有し残部が銅及び不可避的不純物からなるチタン銅の試験片を種々の製造条件で作製し、それぞれの輝度、0.2%耐力及び曲げ加工性を調査した。
【0045】
まず、真空溶解炉にて電気銅2.5kgを溶解し、第三元素を表1に示す配合割合でそれぞれ添加した後、同表に示す配合割合のTiを添加した。添加元素の溶け残りがないよう添加後の保持時間にも十分に配慮した後に、これらをAr雰囲気で鋳型に注入して、それぞれ約2kgのインゴットを製造した。
【0046】
上記インゴットに対して950℃で3時間加熱する均質化焼鈍の後、900〜950℃で熱間圧延を行い、板厚15mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(1〜8mm)とし、素条での第一次溶体化処理を行った。第一次溶体化処理の条件は850℃で10分間加熱とし、その後、水冷した。次いで、表1に記載の最終冷間圧延における圧下率及び製品板厚の条件に応じて圧下率を調整して中間の冷間圧延を行った後、急速加熱が可能な焼鈍炉に挿入して最終の溶体化処理を行い、その後、水冷した。このときの加熱条件は材料温度がTiの固溶限が添加量と同じになる温度(Ti濃度3.0質量%で約800℃、Ti濃度2.0質量%で約730℃、Ti濃度4.0質量%で約840℃)を基準として表1に記載の通りとした。次いで、Ar雰囲気中で表1に記載の条件で予備時効処理及び時効処理を連続して行った。ここでは予備時効処理の後に冷却を行なわなかった。酸洗による脱スケール後、表1に記載の条件で最終冷間圧延を行い、最後に表1に記載の各加熱条件で歪取焼鈍を行って発明例及び比較例の試験片とした。試験片によっては予備時効処理、時効処理又は歪取焼鈍を省略した。
【0047】
作製した製品試料について、次の評価を行った。
(イ)0.2%耐力
JIS13B号試験片を作製し、この試験片に対してJIS−Z2241に従って引張試験機を用いて圧延方向と平行な方向の0.2%耐力を測定した。
(ロ)曲げ加工性
板幅(w)/板厚(t)=3.0となる曲げ幅でBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験をJIS−H3130に従って実施し、割れが発生しない最小の曲げ半径(MBR)と厚さ(t)の比である最小曲げ半径比(MBR/t)を求めた。このとき、割れの有無は、屈曲部断面を機械研磨で鏡面に仕上げ、光学顕微鏡で観察して屈曲部にクラックが生じていたか否かで判断した。
(ハ)輝度
各試験片について、圧延面を収束イオンビーム(FIB)にて切断することで圧延方向に平行な断面を露出させ、試料厚みを100nm以下程度まで薄く加工した。その後、透過電子顕微鏡(日本電子株式会社 型式:JEM−2100F)を用いて、加速電圧200kVで、母相内の3μm×3μmの視野を観察した。得られた電子線回折像からCu
4Tiを示すサテライトの輝度を算出した。
【0048】
(ニ)結晶粒径
また、各製品試料の平均結晶粒径の測定は、圧延面をFIBにて切断することで、圧延方向に平行な断面を露出した後、断面を電子顕微鏡(Philips社製 XL30 SFEG)を用いて観察し、単位面積当たりの結晶粒の数をカウントして、結晶粒の平均の円相当径を求めた。具体的には、100μm×100μmの枠を作成し、この枠の中に存在する結晶粒の数をカウントした。なお、枠を横切っている結晶粒については、すべて1/2個としてカウントした。枠の面積10000μm
2をその合計で除したものが結晶粒1個当たりの面積の平均値である。その面積を持つ真円の直径が円相当径であるので、これを平均結晶粒径とした。
【0049】
(考察)
表1(表1−1および1−2)に試験結果を示す。発明例1では最終溶体化処理、予備時効、時効、最終冷間圧延の条件がそれぞれ適切であったことから、輝度が適正範囲となり、0.2%耐力及び曲げ加工性の高い次元での両立が達成されていることが分かる。
発明例2は予備時効の加熱温度を発明例1よりも低くしたことで輝度が低下したものの、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例3は予備時効の加熱温度を発明例1よりも高くしたことで輝度が上昇し、高い曲げ加工性を維持しながらも0.2%耐力が向上した。
発明例4は時効の加熱温度を発明例1よりも低くしたことで輝度が低下したものの、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例5は時効の加熱温度を発明例1よりも高くしたことで輝度が上昇し、0.2%耐力が向上した。
発明例6は最終冷間圧延における圧下率を発明例1よりも小さくしたことで0.2%耐力が発明例1よりも低下したが依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例7は最終冷間圧延における圧下率を発明例1よりも高くしたことで高い曲げ加工性を維持しながらも0.2%耐力が向上した。
発明例8では発明例1に対して歪取焼鈍を省略したが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例9では発明例1に対して歪取焼鈍における加熱温度を高くしたことで輝度がやや上昇したが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例10は発明例1に対して第三元素の添加を省略した例である。0.2%耐力に低下が見られたが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例11は発明例1に対してチタン銅中のTi濃度を下限にまで低くした例である。輝度が低下して0.2%耐力に低下が見られたが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例12は発明例1に対してチタン銅中のTi濃度を上限にまで高くしたことで輝度が上限近くまで上昇したが依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例13〜18は発明例1に対して第三元素の種類を変えた例であるが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
比較例1は最終の溶体化処理温度が低すぎたことで未再結晶領域と再結晶領域が混在する混粒化が起き、輝度が低下した。そのため曲げ加工性が悪かった。
比較例2では予備時効処理を行わなかったことから輝度が不十分となり、曲げ加工性が悪かった。
比較例3〜4は、特許文献6に記載のチタン銅に相当する。予備時効処理と時効処理を連続で行わなかったことから輝度が過剰に大きくなり、曲げ加工性が悪かった。
比較例5は予備時効処理を行ったものの加熱温度が低すぎたことから輝度が十分に上昇せず、曲げ加工性が悪かった。
比較例6は予備時効における加熱温度が高すぎたために、過時効となって輝度が過剰に上昇し、曲げ加工性が低下した。
比較例7は時効処理を行わなかったことから輝度が不十分となった。そのため、発明例1に対して0.2%耐力及び曲げ加工性が低下した。
比較例8は最終溶体化処理→冷間圧延→時効処理を行ったと評価できるケースである。輝度が不十分となり、発明例1に対して0.2%耐力及び曲げ加工性が低下した。
比較例9は時効の加熱温度が低すぎたことから輝度が不十分となり、発明例1に対して0.2%耐力及び曲げ加工性が低下した。
比較例10は時効の加熱温度が高すぎたために、過時効となって輝度が過剰に上昇し、そのため、発明例1に対して0.2%耐力及び曲げ加工性が低下した。
比較例11は歪取焼鈍の加熱温度が高すぎたために輝度が過剰となり、発明例1に対して0.2%耐力及び曲げ加工性が低下した。
比較例12は第三元素の添加量が多すぎたことで熱間圧延で割れが発生したため、試験片の製造ができなかった。
比較例13はTi濃度が低すぎたことで、輝度が低下し、強度不足となった。
比較例14はTi濃度が高すぎたことで熱間圧延で割れが発生したため、試験片の製造ができなかった。
【0050】
【表1-1】
【0051】
【表1-2】